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Motivation: SUSY on EAdS₂ 

• All extremal black holes universally have an AdS₂ factor in 
their near horizon geometry.


• Euclidean path integral approach provides thermodynamic 
properties of the black holes [Gibbons, Hawking ‘97]


• Supersymmetry provides us with a powerful tool for 
quantum study of the Euclidean path integral.  
 
e.g. SUSY localization method [Nekrasov ’02, Pestun '07] 



Motivation: SUSY on EAdS₂ 

• Quantum entropy function [Sen ’08]: Quantum formula of 
macroscopic entropy for extremal black holes is defined as 
the Euclidean partition function with the boundary condition 
dictated by AdS₂ 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Motivation: SUSY on EAdS₂ 

• Quantum entropy function [Sen ’08]: Quantum formula of 
macroscopic entropy for extremal black holes is defined as 
the Euclidean partition function with the boundary condition 
dictated by AdS₂ 
    
    


• Defined in micro-canonical ensemble


• Generalization of Bekenstein-Hawking entropy to include all 
the quantum corrections
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Motivation: SUSY on EAdS₂ 

• Quantum entropy function [Sen ’08]: Quantum formula of 
macroscopic entropy for extremal black holes is defined as 
the Euclidean partition function with the boundary condition 
dictated by AdS₂ 
    
   


• For various BPS black holes, perturbative 1-loop successfully 
matches with corresponding microscopic result.  
[Sen, Banerjee, Gupta, Mandal,  Bhattacharyya, Panda, Lal, 
Thakur ’10~ ; Keeler, Larsen, Lisão ’14’15; …]
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Motivation: SUSY on EAdS₂ 

• Application of supersymmetric localization:  
Computation of quantum entropy function for 1/8 BPS black 
hole in type II supergravity reproduces microstate degeneracy 
as an integer ! 

                   
 
[Banerjee, Banerjee, Gupta, Mandal, Sen ‘09; Dabholkar, Gomes, Murthy 
’10,’11’13; Gupta, Murthy ’12; Gupta, Ito, IJ ’15; Murthy, Reys, de Wit Murthy, 
Reys ’18; IJ, Murthy ’18; Iliesiu, Murthy, Turiaci, ‘22 ]


• This is a quantum completion of [Strominger-Vafa ’96] providing 
exact test of AdS₂ /CFT₁ . 
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Motivation: SUSY on EAdS₂ 

• Application of supersymmetric localization:  
Computation of quantum entropy function for 1/8 BPS black 
hole in type II supergravity reproduces microstate degeneracy 
as an integer ! 

                   
 
[Banerjee, Banerjee, Gupta, Mandal, Sen ‘09; Dabholkar, Gomes, Murthy 
’10,’11’13; Gupta, Murthy ’12; Gupta, Ito, IJ ’15; Murthy, Reys, de Wit Murthy, 
Reys ’18; IJ, Murthy ’18; Iliesiu, Murthy, Turiaci, ‘22 ]


• Despite those extensive results, there is a problem concerning the 
asymptotic supersymmetric boundary condition.
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The problem
• Imposing boundary condition is important to define a theory. If we 

want supersymmetric theory, then boundary condition should be 
supersymmetric. However…


• Supersymmetric boundary condition and normalizable condition 
are not always compatible. [David, Gava, Gupta, Narain `18, `19]


• Standard eigenbasis for normalizable fluctuation [Camporesi, Higuchi 
‘94] of boson and fermion are not mapped to each other by 
supersymmetry [Sen ‘23].


• Supersymmetry demands ‘non-normalizable’ modes? 
→ path integral ill-defined?!  
→ well-defined theories on AdS₂  does not have SUSY?!



The problem

•  If there is no SUSY, what does it mean by ‘super’gravity on AdS, 
given that there is the dual ‘supersymmetric’ field theory?


• How can the 1-loop test using the standard normalizable non-
supersymmetric basis agree with results from supersymmetric 
microscopic theory?


• How is the localization method valid and capable of giving the 
correct exact result? 


We resolve this problem by showing that EAdS2 requires 
complexified spectrum and constructing the supersymmetric 
Hilbert space for scalar and spinor fields. 



Outline

• Motivation


• Problem with SUSY and standard basis


• Construction of supersymmetric Hilbert space


• 1-loop in SUSY Hilbert space


• Conclusion



Problem of SUSY and standard basis 

• SUSY relation between boson and fermion is generically given by 

                                    


• On the AdS₂ geometry,  

                          
the Killing spinor equation is given by  

                          
whose solutions are 

                                      


• They have exponential asymptotic growth     for large   . 
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modes. The supersymmetry relation between boson Φ
and fermion Ψ is generically given by local transforma-
tion using Killing spinors, ε, as

QΦ = εΨ . (9)

On AdS2, the Killing spinors satisfy the following con-
formal Killing spinor equations,

Dµεs = s 1
2Lγµε

s , s = ±1 , (10)

depending on the sign factor s associated with the back-
ground value in gravity multiplet fields. With our choice
of the gamma matrices, the Killing spinor solutions are

εs+=
√
Le

iθ
2

(

cosh η
2

s sinh η
2

)

, εs−=
√
Le−

iθ
2

(

s sinh η
2

cosh η
2

)

. (11)

We note that these spinors exponentially grow as
exp(η/2) for large η, which we call degree of growth 1/2.
Let us look at the supersymmetry relation between

scalar and Dirac spinors, for the left and right hand
side of (9) respectively, in terms of the basis functions
presented in previous section. On one hand, we recall
from (4) that the basis functions for scalar have degree
of growth −1/2. On the other hand, since the Killing
spinors on the AdS2 presented in (11) have degree of
growth 1/2 as, one can show using (8) that the basis func-
tions for spinor fields combined with the Killing spinors
have degree of growth 0 having the following asymptotic
behavior, up to proportionality factors,

εs±ψ
±
λ,k ∼ esiλη±i(k+1)θ , εs∓ψ

±
λ,k ∼ esiλη±ikθ . (12)

Therefore, the degree of growth of left and right-hand
sides of the supersymmetry relation (9) do not match
when expressed in terms of the delta-function normaliz-
able basis functions given in (1) and (5).
The mismatch at the level of asymptotic growth of ba-

sis elements is an indication that there is no mapping be-
tween the boson and fermion. To elaborate the argument,
we try to find the supersymmetry transformation in
terms of the mode expansion coefficient. If we schemat-
ically expand the boson and fermion in terms of com-
plete basis φm and ψn respectively as Φ =

∑

amφm ,Ψ =
∑

bnψn , then supersymmetry relates the bosonic coeffi-
cient am and the fermionic coefficient bm as

Qam = 〈φm|εΨ〉 =
∑

n bn〈φm|εψn〉 . (13)

Here, there is an issue: according to the asymptotic be-
havior of scalar in (4) and bifermion in (12) having de-
gree of growth−1/2 and 0 respectively, the inner product
〈 · | · 〉 in (13) is ill-defined as the integration diverges

〈

φλ′,k′ |εψλ,k
〉

∼
∫∞
0 dη

√
g e−

1

2
η → ∞ . (14)

Nevertheless, we can extract finite information by ana-
lytically continuing the integration. We introduce the
parameter ε > 1/2 such that the integrand, including the
measure

√
g, has degree of growth less than zero behav-

ing as exp[(1/2 − ε)η] for large η. Then we can perform
the well-defined integration, from which we take the ε to
be zero. In this way one can show that the result is

〈

φλ′,k|εsψλ,k
〉

∝ δ
(

λ′+
(

λ−s i
2

))

+δ
(

λ′−
(

λ−s i
2

))

. (15)

We shall omit the detail on how to introduce the param-
eter ε and perform the integration as this result is clear
once we note the property of the bi-spinor that will be
given in (17).
Since the spectral parameter for scalar and fermion ba-

sis is real, the inner product (15) between the scalar basis
and the bifermion vanishes. This result concludes that
the superpartner of the scalar mode (1) is not expressible
in terms of standard delta-function normalizable basis for
spinor field (5). This seems to suggest that we have to
give up delta-function normalizable basis and find a way
to introduce non-normalizable modes as argued in [25–
27]. However, in the following, we will show that we
can still have supersymmetric delta-function normaliz-
able basis furnishing a supersymmetric Hilbert space.

SUPERSYMMETRIC HILBERT SPACE WITH

COMPLEXIFIED SPECTRUM

In order to have supersymmetry, the inner product
in (15) should be non-zero. From the expression, we
notice that it is natural to consider complexifying the
parameter λ: if we consider fermionic modes with com-
plex eigenvalue λ by shifting with imaginary value i/2,
i.e. λ→ λ+ s i/2, then we obtain δ(λ′ −λ) in (15). This
idea of shifting λ by i/2 is also supported by the follow-
ing observation. Using the Killing spinor equation (10),
eigenvalue equation for ψ±

λ,k, and the fact that the scalar

curvature of AdS2 is R = −2L−2, we can easily find the
eigenvalue of bi-spinor with respect to the Laplace oper-
ator as

−∇2(εsψ±
λ,k) =

1
L2

(

(

λ− s i
2

)2
+ 1

4

)

(εsψ±
λ,k) . (16)

Therefore, if we shift the λ → λ + s i/2, then the bi-
spinor has the same eigenvalue of the scalar modes. This
means that the bi-spinor is expanded in terms of the
scalar eigenfunctions and the map between the scalar and
fermion is straightforward. In fact, one can show that the
bi-spinor with shifted λ by i/2 is exactly proportional to
the eigenfunctions for scalar as [36]

εs±ψ
±
λ+s i

2
,k

∝ φλ,±(|k|+1) , ε
s
∓ψ

±
λ+s i

2
,k
∝ φλ,±|k| . (17)

With the above idea, we propose a supersymmetric
Hilbert space, which is composed of the bosonic modes
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DELTA-FUNCTION NORMALIZABLE MODES

We begin by revisiting the standard basis for scalar and
spinor fields given by delta-function normalizable eigen-
functions [28–30] of the Laplace and Dirac operators on
the Euclidean global AdS2 background whose metric is
given by ds2 = L2(dη2 + sinh2 η dθ2) .

a. Scalar modes: For the Laplacian operator −∇2

on AdS2, the eigenfunctions are given by

φλ,k(η, θ) =
1√
2π

1
2|k||k|!

(

Γ( 1

2
+|k|+iλ)Γ( 1

2
+|k|−iλ)

Γ(iλ)Γ(−iλ)

)
1

2

eikθ

×sinh|k|η F
(

1
2+|k|+ iλ, 12+|k|−iλ; |k|+1;−sinh2 η2

)

,

(1)
with k ∈ Z , λ ∈ R>0, where F (α,β; γ; z) is the hyperge-
ometric function, which have eigenvalue, L−2(λ2 + 1/4).
The eigenfunctions (1) satisfy delta-function orthonor-
mality under the following definition of inner product

〈

φλ,k|φλ′,k′

〉

≡
∫

dηdθ
√
g φλ,−kφλ′,k′ =L2δ(λ−λ′)δk,k′ .

(2)

Note that since we will complexify the parameter λ, we
have defined the dual of a basis element φλ,k for the inner
product as φλ,−k, without using complex conjugation.
This definition stems from the property that φλ,−k =
(φλ,k)∗ for real λ.
Homogeneity of AdS2 implies that the spectral density

can be obtained using the eigenfunctions evaluated at
η = 0, where only the k = 0 mode survives. Hence

µφ(λ) ≡
∑

k

(

φλ,−k φλ,k
) ∣

∣

η=0
= λ

2π tanhπλ . (3)

We note that λ = 0 is not part of the scalar spectrum
since µφ(0) = 0.
Using inversion formula of hypergeometric func-

tion [33], one can show that the eigenfunctions have the
following asymptotic behavior as η → ∞

φλ,k(η, θ) ∼ e−
1

2
η+ikθ

(

αλ,keiλη + α−λ,ke−iλη
)

,

αλ,k ≡ 1
π
√
2

(

Γ(iλ)Γ(
1
2+|k|−iλ)

Γ(−iλ)Γ(
1
2+|k|+iλ)

)

1

2

.
(4)

b. Spinor modes: For the Dirac operator i /D on
AdS2, with the gamma matrices being Pauli matrices,
the eigenfunctions are given by [34]

ψ+
λ,k = 1√

4π
1
k!

(

Γ(1+k+iλ)Γ(1+k−iλ)
Γ( 1

2
+iλ)Γ( 1

2
−iλ)

)
1

2

ei(k+
1

2
)θ





coshk+1 η
2 sinh

k η
2 F (k+1+iλ, k+1−iλ; k+1;− sinh2 η2 )

−i λ
k+1 cosh

k η
2 sinh

k+1 η
2 F (k+1+iλ, k+1−iλ; k+2;− sinh2 η2 )



 ,

ψ−
λ,k = 1√

4π
1
k!

(

Γ(1+k+iλ)Γ(1+k−iλ)

Γ( 1

2
+iλ)Γ( 1

2
−iλ)

)
1

2

e−i(k+ 1

2
)θ





i λ
k+1 cosh

k η
2 sinh

k+1 η
2 F (k+1+iλ, k+1−iλ; k+2;− sinh2 η2 )

− coshk+1 η
2 sinh

k η
2 F (k+1+iλ, k+1−iλ; k+1;− sinh2 η2 )



 ,

(5)

with λ ∈ R , k ∈ Z≥0 , which have the eigenvalue,
L−1λ . The eigenfunctions (5) satisfy delta-function or-
thonormality under the following definition of inner prod-
uct,

〈

ψ±
λ,k|ψ

±
λ′,k′

〉

≡ ±i
∫

dηdθ
√
g ψ∓

λ,k ψ
±
λ′,k′

=L2δ(λ−λ′)δk,k′ ,
(6)

where our convention for the spinorial multiplication is
ψχ ≡ ψTCχ with C = γ2 . Note that we have defined the
dual of a basis element ψ±

λ,k for the inner product through

the symplectic Majorana conjugate as ±i(ψ∓
λ,k)

TC, not
using hermitian conjugate. This definition stems from
the property that (ψ±

λ,k)
† = ±i(ψ∓

λ,k)
TC for real λ. In

fact, this is the natural definition in Euclidean space be-
cause Euclidean space treats the conjugate of a spinor as
an independent spinor, formally doubling fermionic de-
grees of freedom [35]. Therefore, we would call (6) as
“Euclidean inner product”.
Homogeneity of AdS2 implies that the spectral density

can be obtained using the eigenfunctions evaluated at

η = 0, where only the k = 0 mode survives. Hence

µψ±(λ) ≡ ±i
∑

k ψ
∓
λ,k ψ

±
λ,k

∣

∣

∣

η=0
= 1

4πλ cothπλ . (7)

We note that, unlike the case for scalar modes, the spec-
trum exists at λ = 0 since µψ±(0) *= 0.
Finally, we note that the asymptotic behavior for large

η as follows

ψ±
λ,k∼ e−

η
2
±i(k+ 1

2
)θ
(

eiληβλ,kυ(−)± e−iληβ−λ,kυ(+)
)

,

βλ,k ≡ 1
2π

(

Γ( 1

2
+iλ)Γ(1+k−iλ)

Γ( 1

2
−iλ)Γ(1+k+iλ)

)
1

2

, υ(±) ≡
(

1

±1

)

,
(8)

where we note the projection property, P±υ(±) = υ(±),
with the projector, P± ≡ 1

2 (1± γ1).

PROBLEM WITH SUPERSYMMETRY

Let us elaborate the problem concerning the super-
symmetry of the standard delta-function normalizable

Motivation
Quantum corrections to the entropy of BPS black holes using the
quantum entropy formula.
Near horizon geometry of BPS black holes contains an AdS2 factor.

ds2 = L2(d⌘2 + sinh2 ⌘ d✓2) , 0  ⌘ < 1 , 0  ✓ < 2⇡

ZAdS2 =

Z
D� D e�S[�, ]�ie

H
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modes. The supersymmetry relation between boson Φ
and fermion Ψ is generically given by local transforma-
tion using Killing spinors, ε, as

QΦ = εΨ . (9)

On AdS2, the Killing spinors satisfy the following con-
formal Killing spinor equations,

Dµεs = s 1
2Lγµε

s , s = ±1 , (10)

depending on the sign factor s associated with the back-
ground value in gravity multiplet fields. With our choice
of the gamma matrices, the Killing spinor solutions are

εs+=
√
Le

iθ
2

(

cosh η
2

s sinh η
2

)

, εs−=
√
Le−

iθ
2

(

s sinh η
2

cosh η
2

)

. (11)

We note that these spinors exponentially grow as
exp(η/2) for large η, which we call degree of growth 1/2.
Let us look at the supersymmetry relation between

scalar and Dirac spinors, for the left and right hand
side of (9) respectively, in terms of the basis functions
presented in previous section. On one hand, we recall
from (4) that the basis functions for scalar have degree
of growth −1/2. On the other hand, since the Killing
spinors on the AdS2 presented in (11) have degree of
growth 1/2 as, one can show using (8) that the basis func-
tions for spinor fields combined with the Killing spinors
have degree of growth 0 having the following asymptotic
behavior, up to proportionality factors,

εs±ψ
±
λ,k ∼ esiλη±i(k+1)θ , εs∓ψ

±
λ,k ∼ esiλη±ikθ . (12)

Therefore, the degree of growth of left and right-hand
sides of the supersymmetry relation (9) do not match
when expressed in terms of the delta-function normaliz-
able basis functions given in (1) and (5).
The mismatch at the level of asymptotic growth of ba-

sis elements is an indication that there is no mapping be-
tween the boson and fermion. To elaborate the argument,
we try to find the supersymmetry transformation in
terms of the mode expansion coefficient. If we schemat-
ically expand the boson and fermion in terms of com-
plete basis φm and ψn respectively as Φ =

∑

amφm ,Ψ =
∑

bnψn , then supersymmetry relates the bosonic coeffi-
cient am and the fermionic coefficient bm as

Qam = 〈φm|εΨ〉 =
∑

n bn〈φm|εψn〉 . (13)

Here, there is an issue: according to the asymptotic be-
havior of scalar in (4) and bifermion in (12) having de-
gree of growth−1/2 and 0 respectively, the inner product
〈 · | · 〉 in (13) is ill-defined as the integration diverges

〈

φλ′,k′ |εψλ,k
〉

∼
∫∞
0 dη

√
g e−

1

2
η → ∞ . (14)

Nevertheless, we can extract finite information by ana-
lytically continuing the integration. We introduce the
parameter ε > 1/2 such that the integrand, including the
measure

√
g, has degree of growth less than zero behav-

ing as exp[(1/2 − ε)η] for large η. Then we can perform
the well-defined integration, from which we take the ε to
be zero. In this way one can show that the result is

〈

φλ′,k|εsψλ,k
〉

∝ δ
(

λ′+
(

λ−s i
2

))

+δ
(

λ′−
(

λ−s i
2

))

. (15)

We shall omit the detail on how to introduce the param-
eter ε and perform the integration as this result is clear
once we note the property of the bi-spinor that will be
given in (17).
Since the spectral parameter for scalar and fermion ba-

sis is real, the inner product (15) between the scalar basis
and the bifermion vanishes. This result concludes that
the superpartner of the scalar mode (1) is not expressible
in terms of standard delta-function normalizable basis for
spinor field (5). This seems to suggest that we have to
give up delta-function normalizable basis and find a way
to introduce non-normalizable modes as argued in [25–
27]. However, in the following, we will show that we
can still have supersymmetric delta-function normaliz-
able basis furnishing a supersymmetric Hilbert space.

SUPERSYMMETRIC HILBERT SPACE WITH

COMPLEXIFIED SPECTRUM

In order to have supersymmetry, the inner product
in (15) should be non-zero. From the expression, we
notice that it is natural to consider complexifying the
parameter λ: if we consider fermionic modes with com-
plex eigenvalue λ by shifting with imaginary value i/2,
i.e. λ→ λ+ s i/2, then we obtain δ(λ′ −λ) in (15). This
idea of shifting λ by i/2 is also supported by the follow-
ing observation. Using the Killing spinor equation (10),
eigenvalue equation for ψ±

λ,k, and the fact that the scalar

curvature of AdS2 is R = −2L−2, we can easily find the
eigenvalue of bi-spinor with respect to the Laplace oper-
ator as

−∇2(εsψ±
λ,k) =

1
L2

(

(

λ− s i
2

)2
+ 1

4

)

(εsψ±
λ,k) . (16)

Therefore, if we shift the λ → λ + s i/2, then the bi-
spinor has the same eigenvalue of the scalar modes. This
means that the bi-spinor is expanded in terms of the
scalar eigenfunctions and the map between the scalar and
fermion is straightforward. In fact, one can show that the
bi-spinor with shifted λ by i/2 is exactly proportional to
the eigenfunctions for scalar as [36]

εs±ψ
±
λ+s i

2
,k

∝ φλ,±(|k|+1) , ε
s
∓ψ

±
λ+s i

2
,k
∝ φλ,±|k| . (17)

With the above idea, we propose a supersymmetric
Hilbert space, which is composed of the bosonic modes
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modes. The supersymmetry relation between boson Φ
and fermion Ψ is generically given by local transforma-
tion using Killing spinors, ε, as

QΦ = εΨ . (9)

On AdS2, the Killing spinors satisfy the following con-
formal Killing spinor equations,

Dµεs = s 1
2Lγµε

s , s = ±1 , (10)

depending on the sign factor s associated with the back-
ground value in gravity multiplet fields. With our choice
of the gamma matrices, the Killing spinor solutions are

εs+=
√
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iθ
2

(

cosh η
2

s sinh η
2

)

, εs−=
√
Le−

iθ
2

(

s sinh η
2

cosh η
2

)

. (11)

We note that these spinors exponentially grow as
exp(η/2) for large η, which we call degree of growth 1/2.
Let us look at the supersymmetry relation between

scalar and Dirac spinors, for the left and right hand
side of (9) respectively, in terms of the basis functions
presented in previous section. On one hand, we recall
from (4) that the basis functions for scalar have degree
of growth −1/2. On the other hand, since the Killing
spinors on the AdS2 presented in (11) have degree of
growth 1/2 as, one can show using (8) that the basis func-
tions for spinor fields combined with the Killing spinors
have degree of growth 0 having the following asymptotic
behavior, up to proportionality factors,

εs±ψ
±
λ,k ∼ esiλη±i(k+1)θ , εs∓ψ

±
λ,k ∼ esiλη±ikθ . (12)

Therefore, the degree of growth of left and right-hand
sides of the supersymmetry relation (9) do not match
when expressed in terms of the delta-function normaliz-
able basis functions given in (1) and (5).
The mismatch at the level of asymptotic growth of ba-

sis elements is an indication that there is no mapping be-
tween the boson and fermion. To elaborate the argument,
we try to find the supersymmetry transformation in
terms of the mode expansion coefficient. If we schemat-
ically expand the boson and fermion in terms of com-
plete basis φm and ψn respectively as Φ =

∑

amφm ,Ψ =
∑

bnψn , then supersymmetry relates the bosonic coeffi-
cient am and the fermionic coefficient bm as

Qam = 〈φm|εΨ〉 =
∑

n bn〈φm|εψn〉 . (13)

Here, there is an issue: according to the asymptotic be-
havior of scalar in (4) and bifermion in (12) having de-
gree of growth−1/2 and 0 respectively, the inner product
〈 · | · 〉 in (13) is ill-defined as the integration diverges

〈

φλ′,k′ |εψλ,k
〉

∼
∫∞
0 dη

√
g e−

1

2
η → ∞ . (14)

Nevertheless, we can extract finite information by ana-
lytically continuing the integration. We introduce the
parameter ε > 1/2 such that the integrand, including the
measure

√
g, has degree of growth less than zero behav-

ing as exp[(1/2 − ε)η] for large η. Then we can perform
the well-defined integration, from which we take the ε to
be zero. In this way one can show that the result is

〈

φλ′,k|εsψλ,k
〉

∝ δ
(

λ′+
(

λ−s i
2

))

+δ
(

λ′−
(

λ−s i
2

))

. (15)

We shall omit the detail on how to introduce the param-
eter ε and perform the integration as this result is clear
once we note the property of the bi-spinor that will be
given in (17).
Since the spectral parameter for scalar and fermion ba-

sis is real, the inner product (15) between the scalar basis
and the bifermion vanishes. This result concludes that
the superpartner of the scalar mode (1) is not expressible
in terms of standard delta-function normalizable basis for
spinor field (5). This seems to suggest that we have to
give up delta-function normalizable basis and find a way
to introduce non-normalizable modes as argued in [25–
27]. However, in the following, we will show that we
can still have supersymmetric delta-function normaliz-
able basis furnishing a supersymmetric Hilbert space.

SUPERSYMMETRIC HILBERT SPACE WITH

COMPLEXIFIED SPECTRUM

In order to have supersymmetry, the inner product
in (15) should be non-zero. From the expression, we
notice that it is natural to consider complexifying the
parameter λ: if we consider fermionic modes with com-
plex eigenvalue λ by shifting with imaginary value i/2,
i.e. λ→ λ+ s i/2, then we obtain δ(λ′ −λ) in (15). This
idea of shifting λ by i/2 is also supported by the follow-
ing observation. Using the Killing spinor equation (10),
eigenvalue equation for ψ±

λ,k, and the fact that the scalar

curvature of AdS2 is R = −2L−2, we can easily find the
eigenvalue of bi-spinor with respect to the Laplace oper-
ator as

−∇2(εsψ±
λ,k) =

1
L2

(

(

λ− s i
2

)2
+ 1

4

)

(εsψ±
λ,k) . (16)

Therefore, if we shift the λ → λ + s i/2, then the bi-
spinor has the same eigenvalue of the scalar modes. This
means that the bi-spinor is expanded in terms of the
scalar eigenfunctions and the map between the scalar and
fermion is straightforward. In fact, one can show that the
bi-spinor with shifted λ by i/2 is exactly proportional to
the eigenfunctions for scalar as [36]

εs±ψ
±
λ+s i

2
,k

∝ φλ,±(|k|+1) , ε
s
∓ψ

±
λ+s i

2
,k
∝ φλ,±|k| . (17)

With the above idea, we propose a supersymmetric
Hilbert space, which is composed of the bosonic modes
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Problem of SUSY and standard basis 
• Eigenbasis of    for scalar: 

         




• Eigenbasis of     spinor field: 

               

                                      




• They form a Dirac delta-function orthonormal basis : 
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Standard �-function normalizable basis

The scalar eigenfunctions of �r
2 are given by

��,k(⌘, ✓) ⇠ eik✓sinh|k|⌘ F
⇣
↵s,�s; |k|+1;�sinh2

⌘

2

⌘
,

↵s =
1

2
+|k|+ i�, �s =

1

2
+|k|�i�

with k 2 Z , � 2 R>0, where F (↵,�; �; z) is the hypergeometric function,
which have eigenvalue, L�2(�2 + 1/4).
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i γμDμ

Standard �-function normalizable basis

The fermionic eigenfunctions of /D are

 +
�,k ⇠ ei(k+

1
2 )✓

0

@ coshk+1 ⌘
2 sinh

k ⌘
2 F (↵f ,�f ; k+1;� sinh2 ⌘2 )

�i �
k+1 cosh

k ⌘
2 sinh

k+1 ⌘
2 F (↵f ,�f ; k+2;� sinh2 ⌘2 )

1

A ,

 �

�,k ⇠ e�i(k+ 1
2 )✓

0

@i �
k+1 cosh

k ⌘
2 sinh

k+1 ⌘
2 F (↵f ,�f ; k+2;� sinh2 ⌘

2 )

� coshk+1 ⌘
2 sinh

k ⌘
2 F (↵f ,�f ; k+1;� sinh2 ⌘

2 )

1

A ,

↵f = k+1+i�, �f = k+1�i�

with � 2 R , k 2 Z�0 , which have the eigenvalue, L�1� .
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Problem of SUSY and standard basis 

• Eigenbasis of scalar and spinor fields grow as 

            

     
having degree of growth -1/2.


•  Since the bispinor     

    
has the degree of growth 0 , 


• the left and right hand side of the supersymmetry relation     
do not match when expressed in terms of standard basis. 

2

DELTA-FUNCTION NORMALIZABLE MODES

We begin by revisiting the standard basis for scalar and
spinor fields given by delta-function normalizable eigen-
functions [28–30] of the Laplace and Dirac operators on
the Euclidean global AdS2 background whose metric is
given by ds2 = L2(dη2 + sinh2 η dθ2) .

a. Scalar modes: For the Laplacian operator −∇2

on AdS2, the eigenfunctions are given by

φλ,k(η, θ) =
1√
2π

1
2|k||k|!

(

Γ( 1

2
+|k|+iλ)Γ( 1

2
+|k|−iλ)

Γ(iλ)Γ(−iλ)

)
1

2

eikθ

×sinh|k|η F
(

1
2+|k|+ iλ, 12+|k|−iλ; |k|+1;−sinh2 η2

)

,

(1)
with k ∈ Z , λ ∈ R>0, where F (α,β; γ; z) is the hyperge-
ometric function, which have eigenvalue, L−2(λ2 + 1/4).
The eigenfunctions (1) satisfy delta-function orthonor-
mality under the following definition of inner product

〈

φλ,k|φλ′,k′

〉

≡
∫

dηdθ
√
g φλ,−kφλ′,k′ =L2δ(λ−λ′)δk,k′ .

(2)

Note that since we will complexify the parameter λ, we
have defined the dual of a basis element φλ,k for the inner
product as φλ,−k, without using complex conjugation.
This definition stems from the property that φλ,−k =
(φλ,k)∗ for real λ.
Homogeneity of AdS2 implies that the spectral density

can be obtained using the eigenfunctions evaluated at
η = 0, where only the k = 0 mode survives. Hence

µφ(λ) ≡
∑

k

(

φλ,−k φλ,k
) ∣

∣

η=0
= λ

2π tanhπλ . (3)

We note that λ = 0 is not part of the scalar spectrum
since µφ(0) = 0.
Using inversion formula of hypergeometric func-

tion [33], one can show that the eigenfunctions have the
following asymptotic behavior as η → ∞

φλ,k(η, θ) ∼ e−
1

2
η+ikθ

(

αλ,keiλη + α−λ,ke−iλη
)

,

αλ,k ≡ 1
π
√
2

(

Γ(iλ)Γ(
1
2+|k|−iλ)

Γ(−iλ)Γ(
1
2+|k|+iλ)

)

1

2

.
(4)

b. Spinor modes: For the Dirac operator i /D on
AdS2, with the gamma matrices being Pauli matrices,
the eigenfunctions are given by [34]

ψ+
λ,k = 1√

4π
1
k!

(

Γ(1+k+iλ)Γ(1+k−iλ)
Γ( 1

2
+iλ)Γ( 1

2
−iλ)

)
1

2

ei(k+
1

2
)θ





coshk+1 η
2 sinh

k η
2 F (k+1+iλ, k+1−iλ; k+1;− sinh2 η2 )

−i λ
k+1 cosh

k η
2 sinh

k+1 η
2 F (k+1+iλ, k+1−iλ; k+2;− sinh2 η2 )



 ,

ψ−
λ,k = 1√

4π
1
k!

(

Γ(1+k+iλ)Γ(1+k−iλ)

Γ( 1

2
+iλ)Γ( 1

2
−iλ)

)
1

2

e−i(k+ 1

2
)θ





i λ
k+1 cosh

k η
2 sinh

k+1 η
2 F (k+1+iλ, k+1−iλ; k+2;− sinh2 η2 )

− coshk+1 η
2 sinh

k η
2 F (k+1+iλ, k+1−iλ; k+1;− sinh2 η2 )



 ,

(5)

with λ ∈ R , k ∈ Z≥0 , which have the eigenvalue,
L−1λ . The eigenfunctions (5) satisfy delta-function or-
thonormality under the following definition of inner prod-
uct,

〈

ψ±
λ,k|ψ

±
λ′,k′

〉

≡ ±i
∫

dηdθ
√
g ψ∓

λ,k ψ
±
λ′,k′

=L2δ(λ−λ′)δk,k′ ,
(6)

where our convention for the spinorial multiplication is
ψχ ≡ ψTCχ with C = γ2 . Note that we have defined the
dual of a basis element ψ±

λ,k for the inner product through

the symplectic Majorana conjugate as ±i(ψ∓
λ,k)

TC, not
using hermitian conjugate. This definition stems from
the property that (ψ±

λ,k)
† = ±i(ψ∓

λ,k)
TC for real λ. In

fact, this is the natural definition in Euclidean space be-
cause Euclidean space treats the conjugate of a spinor as
an independent spinor, formally doubling fermionic de-
grees of freedom [35]. Therefore, we would call (6) as
“Euclidean inner product”.
Homogeneity of AdS2 implies that the spectral density

can be obtained using the eigenfunctions evaluated at

η = 0, where only the k = 0 mode survives. Hence

µψ±(λ) ≡ ±i
∑

k ψ
∓
λ,k ψ

±
λ,k

∣

∣

∣

η=0
= 1

4πλ cothπλ . (7)

We note that, unlike the case for scalar modes, the spec-
trum exists at λ = 0 since µψ±(0) *= 0.
Finally, we note that the asymptotic behavior for large

η as follows

ψ±
λ,k∼ e−

η
2
±i(k+ 1

2
)θ
(

eiληβλ,kυ(−)± e−iληβ−λ,kυ(+)
)

,

βλ,k ≡ 1
2π

(

Γ( 1

2
+iλ)Γ(1+k−iλ)

Γ( 1

2
−iλ)Γ(1+k+iλ)

)
1

2

, υ(±) ≡
(

1

±1

)

,
(8)

where we note the projection property, P±υ(±) = υ(±),
with the projector, P± ≡ 1

2 (1± γ1).

PROBLEM WITH SUPERSYMMETRY

Let us elaborate the problem concerning the super-
symmetry of the standard delta-function normalizable
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modes. The supersymmetry relation between boson Φ
and fermion Ψ is generically given by local transforma-
tion using Killing spinors, ε, as

QΦ = εΨ . (9)

On AdS2, the Killing spinors satisfy the following con-
formal Killing spinor equations,

Dµεs = s 1
2Lγµε

s , s = ±1 , (10)

depending on the sign factor s associated with the back-
ground value in gravity multiplet fields. With our choice
of the gamma matrices, the Killing spinor solutions are

εs+=
√
Le

iθ
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(

cosh η
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s sinh η
2

)

, εs−=
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Le−

iθ
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s sinh η
2

cosh η
2

)

. (11)

We note that these spinors exponentially grow as
exp(η/2) for large η, which we call degree of growth 1/2.
Let us look at the supersymmetry relation between

scalar and Dirac spinors, for the left and right hand
side of (9) respectively, in terms of the basis functions
presented in previous section. On one hand, we recall
from (4) that the basis functions for scalar have degree
of growth −1/2. On the other hand, since the Killing
spinors on the AdS2 presented in (11) have degree of
growth 1/2 as, one can show using (8) that the basis func-
tions for spinor fields combined with the Killing spinors
have degree of growth 0 having the following asymptotic
behavior, up to proportionality factors,

εs±ψ
±
λ,k ∼ esiλη±i(k+1)θ , εs∓ψ

±
λ,k ∼ esiλη±ikθ . (12)

Therefore, the degree of growth of left and right-hand
sides of the supersymmetry relation (9) do not match
when expressed in terms of the delta-function normaliz-
able basis functions given in (1) and (5).
The mismatch at the level of asymptotic growth of ba-

sis elements is an indication that there is no mapping be-
tween the boson and fermion. To elaborate the argument,
we try to find the supersymmetry transformation in
terms of the mode expansion coefficient. If we schemat-
ically expand the boson and fermion in terms of com-
plete basis φm and ψn respectively as Φ =

∑

amφm ,Ψ =
∑

bnψn , then supersymmetry relates the bosonic coeffi-
cient am and the fermionic coefficient bm as

Qam = 〈φm|εΨ〉 =
∑

n bn〈φm|εψn〉 . (13)

Here, there is an issue: according to the asymptotic be-
havior of scalar in (4) and bifermion in (12) having de-
gree of growth−1/2 and 0 respectively, the inner product
〈 · | · 〉 in (13) is ill-defined as the integration diverges

〈

φλ′,k′ |εψλ,k
〉

∼
∫∞
0 dη

√
g e−

1

2
η → ∞ . (14)

Nevertheless, we can extract finite information by ana-
lytically continuing the integration. We introduce the
parameter ε > 1/2 such that the integrand, including the
measure

√
g, has degree of growth less than zero behav-

ing as exp[(1/2 − ε)η] for large η. Then we can perform
the well-defined integration, from which we take the ε to
be zero. In this way one can show that the result is

〈

φλ′,k|εsψλ,k
〉

∝ δ
(

λ′+
(

λ−s i
2

))

+δ
(

λ′−
(

λ−s i
2

))

. (15)

We shall omit the detail on how to introduce the param-
eter ε and perform the integration as this result is clear
once we note the property of the bi-spinor that will be
given in (17).
Since the spectral parameter for scalar and fermion ba-

sis is real, the inner product (15) between the scalar basis
and the bifermion vanishes. This result concludes that
the superpartner of the scalar mode (1) is not expressible
in terms of standard delta-function normalizable basis for
spinor field (5). This seems to suggest that we have to
give up delta-function normalizable basis and find a way
to introduce non-normalizable modes as argued in [25–
27]. However, in the following, we will show that we
can still have supersymmetric delta-function normaliz-
able basis furnishing a supersymmetric Hilbert space.

SUPERSYMMETRIC HILBERT SPACE WITH

COMPLEXIFIED SPECTRUM

In order to have supersymmetry, the inner product
in (15) should be non-zero. From the expression, we
notice that it is natural to consider complexifying the
parameter λ: if we consider fermionic modes with com-
plex eigenvalue λ by shifting with imaginary value i/2,
i.e. λ→ λ+ s i/2, then we obtain δ(λ′ −λ) in (15). This
idea of shifting λ by i/2 is also supported by the follow-
ing observation. Using the Killing spinor equation (10),
eigenvalue equation for ψ±

λ,k, and the fact that the scalar

curvature of AdS2 is R = −2L−2, we can easily find the
eigenvalue of bi-spinor with respect to the Laplace oper-
ator as
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λ,k) =

1
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)2
+ 1

4

)

(εsψ±
λ,k) . (16)

Therefore, if we shift the λ → λ + s i/2, then the bi-
spinor has the same eigenvalue of the scalar modes. This
means that the bi-spinor is expanded in terms of the
scalar eigenfunctions and the map between the scalar and
fermion is straightforward. In fact, one can show that the
bi-spinor with shifted λ by i/2 is exactly proportional to
the eigenfunctions for scalar as [36]

εs±ψ
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2
,k

∝ φλ,±(|k|+1) , ε
s
∓ψ

±
λ+s i

2
,k
∝ φλ,±|k| . (17)

With the above idea, we propose a supersymmetric
Hilbert space, which is composed of the bosonic modes
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scalar and Dirac spinors, for the left and right hand
side of (9) respectively, in terms of the basis functions
presented in previous section. On one hand, we recall
from (4) that the basis functions for scalar have degree
of growth −1/2. On the other hand, since the Killing
spinors on the AdS2 presented in (11) have degree of
growth 1/2 as, one can show using (8) that the basis func-
tions for spinor fields combined with the Killing spinors
have degree of growth 0 having the following asymptotic
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We shall omit the detail on how to introduce the param-
eter ε and perform the integration as this result is clear
once we note the property of the bi-spinor that will be
given in (17).
Since the spectral parameter for scalar and fermion ba-

sis is real, the inner product (15) between the scalar basis
and the bifermion vanishes. This result concludes that
the superpartner of the scalar mode (1) is not expressible
in terms of standard delta-function normalizable basis for
spinor field (5). This seems to suggest that we have to
give up delta-function normalizable basis and find a way
to introduce non-normalizable modes as argued in [25–
27]. However, in the following, we will show that we
can still have supersymmetric delta-function normaliz-
able basis furnishing a supersymmetric Hilbert space.
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In order to have supersymmetry, the inner product
in (15) should be non-zero. From the expression, we
notice that it is natural to consider complexifying the
parameter λ: if we consider fermionic modes with com-
plex eigenvalue λ by shifting with imaginary value i/2,
i.e. λ→ λ+ s i/2, then we obtain δ(λ′ −λ) in (15). This
idea of shifting λ by i/2 is also supported by the follow-
ing observation. Using the Killing spinor equation (10),
eigenvalue equation for ψ±
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Therefore, if we shift the λ → λ + s i/2, then the bi-
spinor has the same eigenvalue of the scalar modes. This
means that the bi-spinor is expanded in terms of the
scalar eigenfunctions and the map between the scalar and
fermion is straightforward. In fact, one can show that the
bi-spinor with shifted λ by i/2 is exactly proportional to
the eigenfunctions for scalar as [36]
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from (4) that the basis functions for scalar have degree
of growth −1/2. On the other hand, since the Killing
spinors on the AdS2 presented in (11) have degree of
growth 1/2 as, one can show using (8) that the basis func-
tions for spinor fields combined with the Killing spinors
have degree of growth 0 having the following asymptotic
behavior, up to proportionality factors,

εs±ψ
±
λ,k ∼ esiλη±i(k+1)θ , εs∓ψ

±
λ,k ∼ esiλη±ikθ . (12)

Therefore, the degree of growth of left and right-hand
sides of the supersymmetry relation (9) do not match
when expressed in terms of the delta-function normaliz-
able basis functions given in (1) and (5).
The mismatch at the level of asymptotic growth of ba-

sis elements is an indication that there is no mapping be-
tween the boson and fermion. To elaborate the argument,
we try to find the supersymmetry transformation in
terms of the mode expansion coefficient. If we schemat-
ically expand the boson and fermion in terms of com-
plete basis φm and ψn respectively as Φ =

∑

amφm ,Ψ =
∑

bnψn , then supersymmetry relates the bosonic coeffi-
cient am and the fermionic coefficient bm as

Qam = 〈φm|εΨ〉 =
∑

n bn〈φm|εψn〉 . (13)

Here, there is an issue: according to the asymptotic be-
havior of scalar in (4) and bifermion in (12) having de-
gree of growth−1/2 and 0 respectively, the inner product
〈 · | · 〉 in (13) is ill-defined as the integration diverges

〈

φλ′,k′ |εψλ,k
〉

∼
∫∞
0 dη

√
g e−

1

2
η → ∞ . (14)

Nevertheless, we can extract finite information by ana-
lytically continuing the integration. We introduce the
parameter ε > 1/2 such that the integrand, including the
measure

√
g, has degree of growth less than zero behav-

ing as exp[(1/2 − ε)η] for large η. Then we can perform
the well-defined integration, from which we take the ε to
be zero. In this way one can show that the result is

〈

φλ′,k|εsψλ,k
〉

∝ δ
(

λ′+
(

λ−s i
2

))

+δ
(
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. (15)

We shall omit the detail on how to introduce the param-
eter ε and perform the integration as this result is clear
once we note the property of the bi-spinor that will be
given in (17).
Since the spectral parameter for scalar and fermion ba-

sis is real, the inner product (15) between the scalar basis
and the bifermion vanishes. This result concludes that
the superpartner of the scalar mode (1) is not expressible
in terms of standard delta-function normalizable basis for
spinor field (5). This seems to suggest that we have to
give up delta-function normalizable basis and find a way
to introduce non-normalizable modes as argued in [25–
27]. However, in the following, we will show that we
can still have supersymmetric delta-function normaliz-
able basis furnishing a supersymmetric Hilbert space.

SUPERSYMMETRIC HILBERT SPACE WITH

COMPLEXIFIED SPECTRUM

In order to have supersymmetry, the inner product
in (15) should be non-zero. From the expression, we
notice that it is natural to consider complexifying the
parameter λ: if we consider fermionic modes with com-
plex eigenvalue λ by shifting with imaginary value i/2,
i.e. λ→ λ+ s i/2, then we obtain δ(λ′ −λ) in (15). This
idea of shifting λ by i/2 is also supported by the follow-
ing observation. Using the Killing spinor equation (10),
eigenvalue equation for ψ±

λ,k, and the fact that the scalar

curvature of AdS2 is R = −2L−2, we can easily find the
eigenvalue of bi-spinor with respect to the Laplace oper-
ator as

−∇2(εsψ±
λ,k) =

1
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4

)

(εsψ±
λ,k) . (16)

Therefore, if we shift the λ → λ + s i/2, then the bi-
spinor has the same eigenvalue of the scalar modes. This
means that the bi-spinor is expanded in terms of the
scalar eigenfunctions and the map between the scalar and
fermion is straightforward. In fact, one can show that the
bi-spinor with shifted λ by i/2 is exactly proportional to
the eigenfunctions for scalar as [36]
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modes. The supersymmetry relation between boson Φ
and fermion Ψ is generically given by local transforma-
tion using Killing spinors, ε, as

QΦ = εΨ . (9)

On AdS2, the Killing spinors satisfy the following con-
formal Killing spinor equations,

Dµεs = s 1
2Lγµε

s , s = ±1 , (10)

depending on the sign factor s associated with the back-
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of the gamma matrices, the Killing spinor solutions are
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We note that these spinors exponentially grow as
exp(η/2) for large η, which we call degree of growth 1/2.
Let us look at the supersymmetry relation between

scalar and Dirac spinors, for the left and right hand
side of (9) respectively, in terms of the basis functions
presented in previous section. On one hand, we recall
from (4) that the basis functions for scalar have degree
of growth −1/2. On the other hand, since the Killing
spinors on the AdS2 presented in (11) have degree of
growth 1/2 as, one can show using (8) that the basis func-
tions for spinor fields combined with the Killing spinors
have degree of growth 0 having the following asymptotic
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Therefore, the degree of growth of left and right-hand
sides of the supersymmetry relation (9) do not match
when expressed in terms of the delta-function normaliz-
able basis functions given in (1) and (5).
The mismatch at the level of asymptotic growth of ba-

sis elements is an indication that there is no mapping be-
tween the boson and fermion. To elaborate the argument,
we try to find the supersymmetry transformation in
terms of the mode expansion coefficient. If we schemat-
ically expand the boson and fermion in terms of com-
plete basis φm and ψn respectively as Φ =
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bnψn , then supersymmetry relates the bosonic coeffi-
cient am and the fermionic coefficient bm as

Qam = 〈φm|εΨ〉 =
∑

n bn〈φm|εψn〉 . (13)

Here, there is an issue: according to the asymptotic be-
havior of scalar in (4) and bifermion in (12) having de-
gree of growth−1/2 and 0 respectively, the inner product
〈 · | · 〉 in (13) is ill-defined as the integration diverges
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∼
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Nevertheless, we can extract finite information by ana-
lytically continuing the integration. We introduce the
parameter ε > 1/2 such that the integrand, including the
measure

√
g, has degree of growth less than zero behav-

ing as exp[(1/2 − ε)η] for large η. Then we can perform
the well-defined integration, from which we take the ε to
be zero. In this way one can show that the result is
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+δ
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We shall omit the detail on how to introduce the param-
eter ε and perform the integration as this result is clear
once we note the property of the bi-spinor that will be
given in (17).
Since the spectral parameter for scalar and fermion ba-

sis is real, the inner product (15) between the scalar basis
and the bifermion vanishes. This result concludes that
the superpartner of the scalar mode (1) is not expressible
in terms of standard delta-function normalizable basis for
spinor field (5). This seems to suggest that we have to
give up delta-function normalizable basis and find a way
to introduce non-normalizable modes as argued in [25–
27]. However, in the following, we will show that we
can still have supersymmetric delta-function normaliz-
able basis furnishing a supersymmetric Hilbert space.
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In order to have supersymmetry, the inner product
in (15) should be non-zero. From the expression, we
notice that it is natural to consider complexifying the
parameter λ: if we consider fermionic modes with com-
plex eigenvalue λ by shifting with imaginary value i/2,
i.e. λ→ λ+ s i/2, then we obtain δ(λ′ −λ) in (15). This
idea of shifting λ by i/2 is also supported by the follow-
ing observation. Using the Killing spinor equation (10),
eigenvalue equation for ψ±

λ,k, and the fact that the scalar

curvature of AdS2 is R = −2L−2, we can easily find the
eigenvalue of bi-spinor with respect to the Laplace oper-
ator as
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Therefore, if we shift the λ → λ + s i/2, then the bi-
spinor has the same eigenvalue of the scalar modes. This
means that the bi-spinor is expanded in terms of the
scalar eigenfunctions and the map between the scalar and
fermion is straightforward. In fact, one can show that the
bi-spinor with shifted λ by i/2 is exactly proportional to
the eigenfunctions for scalar as [36]
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modes. The supersymmetry relation between boson Φ
and fermion Ψ is generically given by local transforma-
tion using Killing spinors, ε, as

QΦ = εΨ . (9)

On AdS2, the Killing spinors satisfy the following con-
formal Killing spinor equations,

Dµεs = s 1
2Lγµε

s , s = ±1 , (10)

depending on the sign factor s associated with the back-
ground value in gravity multiplet fields. With our choice
of the gamma matrices, the Killing spinor solutions are
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. (11)

We note that these spinors exponentially grow as
exp(η/2) for large η, which we call degree of growth 1/2.
Let us look at the supersymmetry relation between

scalar and Dirac spinors, for the left and right hand
side of (9) respectively, in terms of the basis functions
presented in previous section. On one hand, we recall
from (4) that the basis functions for scalar have degree
of growth −1/2. On the other hand, since the Killing
spinors on the AdS2 presented in (11) have degree of
growth 1/2 as, one can show using (8) that the basis func-
tions for spinor fields combined with the Killing spinors
have degree of growth 0 having the following asymptotic
behavior, up to proportionality factors,

εs±ψ
±
λ,k ∼ esiλη±i(k+1)θ , εs∓ψ

±
λ,k ∼ esiλη±ikθ . (12)

Therefore, the degree of growth of left and right-hand
sides of the supersymmetry relation (9) do not match
when expressed in terms of the delta-function normaliz-
able basis functions given in (1) and (5).
The mismatch at the level of asymptotic growth of ba-

sis elements is an indication that there is no mapping be-
tween the boson and fermion. To elaborate the argument,
we try to find the supersymmetry transformation in
terms of the mode expansion coefficient. If we schemat-
ically expand the boson and fermion in terms of com-
plete basis φm and ψn respectively as Φ =

∑

amφm ,Ψ =
∑

bnψn , then supersymmetry relates the bosonic coeffi-
cient am and the fermionic coefficient bm as

Qam = 〈φm|εΨ〉 =
∑

n bn〈φm|εψn〉 . (13)

Here, there is an issue: according to the asymptotic be-
havior of scalar in (4) and bifermion in (12) having de-
gree of growth−1/2 and 0 respectively, the inner product
〈 · | · 〉 in (13) is ill-defined as the integration diverges

〈

φλ′,k′ |εψλ,k
〉

∼
∫∞
0 dη

√
g e−
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2
η → ∞ . (14)

Nevertheless, we can extract finite information by ana-
lytically continuing the integration. We introduce the
parameter ε > 1/2 such that the integrand, including the
measure

√
g, has degree of growth less than zero behav-

ing as exp[(1/2 − ε)η] for large η. Then we can perform
the well-defined integration, from which we take the ε to
be zero. In this way one can show that the result is

〈

φλ′,k|εsψλ,k
〉

∝ δ
(

λ′+
(

λ−s i
2

))

+δ
(
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(

λ−s i
2

))

. (15)

We shall omit the detail on how to introduce the param-
eter ε and perform the integration as this result is clear
once we note the property of the bi-spinor that will be
given in (17).
Since the spectral parameter for scalar and fermion ba-

sis is real, the inner product (15) between the scalar basis
and the bifermion vanishes. This result concludes that
the superpartner of the scalar mode (1) is not expressible
in terms of standard delta-function normalizable basis for
spinor field (5). This seems to suggest that we have to
give up delta-function normalizable basis and find a way
to introduce non-normalizable modes as argued in [25–
27]. However, in the following, we will show that we
can still have supersymmetric delta-function normaliz-
able basis furnishing a supersymmetric Hilbert space.

SUPERSYMMETRIC HILBERT SPACE WITH

COMPLEXIFIED SPECTRUM

In order to have supersymmetry, the inner product
in (15) should be non-zero. From the expression, we
notice that it is natural to consider complexifying the
parameter λ: if we consider fermionic modes with com-
plex eigenvalue λ by shifting with imaginary value i/2,
i.e. λ→ λ+ s i/2, then we obtain δ(λ′ −λ) in (15). This
idea of shifting λ by i/2 is also supported by the follow-
ing observation. Using the Killing spinor equation (10),
eigenvalue equation for ψ±

λ,k, and the fact that the scalar

curvature of AdS2 is R = −2L−2, we can easily find the
eigenvalue of bi-spinor with respect to the Laplace oper-
ator as

−∇2(εsψ±
λ,k) =

1
L2

(

(

λ− s i
2

)2
+ 1

4

)

(εsψ±
λ,k) . (16)

Therefore, if we shift the λ → λ + s i/2, then the bi-
spinor has the same eigenvalue of the scalar modes. This
means that the bi-spinor is expanded in terms of the
scalar eigenfunctions and the map between the scalar and
fermion is straightforward. In fact, one can show that the
bi-spinor with shifted λ by i/2 is exactly proportional to
the eigenfunctions for scalar as [36]
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With the above idea, we propose a supersymmetric
Hilbert space, which is composed of the bosonic modes
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and fermion Ψ is generically given by local transforma-
tion using Killing spinors, ε, as

QΦ = εΨ . (9)

On AdS2, the Killing spinors satisfy the following con-
formal Killing spinor equations,

Dµεs = s 1
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s , s = ±1 , (10)

depending on the sign factor s associated with the back-
ground value in gravity multiplet fields. With our choice
of the gamma matrices, the Killing spinor solutions are
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We note that these spinors exponentially grow as
exp(η/2) for large η, which we call degree of growth 1/2.
Let us look at the supersymmetry relation between

scalar and Dirac spinors, for the left and right hand
side of (9) respectively, in terms of the basis functions
presented in previous section. On one hand, we recall
from (4) that the basis functions for scalar have degree
of growth −1/2. On the other hand, since the Killing
spinors on the AdS2 presented in (11) have degree of
growth 1/2 as, one can show using (8) that the basis func-
tions for spinor fields combined with the Killing spinors
have degree of growth 0 having the following asymptotic
behavior, up to proportionality factors,
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±
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Therefore, the degree of growth of left and right-hand
sides of the supersymmetry relation (9) do not match
when expressed in terms of the delta-function normaliz-
able basis functions given in (1) and (5).
The mismatch at the level of asymptotic growth of ba-

sis elements is an indication that there is no mapping be-
tween the boson and fermion. To elaborate the argument,
we try to find the supersymmetry transformation in
terms of the mode expansion coefficient. If we schemat-
ically expand the boson and fermion in terms of com-
plete basis φm and ψn respectively as Φ =
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amφm ,Ψ =
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bnψn , then supersymmetry relates the bosonic coeffi-
cient am and the fermionic coefficient bm as

Qam = 〈φm|εΨ〉 =
∑

n bn〈φm|εψn〉 . (13)

Here, there is an issue: according to the asymptotic be-
havior of scalar in (4) and bifermion in (12) having de-
gree of growth−1/2 and 0 respectively, the inner product
〈 · | · 〉 in (13) is ill-defined as the integration diverges

〈

φλ′,k′ |εψλ,k
〉

∼
∫∞
0 dη

√
g e−

1

2
η → ∞ . (14)

Nevertheless, we can extract finite information by ana-
lytically continuing the integration. We introduce the
parameter ε > 1/2 such that the integrand, including the
measure

√
g, has degree of growth less than zero behav-

ing as exp[(1/2 − ε)η] for large η. Then we can perform
the well-defined integration, from which we take the ε to
be zero. In this way one can show that the result is
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We shall omit the detail on how to introduce the param-
eter ε and perform the integration as this result is clear
once we note the property of the bi-spinor that will be
given in (17).
Since the spectral parameter for scalar and fermion ba-

sis is real, the inner product (15) between the scalar basis
and the bifermion vanishes. This result concludes that
the superpartner of the scalar mode (1) is not expressible
in terms of standard delta-function normalizable basis for
spinor field (5). This seems to suggest that we have to
give up delta-function normalizable basis and find a way
to introduce non-normalizable modes as argued in [25–
27]. However, in the following, we will show that we
can still have supersymmetric delta-function normaliz-
able basis furnishing a supersymmetric Hilbert space.
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In order to have supersymmetry, the inner product
in (15) should be non-zero. From the expression, we
notice that it is natural to consider complexifying the
parameter λ: if we consider fermionic modes with com-
plex eigenvalue λ by shifting with imaginary value i/2,
i.e. λ→ λ+ s i/2, then we obtain δ(λ′ −λ) in (15). This
idea of shifting λ by i/2 is also supported by the follow-
ing observation. Using the Killing spinor equation (10),
eigenvalue equation for ψ±

λ,k, and the fact that the scalar

curvature of AdS2 is R = −2L−2, we can easily find the
eigenvalue of bi-spinor with respect to the Laplace oper-
ator as

−∇2(εsψ±
λ,k) =

1
L2
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λ− s i
2

)2
+ 1
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)

(εsψ±
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Therefore, if we shift the λ → λ + s i/2, then the bi-
spinor has the same eigenvalue of the scalar modes. This
means that the bi-spinor is expanded in terms of the
scalar eigenfunctions and the map between the scalar and
fermion is straightforward. In fact, one can show that the
bi-spinor with shifted λ by i/2 is exactly proportional to
the eigenfunctions for scalar as [36]
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given in (1) together with the fermionic modes given
in (5) with shifted λ as

Scalar:
{

φλ,k(η, θ)
∣

∣

∣
λ ∈ R>0 , k ∈ Z

}

Spinor:
{

ψ±
λ+s i

2
,k
(η, θ)

∣

∣

∣
λ ∈ R , k ∈ Z≥0

}

.
(18)

As a result, all the modes of the scalar fields have their
superpartners through the supersymmetry transforma-
tion (9), which is clear from the relation (17).
The immediate consequence of the shifted λ is that

the fermionic modes have complex eigenvalue for the
Dirac operator as L−1 (λ+ s i/2). We note that this
complex eigenvalue is not unnatural because AdS2 is a
non-compact space with boundary and the Dirac opera-
tor i /D is no longer hermitian on that space. This non-
hermiticity of the Dirac operator was reported also in flat
space with boundary [37]. By this shift, the spectral den-
sity of the spinor basis in supersymmetric Hilbert space
now becomes,

µψ±(λ+ s i
2 ) = 1

4π

(

λ+ s i
2

)

tanhπλ . (19)

We note that the measure vanishes at λ = 0 unlike the
original measure in (7). This implies that, while the mode
with λ = 0 in the basis given in (5) is zero mode for
massless case, the supersymmetric basis defined in (18)
does not have such zero modes irrespective of the value
of mass.
The eigenmodes for the spinor in the supersymmetric

Hilbert space (18) have the degree of growth 0 as they
have the following asymptotic behavior,

ψ+
λ+s i

2
,k
∼ ei(k+

1

2
)θe−siληβ−sλ− i

2

υ(s),

ψ−
λ+s i

2
,k
∼ −s e−i(k+ 1

2
)θe−siληβ−sλ− i

2

υ(s),
(20)

where the βλ and υ(s) are given in (8).
Note that although these eigenmodes survive at the

asymptotic boundary of AdS2, being degree of growth 0,
the inner product among them, defined in (6), is still
well-defined because the spinorial multiplication of two
leading terms in (20) vanishes identically due to the pro-
jection property of υ(±) and only the product of the
leading and subleading terms survives, having degree of
growth −1. Furthermore, the inner product (6) is de-
fined in a manner that the parameter λ can be com-
plexified. Within this definition we find that the super-
symmetric basis functions for spinor field in (18) form a
delta-function orthonormal basis satisfying

〈ψ±
λ+s i

2
,k
|ψ±
λ′+s i

2
,k′〉 = L2δ(λ − λ′)δk,k′ . (21)

Here, the resulting Dirac delta function is natural be-
cause we have shifted both of λ and λ′ by same imagi-
nary number i/2. It may seem that shifting of λ and λ′

by any imaginary number, say ix, results in the delta-
function in (21) while preserving well-defined integration.
However, we note that the integration in (21) is normal-
izable only if x ≤ 1/2. To explain, suppose x > 1/2.
Then in the asymptotic behaivior (20), the leading term
and subleading term behave as exp((−1/2 + x)η) and
exp((−3/2 + x)η) respectively, and thus the integrand
in (21) has degree of growth −1 + 2x which is greater
than zero resulting in the integration being divergent.
In contrast to the standard basis given in (1) and (5),

the basis functions constructed in (18) indeed form a
suitable basis to span all the fluctuations that satisfy
a supersymmetric asymptotic boundary conditions dic-
tated by the variational principle. To demonstrate this,
let us exploit the relevant result from the analysis of
the supersymmetric boundary condition in [31] for Eu-
clidean global AdS2 (see also [38–40] for the Lorentzian or
Poincare patch of Euclidean AdS2). For a supersymmet-
ric action, if we demand that the variation of the action
around the on-shell saddle vanishes, then the asymptotic
expansion of the scalar and spinor fluctuations are re-
stricted as

δφ = δφ(0)e
−∆φη + · · · , ∆φ > 1

2 ,

δψ = δψ(0)e
−∆ψη + · · · , ∆ψ > 0 .

(22)

From this, we note that the lowest bound of the scalings
for fluctuation of scalar and spinor fields are given by
∆φ = 1/2 and ∆ψ = 0, and they are actually the degree
of growth of our supersymmetric basis functions for scalar
and spinor fields in (18) respectively. This implies that all
the possible fluctuations that have the asymptotic scaling
above their bound given in (22) can be spanned by the
supersymmetric basis. A special attention is required for
the case where 1/2 ≥ ∆ψ > 0. In this range, the spinor
fields are seemingly non-normalizable as they cannot be
expanded in terms of the standard basis. However, in
terms of our supersymmetric basis with the Euclidean
inner product, it is still regarded as normalizable bound-
ary condition and corresponding fluctuations can be ex-
panded using the delta-function normalizable basis.

1-LOOP IN SUPERSYMMETRIC HILBERT

SPACE

Now, we want to explore the 1-loop partition func-
tion of a theory consisting of the scalar and spinor fields
evaluated in the supersymmetric Hilbert space and com-
pare it with the one that would be evaluated in non-
supersymmetric standard Hilbert space that would sat-
isfy asymptotic boundary condition different from (22).
For this purpose, we shall use heat kernel method. Since
the scalar basis is same for both of supersymmetric and
non-supersymmetric Hilbert spaces, we can focus only on
the contribution of the spinors having the kinetic term
−iψ( /D+Mψ)ψ, where ψ and ψ are independent spinors.



Supersymmetric Hilbert space

• Complex eigenvalue:  

                        


• It is natural:  for a space with boundary, the Dirac operator is not 
necessarily hermitian.  
c.f. non-hermiticity in a box [Bonneau, Faraut, Valent ’01]


• Unlike the standard basis, there is no fermionic zero mode:  
If mass is  ±1/2,   the kinetic operator  vanishes at 

. But there is no spectrum at this point as  spectral density of 
the spinor basis is zero. 

                    

<latexit sha1_base64="odw+kXG802v/bvLjLkvloo5QEX0="></latexit>

i�µDµ 
±
�+s i

2 ,k
= L�1(�+ s

i

2
) ±

�+s i
2 ,k

<latexit sha1_base64="X67bPrzYkCyeA7GcqRPmc+YLHh0="></latexit>

i(�µDµ � s/2)

λ = 0

4

given in (1) together with the fermionic modes given
in (5) with shifted λ as

Scalar:
{

φλ,k(η, θ)
∣

∣

∣
λ ∈ R>0 , k ∈ Z

}

Spinor:
{

ψ±
λ+s i

2
,k
(η, θ)

∣

∣

∣
λ ∈ R , k ∈ Z≥0

}

.
(18)

As a result, all the modes of the scalar fields have their
superpartners through the supersymmetry transforma-
tion (9), which is clear from the relation (17).
The immediate consequence of the shifted λ is that

the fermionic modes have complex eigenvalue for the
Dirac operator as L−1 (λ+ s i/2). We note that this
complex eigenvalue is not unnatural because AdS2 is a
non-compact space with boundary and the Dirac opera-
tor i /D is no longer hermitian on that space. This non-
hermiticity of the Dirac operator was reported also in flat
space with boundary [37]. By this shift, the spectral den-
sity of the spinor basis in supersymmetric Hilbert space
now becomes,

µψ±(λ+ s i
2 ) = 1

4π

(

λ+ s i
2

)

tanhπλ . (19)

We note that the measure vanishes at λ = 0 unlike the
original measure in (7). This implies that, while the mode
with λ = 0 in the basis given in (5) is zero mode for
massless case, the supersymmetric basis defined in (18)
does not have such zero modes irrespective of the value
of mass.
The eigenmodes for the spinor in the supersymmetric

Hilbert space (18) have the degree of growth 0 as they
have the following asymptotic behavior,

ψ+
λ+s i

2
,k
∼ ei(k+

1

2
)θe−siληβ−sλ− i

2

υ(s),

ψ−
λ+s i

2
,k
∼ −s e−i(k+ 1

2
)θe−siληβ−sλ− i

2

υ(s),
(20)

where the βλ and υ(s) are given in (8).
Note that although these eigenmodes survive at the

asymptotic boundary of AdS2, being degree of growth 0,
the inner product among them, defined in (6), is still
well-defined because the spinorial multiplication of two
leading terms in (20) vanishes identically due to the pro-
jection property of υ(±) and only the product of the
leading and subleading terms survives, having degree of
growth −1. Furthermore, the inner product (6) is de-
fined in a manner that the parameter λ can be com-
plexified. Within this definition we find that the super-
symmetric basis functions for spinor field in (18) form a
delta-function orthonormal basis satisfying

〈ψ±
λ+s i

2
,k
|ψ±
λ′+s i

2
,k′〉 = L2δ(λ − λ′)δk,k′ . (21)

Here, the resulting Dirac delta function is natural be-
cause we have shifted both of λ and λ′ by same imagi-
nary number i/2. It may seem that shifting of λ and λ′

by any imaginary number, say ix, results in the delta-
function in (21) while preserving well-defined integration.
However, we note that the integration in (21) is normal-
izable only if x ≤ 1/2. To explain, suppose x > 1/2.
Then in the asymptotic behaivior (20), the leading term
and subleading term behave as exp((−1/2 + x)η) and
exp((−3/2 + x)η) respectively, and thus the integrand
in (21) has degree of growth −1 + 2x which is greater
than zero resulting in the integration being divergent.
In contrast to the standard basis given in (1) and (5),

the basis functions constructed in (18) indeed form a
suitable basis to span all the fluctuations that satisfy
a supersymmetric asymptotic boundary conditions dic-
tated by the variational principle. To demonstrate this,
let us exploit the relevant result from the analysis of
the supersymmetric boundary condition in [31] for Eu-
clidean global AdS2 (see also [38–40] for the Lorentzian or
Poincare patch of Euclidean AdS2). For a supersymmet-
ric action, if we demand that the variation of the action
around the on-shell saddle vanishes, then the asymptotic
expansion of the scalar and spinor fluctuations are re-
stricted as

δφ = δφ(0)e
−∆φη + · · · , ∆φ > 1

2 ,

δψ = δψ(0)e
−∆ψη + · · · , ∆ψ > 0 .

(22)

From this, we note that the lowest bound of the scalings
for fluctuation of scalar and spinor fields are given by
∆φ = 1/2 and ∆ψ = 0, and they are actually the degree
of growth of our supersymmetric basis functions for scalar
and spinor fields in (18) respectively. This implies that all
the possible fluctuations that have the asymptotic scaling
above their bound given in (22) can be spanned by the
supersymmetric basis. A special attention is required for
the case where 1/2 ≥ ∆ψ > 0. In this range, the spinor
fields are seemingly non-normalizable as they cannot be
expanded in terms of the standard basis. However, in
terms of our supersymmetric basis with the Euclidean
inner product, it is still regarded as normalizable bound-
ary condition and corresponding fluctuations can be ex-
panded using the delta-function normalizable basis.

1-LOOP IN SUPERSYMMETRIC HILBERT

SPACE

Now, we want to explore the 1-loop partition func-
tion of a theory consisting of the scalar and spinor fields
evaluated in the supersymmetric Hilbert space and com-
pare it with the one that would be evaluated in non-
supersymmetric standard Hilbert space that would sat-
isfy asymptotic boundary condition different from (22).
For this purpose, we shall use heat kernel method. Since
the scalar basis is same for both of supersymmetric and
non-supersymmetric Hilbert spaces, we can focus only on
the contribution of the spinors having the kinetic term
−iψ( /D+Mψ)ψ, where ψ and ψ are independent spinors.



Supersymmetric Hilbert space

• Asymptotic behaviour : not vanishing at the asymptotic boundary as  
                   


• Nevertheless, the SUSY eigenfunctions form a delta-function 
orthonormal basis as  

      


• We define the appropriate inner product without using hermitian 
conjugate [Osterwalder, Schrader ‘72], “Euclidean inner product”.


• The projection condition of  cancels the dominant term in 
there inner product, making the inner product well-defined.
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Supersymmetric Hilbert space

• Compatible with asymptotic boundary condition.  
Asymptotic fall-off behavior of the fluctuation of fields is dictated by 
variational principle. 
 

   at on-shell saddle  requires  

                     


• Note that  behavior of the SUSY basis,   , 
saturate the bounds, being able to span all fluctuations above the bound.  
 
cf. For  the case ,  standard basis having 1/2 damping may not 
span the corresponding fluctuation. 
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given in (1) together with the fermionic modes given
in (5) with shifted � as

Scalar:
n
��,k(⌘, ✓)

���� 2 R>0 , k 2 Z
o

Spinor:
n
 ±
�+s i

2 ,k
(⌘, ✓)

���� 2 R , k 2 Z�0

o
.

(18)

As a result, all the modes of the scalar fields have their
superpartners through the supersymmetry transforma-
tion (9), which is clear from the relation (17).

The immediate consequence of the shifted � is that
the fermionic modes have complex eigenvalue for the
Dirac operator as L�1 (�+ s i/2). We note that this
complex eigenvalue is not unnatural because AdS2 is a
non-compact space with boundary and the Dirac opera-
tor i /D is no longer hermitian on that space. This non-
hermiticity of the Dirac operator was reported also in flat
space with boundary [37]. By this shift, the spectral den-
sity of the spinor basis in supersymmetric Hilbert space
now becomes,

µ ±(�+ s i
2 ) = 1

4⇡

⇣
�+ s i

2

⌘
tanh⇡� . (19)

We note that the measure vanishes at � = 0 unlike the
original measure in (7). This implies that, while the mode
with � = 0 in the basis given in (5) is zero mode for
massless case, the supersymmetric basis defined in (18)
does not have such zero modes irrespective of the value
of mass.

The eigenmodes for the spinor in the supersymmetric
Hilbert space (18) have the degree of growth 0 as they
have the following asymptotic behavior,

 +
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2 )✓e�si�⌘��s�� i

2
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⇠ �s e�i(k+ 1

2 )✓e�si�⌘��s�� i
2
�(s),

(20)

where the �� and �(s) are given in (8).
Note that although these eigenmodes survive at the

asymptotic boundary of AdS2, being degree of growth 0,
the inner product among them, defined in (6), is still
well-defined because the spinorial multiplication of two
leading terms in (20) vanishes identically due to the pro-
jection property of �(±) and only the product of the
leading and subleading terms survives, having degree of
growth �1. Furthermore, the inner product (6) is de-
fined in a manner that the parameter � can be com-
plexified. Within this definition we find that the super-
symmetric basis functions for spinor field in (18) form a
delta-function orthonormal basis satisfying

h ±
�+s i

2 ,k
| ±
�0+s i

2 ,k
0i = L2�(�� �0)�k,k0 . (21)

Here, the resulting Dirac delta function is natural be-
cause we have shifted both of � and �0 by same imagi-
nary number i/2. It may seem that shifting of � and �0

by any imaginary number, say ix, results in the delta-
function in (21) while preserving well-defined integration.
However, we note that the integration in (21) is normal-
izable only if x  1/2. To explain, suppose x > 1/2.
Then in the asymptotic behaivior (20), the leading term
and subleading term behave as exp((�1/2 + x)⌘) and
exp((�3/2 + x)⌘) respectively, and thus the integrand
in (21) has degree of growth �1 + 2x which is greater
than zero resulting in the integration being divergent.
In contrast to the standard basis given in (1) and (5),

the basis functions constructed in (18) indeed form a suit-
able basis to span all the fluctuations that satisfy a su-
persymmetric asymptotic boundary conditions dictated
by the variational principle. To demonstrate this, let us
exploit the relevant result from the analysis of the su-
persymmetric boundary condition in [31] for Euclidean
global AdS2. The analysis is reviewed in Appendix C in
terms of the convention used in this paper (see also [38–
40] for the Lorentzian or Poincare patch of Euclidean
AdS2). For a supersymmetric action, if we demand that
the variation of the action around the on-shell saddle van-
ishes, then the asymptotic expansion of the scalar and
spinor fluctuations are restricted as

�� = ��(0)e
���⌘ + · · · , �� > 1

2 ,

� = � (0)e
�� ⌘ + · · · , � > 0 .

(22)

From this, we note that the lowest bound of the scalings
for fluctuation of scalar and spinor fields are given by
�� = 1/2 and � = 0, and they are actually the degree
of growth of our supersymmetric basis functions for scalar
and spinor fields in (18) respectively. This implies that all
the possible fluctuations that have the asymptotic scaling
above their bound given in (C5) can be spanned by the
supersymmetric basis. A special attention is required for
the case where 1/2 � � > 0. In this range, the spinor
fields are seemingly non-normalizable as they cannot be
expanded in terms of the standard basis. However, in
terms of our supersymmetric basis with the Euclidean
inner product, it is still regarded as normalizable bound-
ary condition and corresponding fluctuations can be ex-
panded using the delta-function normalizable basis.

1-LOOP IN SUPERSYMMETRIC HILBERT
SPACE

Now, we want to explore the 1-loop partition func-
tion of a theory consisting of the scalar and spinor fields
evaluated in the supersymmetric Hilbert space and com-
pare it with the one that would be evaluated in non-
supersymmetric standard Hilbert space that would sat-
isfy asymptotic boundary condition di↵erent from (C5).
For this purpose, we shall use heat kernel method. Since
the scalar basis is same for both of supersymmetric and
non-supersymmetric Hilbert spaces, we can focus only on
the contribution of the spinors having the kinetic term
�i ( /D+M ) , where  and  are independent spinors.
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given in (1) together with the fermionic modes given
in (5) with shifted � as

Scalar:
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As a result, all the modes of the scalar fields have their
superpartners through the supersymmetry transforma-
tion (9), which is clear from the relation (17).

The immediate consequence of the shifted � is that
the fermionic modes have complex eigenvalue for the
Dirac operator as L�1 (�+ s i/2). We note that this
complex eigenvalue is not unnatural because AdS2 is a
non-compact space with boundary and the Dirac opera-
tor i /D is no longer hermitian on that space. This non-
hermiticity of the Dirac operator was reported also in flat
space with boundary [37]. By this shift, the spectral den-
sity of the spinor basis in supersymmetric Hilbert space
now becomes,

µ ±(�+ s i
2 ) = 1

4⇡

⇣
�+ s i

2

⌘
tanh⇡� . (19)

We note that the measure vanishes at � = 0 unlike the
original measure in (7). This implies that, while the mode
with � = 0 in the basis given in (5) is zero mode for
massless case, the supersymmetric basis defined in (18)
does not have such zero modes irrespective of the value
of mass.

The eigenmodes for the spinor in the supersymmetric
Hilbert space (18) have the degree of growth 0 as they
have the following asymptotic behavior,
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where the �� and �(s) are given in (8).
Note that although these eigenmodes survive at the

asymptotic boundary of AdS2, being degree of growth 0,
the inner product among them, defined in (6), is still
well-defined because the spinorial multiplication of two
leading terms in (20) vanishes identically due to the pro-
jection property of �(±) and only the product of the
leading and subleading terms survives, having degree of
growth �1. Furthermore, the inner product (6) is de-
fined in a manner that the parameter � can be com-
plexified. Within this definition we find that the super-
symmetric basis functions for spinor field in (18) form a
delta-function orthonormal basis satisfying

h ±
�+s i

2 ,k
| ±
�0+s i

2 ,k
0i = L2�(�� �0)�k,k0 . (21)

Here, the resulting Dirac delta function is natural be-
cause we have shifted both of � and �0 by same imagi-
nary number i/2. It may seem that shifting of � and �0

by any imaginary number, say ix, results in the delta-
function in (21) while preserving well-defined integration.
However, we note that the integration in (21) is normal-
izable only if x  1/2. To explain, suppose x > 1/2.
Then in the asymptotic behaivior (20), the leading term
and subleading term behave as exp((�1/2 + x)⌘) and
exp((�3/2 + x)⌘) respectively, and thus the integrand
in (21) has degree of growth �1 + 2x which is greater
than zero resulting in the integration being divergent.
In contrast to the standard basis given in (1) and (5),

the basis functions constructed in (18) indeed form a suit-
able basis to span all the fluctuations that satisfy a su-
persymmetric asymptotic boundary conditions dictated
by the variational principle. To demonstrate this, let us
exploit the relevant result from the analysis of the su-
persymmetric boundary condition in [31] for Euclidean
global AdS2. The analysis is reviewed in Appendix C in
terms of the convention used in this paper (see also [38–
40] for the Lorentzian or Poincare patch of Euclidean
AdS2). For a supersymmetric action, if we demand that
the variation of the action around the on-shell saddle van-
ishes, then the asymptotic expansion of the scalar and
spinor fluctuations are restricted as
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2 ,
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(22)

From this, we note that the lowest bound of the scalings
for fluctuation of scalar and spinor fields are given by
�� = 1/2 and � = 0, and they are actually the degree
of growth of our supersymmetric basis functions for scalar
and spinor fields in (18) respectively. This implies that all
the possible fluctuations that have the asymptotic scaling
above their bound given in (C5) can be spanned by the
supersymmetric basis. A special attention is required for
the case where 1/2 � � > 0. In this range, the spinor
fields are seemingly non-normalizable as they cannot be
expanded in terms of the standard basis. However, in
terms of our supersymmetric basis with the Euclidean
inner product, it is still regarded as normalizable bound-
ary condition and corresponding fluctuations can be ex-
panded using the delta-function normalizable basis.

1-LOOP IN SUPERSYMMETRIC HILBERT
SPACE

Now, we want to explore the 1-loop partition func-
tion of a theory consisting of the scalar and spinor fields
evaluated in the supersymmetric Hilbert space and com-
pare it with the one that would be evaluated in non-
supersymmetric standard Hilbert space that would sat-
isfy asymptotic boundary condition di↵erent from (C5).
For this purpose, we shall use heat kernel method. Since
the scalar basis is same for both of supersymmetric and
non-supersymmetric Hilbert spaces, we can focus only on
the contribution of the spinors having the kinetic term
�i ( /D+M ) , where  and  are independent spinors.
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1-loop in SUSY Hilbert space

• Let us compare  1-loop partition function using SUSY and non-SUSY basis. 


• Focus on contribution of spinors having kinetic term, 

                                 


• A difference: SUSY Hilbert space does not suffer from zero modes


• If there are zero modes, one need to separate out their regularized contribution 
                             


• Use the heat kernel method.  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given in (1) together with the fermionic modes given
in (5) with shifted � as
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As a result, all the modes of the scalar fields have their
superpartners through the supersymmetry transforma-
tion (9), which is clear from the relation (17).

The immediate consequence of the shifted � is that
the fermionic modes have complex eigenvalue for the
Dirac operator as L�1 (�+ s i/2). We note that this
complex eigenvalue is not unnatural because AdS2 is a
non-compact space with boundary and the Dirac opera-
tor i /D is no longer hermitian on that space. This non-
hermiticity of the Dirac operator was reported also in flat
space with boundary [37]. By this shift, the spectral den-
sity of the spinor basis in supersymmetric Hilbert space
now becomes,

µ ±(�+ s i
2 ) = 1

4⇡

⇣
�+ s i

2

⌘
tanh⇡� . (19)

We note that the measure vanishes at � = 0 unlike the
original measure in (7). This implies that, while the mode
with � = 0 in the basis given in (5) is zero mode for
massless case, the supersymmetric basis defined in (18)
does not have such zero modes irrespective of the value
of mass.

The eigenmodes for the spinor in the supersymmetric
Hilbert space (18) have the degree of growth 0 as they
have the following asymptotic behavior,

 +
�+s i

2 ,k
⇠ ei(k+

1
2 )✓e�si�⌘��s�� i

2
�(s),

 �
�+s i

2 ,k
⇠ �s e�i(k+ 1

2 )✓e�si�⌘��s�� i
2
�(s),

(20)

where the �� and �(s) are given in (8).
Note that although these eigenmodes survive at the

asymptotic boundary of AdS2, being degree of growth 0,
the inner product among them, defined in (6), is still
well-defined because the spinorial multiplication of two
leading terms in (20) vanishes identically due to the pro-
jection property of �(±) and only the product of the
leading and subleading terms survives, having degree of
growth �1. Furthermore, the inner product (6) is de-
fined in a manner that the parameter � can be com-
plexified. Within this definition we find that the super-
symmetric basis functions for spinor field in (18) form a
delta-function orthonormal basis satisfying

h ±
�+s i

2 ,k
| ±
�0+s i

2 ,k
0i = L2�(�� �0)�k,k0 . (21)

Here, the resulting Dirac delta function is natural be-
cause we have shifted both of � and �0 by same imagi-
nary number i/2. It may seem that shifting of � and �0

by any imaginary number, say ix, results in the delta-
function in (21) while preserving well-defined integration.
However, we note that the integration in (21) is normal-
izable only if x  1/2. To explain, suppose x > 1/2.
Then in the asymptotic behaivior (20), the leading term
and subleading term behave as exp((�1/2 + x)⌘) and
exp((�3/2 + x)⌘) respectively, and thus the integrand
in (21) has degree of growth �1 + 2x which is greater
than zero resulting in the integration being divergent.
In contrast to the standard basis given in (1) and (5),

the basis functions constructed in (18) indeed form a suit-
able basis to span all the fluctuations that satisfy a su-
persymmetric asymptotic boundary conditions dictated
by the variational principle. To demonstrate this, let us
exploit the relevant result from the analysis of the su-
persymmetric boundary condition in [31] for Euclidean
global AdS2. The analysis is reviewed in Appendix C in
terms of the convention used in this paper (see also [38–
40] for the Lorentzian or Poincare patch of Euclidean
AdS2). For a supersymmetric action, if we demand that
the variation of the action around the on-shell saddle van-
ishes, then the asymptotic expansion of the scalar and
spinor fluctuations are restricted as

�� = ��(0)e
���⌘ + · · · , �� > 1

2 ,

� = � (0)e
�� ⌘ + · · · , � > 0 .

(22)

From this, we note that the lowest bound of the scalings
for fluctuation of scalar and spinor fields are given by
�� = 1/2 and � = 0, and they are actually the degree
of growth of our supersymmetric basis functions for scalar
and spinor fields in (18) respectively. This implies that all
the possible fluctuations that have the asymptotic scaling
above their bound given in (C5) can be spanned by the
supersymmetric basis. A special attention is required for
the case where 1/2 � � > 0. In this range, the spinor
fields are seemingly non-normalizable as they cannot be
expanded in terms of the standard basis. However, in
terms of our supersymmetric basis with the Euclidean
inner product, it is still regarded as normalizable bound-
ary condition and corresponding fluctuations can be ex-
panded using the delta-function normalizable basis.

1-LOOP IN SUPERSYMMETRIC HILBERT
SPACE

Now, we want to explore the 1-loop partition func-
tion of a theory consisting of the scalar and spinor fields
evaluated in the supersymmetric Hilbert space and com-
pare it with the one that would be evaluated in non-
supersymmetric standard Hilbert space that would sat-
isfy asymptotic boundary condition di↵erent from (C5).
For this purpose, we shall use heat kernel method. Since
the scalar basis is same for both of supersymmetric and
non-supersymmetric Hilbert spaces, we can focus only on
the contribution of the spinors having the kinetic term
�i ( /D+M ) , where  and  are independent spinors.

5

A crucial di↵erence of two cases is that while the non-
supersymmetric Hilbert space can su↵er from fermionic
zero mode, our supersymmetric Hilbert space does not:
for the former case, the kinetic operator of the spinor
vanishes at � = 0 when M = 0 and the spectrum ex-
ists at this point as noticed in (7), whereas for the later
case even though the kinetic operator vanishes at � = 0
when M = �1/2, such point in the spectrum does not
exist as was pointed out in (19). In general, if there
are zero modes, we separate out their regularized contri-
bution as Z1-loop = ZzmZ 0

1-loop. However, as we do not
have zero modes, we can directly compute the 1-loop par-
tition function via the standard procedure of heat kernel
method [41] as,

logZ 1-loop = 1
2

R1
✏/L2

ds
s K (s) ,

K (s) ⌘ �Tr exp
h
�s

�
iL( /D +M )

�2i

= �2
R
d2x

p
g
R
C dz µ (z) exp

h
�s(z + iLM )2

i
.

(23)

Here we have defined K (s) as minus of trace over heat
kernel for the Dirac spinors, that is to be integrated over
its dimensionless argument s from the UV cuto↵ ✏/L2 to
infinity. As the trace is over the complete Hilbert space
and the quantity K (s) is local quantity.

In the last line of (23), the trace now involves in-
tegration over the complex spectrum parametrized by
z = � + i/2. We note that this is nothing but the heat
kernel in standard delta-function normalizable basis with
the contour in � shifted by i/2. Let us recall that the mea-
sure µ (z), which is the spectral function, was defined
such that it is meromorphic function of z as in (7), and
it has poles at z = ±i,±2i, · · · . Therefore, the shift of the
contour does not cross any poles and thus deos not change
the result of heat kernel. This concludes that the local
contribution of the heat kernel method is the same for su-
persymmetric and non-supersymmetric result. However,
the non-local contribution can be di↵erent as the stan-
dard non-supersymmetric basis can have fermionic zero
mode.

This result explains how the 1-loop study of super-
symmetric black holes via the standard heat kernel agree
with supersymmetric result. For the near horizon geome-
try of supersymmetric black holes of the form AdS2⇥ S2,
there are no zero modes of spinor fields since the Dirac
operator along S2 does not give zero mass in the Kaluza-

Klein tower. Therefore, there is no di↵erence even in the
global contribution of heat kernel computation between
non-supersymmetric and supersymmetric Hilbert spaces.

DISCUSSION

It is worth emphasizing that the quantum fluctuations
of fields in supersymmetric theories should reside in a su-
persymmetric Hilbert space. Therefore, our construction
serves as a basic foundation for quantum studies of super-
symmetric theories on AdS2, including supersymmetric
black hole entropy. We note that in the exact results us-
ing supersymmetric localization [20, 21, 31], the bound-
ary conditions of fields indeed meet the conditions of the
basis functions in our supersymmetric Hilbert space.
It is also worth emphasizing that, unlike the standard

basis, the spinor basis in (18) does not admit fermionic
zero modes. Therefore, it ensures that the path integral
is non-vanishing.
Although this paper analyses chiral multiplet fields on

AdS2, we expect that the complexified spectrum is perva-
sively necessary for supersymmetry in generic situations.
Specifically, on higher dimensional AdSd, the spectrum
of the chiral multiplet will also have i/2 shift indepen-
dently of d. Other multiplets, such as vector and gravity
multiplets should also have a complex spectrum. The ex-
plicit construction of the basis for them is an interesting
subject for future research.
Even though the new basis functions are delta-function

normalizable, the asymptotic behavior shown in (20) re-
veals that the spinor modes can reach the boundary of
AdS2. It would be interesting to investigate the implica-
tions of this property of the modes for black hole physics.
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1-loop in SUSY Hilbert space

• Standard basis vs. SUSY basis 
                  

              
The shift of the contour does not cross any pole and thus does 
not change the result of the trace of heat kernel. 


• Local contribution of the heat kernel is unchanged, whereas the 
global contribution (zero mode contribution) can be different.
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1-loop in SUSY Hilbert space

• Argument on how 1-loop study of black hole entropy using 
standard basis matches with supersymmetric result.


• Black hole near horizon geometry has additional internal 
geometry to AdS₂.   e.g.   AdS₂ x S² . 


• Dirac operator along S² does not give zero mass in the 
Kaluza-Klein tower, thus there is no zero mode even in the 
standard basis.  
 



Outline

• Motivation


• Problem with SUSY and standard basis 


• Construction of supersymmetric Hilbert space


• 1-loop in SUSY Hilbert space


• Conclusion



Concluding remarks

• We have constructed supersymmetric basis for scalar and 
spinor field on EAdS₂ by complexifying the spectrum of Dirac 
operator.


• In quantum study of supersymmetric theories on Euclidean 
AdS₂, the spectrum of the quantum fluctuation of fields 
should be complexified.


• We expect: complexified spectrum is pervasively necessary:  
- For higher dimensions, i / 2 shift   
- Vector, graviton multiplets should have complexified 
spectrum.



Discussion

• Structure of SUSY Hilbert space for vector, graviton multiplet is 
an interesting problem: understanding the zero modes in vector, 
graviton, gravitino would be relevant for understanding of 
quantum entropy function.


• Physical implication this boundary condition to black hole?  
Relation to Atiyah-Patodi-Singer(APS) boundary condition? 


• Group theoretic understanding of the spectrum?  
In terms of principal series representation of SL(2,R) ~ SO(1,2)?


• We could consider this boundary condition without reference to 
the SUSY. 



Thank you for your attention.


