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Why Matrices

Intermediate vector bosons (W+,W−,Z0) and gluons are matrix valued gauge fields:

[Aµ(x)]ab

a, b = 1, 2 − SU(2) − weak interactions

a, b = 1, 2, 3 − SU(3) − strong interactions

”Pure” QCD (ℏ = c = 1)

L = −
1

4
TrFµνF

µν ; Fµν = ∂µAν − ∂νAµ + igYM [Aµ,Aν ]

Should set ΛQCD and predict glueball mases. With quarks (matter fields), confinement,
meson and baryon masses

L = −
1

4
TrFµνF

µν + ψ̄γµ(i∂µ − gYMAµ)ψ

QCD cousin: N = 4 super Yang-Mills theory (i = 1, ..., 6 matrix scalars)

L = −
1

4
TrFµνF

µν +
1

2
DµXiD

µXi +
g2
YM

4
[Xi ,Xj ]

2 + ...
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Why Large Matrices

’t Hooft [1974] generalized 3× 3 matrices → N × N. N large, λ = g2
YMN finite.

[Wilke van der Schee, 2011]

Example: GS energy E = N2−2g f (λ). QCD string ?
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Large N, gauge invariance and loop equations

Gauge theories → gauge invariance → restrict to gauge invariant states

Wilson loops

ϕ(C) = Tr
(
P e i

∮
C Aµdxµ

)
, ϕ(C , x1, x2) = ψ̄(x1)P e i

∫ x2
x1

Aµdxµψ(x2)

Large N factorization of gauge invariant operators (loops from now on):

< ϕ(C1)ϕ(C2) >N→∞=< ϕ(C1) >< ϕ(C2) > +1/N2...

Migdal-Makeenko equations [1979] (Schwinger-Dyson equations). On the lattice [Kazakov and

Zheng, 2022]:
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(Path) integral or quantum mechanics of finite number of Matrices -
reduced models

Compactified gauge theories - QCD motivated
[Luscher, 1982-1984] - Y-M theory on a torus
[Eguchi and Kawai, 1982] - Loop equations from µ = 1, ..., 4 unitary matrices
[Bhanot, Heller and Neuberger, 1982] - Quenched unitary matrices
[Gross and Y. Kitazawa, 1982] - Large N quenched prescription for hermitian matrices
[Kitazawa and Wadia, 1983] - Large N quenched prescription - Hamiltonian

D− branes [Polchinski, 1995]
[Banks, Fischler, Shenker, Susskind, 1997] - SS QM of 9 hermitian matrices (D0’s) - M-theory!
[Ishibashi, Kawai, Kitazawa, Tsuchiya, 1997] - 10d SYM
[Maldacena, Gubser, Klebanov, Polyakov, Witten, 1998-1999] - AdS/CFT
[Berenstein, Maldacena, Nastase, 2002] - Scalars of N = 4 SYM
[tzhaki, Maldacena, ... ] - Black holes and matrix QM
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Constraints in loop space

Can one study matrix systems directly in the large N limit? Loop space is highly non-trivial
and difficult to parametrize (more later). And is subject to positivity constraints!

Recently re-discovered [Anderson and Kruczenski, 2017]

Consider set of open Wilson lines Cl , l = 1, ..., L from x1 to x2, and U l the corresponding
product of unitary matrices along the curves. For an arbitrary set of coefficients cl , define
A =

∑L
1 clU

l . Since TrA†A ≥ 0 for any cl , one must have

ρll′ =
1

NL
< Tr

[
(U l )†U l′

]
>⪰ 0

Semi-definite programming can then be used. Wording bootstrap is associated with existence
of constraints and parameter ”scanning”.
Recent interest [H. Lin, 2020; Han, Hartnoll Krutho, 2020; Kazakov and Z. Zheng 2022; Koch, Jevicki,

Liu, Mathaba, Rodrigues, 2022]
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Collective Field Hamiltonian

Our approach is based on the collective field theory Hamiltonian of Jevicki and Sakita [1980].

This Hamiltonian is an exact re-writing of a theory in terms of its gauge invariant variables.
The large N (planar) background is then obtained semiclassically as the minimum of an
effective potential Veff and, when expanded about this large N background, the collective
field theory Hamiltonian generates 1/N corrections systematically.

The idea is to implement a change of variables from the original variables of the theory,
generically denoted by XA, to the invariant set of operators (the collective fields) ϕ(C), and
to require explicit hermiticity of the collective field Hamiltonian. This change of variable is
accompanied by a Jacobian J. In general J is not known explicitly, but it satisfies the
following equation ∑

C ′

∂ ln J

∂ϕ†(C ′)
Ω(C ′,C) = w(C)−

∑
C ′

∂Ω(C ′,C)

∂ϕ†(C ′)
.

This is sufficient to obtain explicitly the collective field Hamiltonian in terms of ϕ(C) and its
canonical conjugate π(C).
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Collective Field Hamiltonian and constraints

In general,

Ω(C ,C ′) =
∑
A

∂ϕ†(C)

∂X †
A

∂ϕ(C ′)

∂XA
, w(C) =

∑
A

∂2ϕ(C)

∂X †
A∂XA

.

Ω(C ,C ′) joins two loops into a sum of single loops, and w(C) splits a given loop into a sum
of two (in general smaller) loops.

The collective field Hamiltonian Hcol is ideally suited to a numerical approach based on
minimisation of the effective potential Veff , in a truncated loop space Hcol → Htrunc

col .
Already some time ago [Jevicki, Karim, Rodrigues, Levine,1983, 1984] this approach was
successfully implemented for 2 + 1 lattice gauge theories.

Systems of unitary matrices have a phase transition between a strong and weak phase, and it
was then established that in the weak coupling phase the minimization has to be
accompanied by a constraint: {

Minimize V trunc
eff ,

Ω(C ,C ′) ⪰ 0.

In other words, the large N expectation values of the loop variables ϕ(C) must satisfy the
constraint that the matrix Ω(C ,C ′) is semi-positive definite, with a number of eigenvalues
saturating to zero in the weak coupling regime. This was shown to also be the case when
considering loop equations [Rodrigues, 1985] .

J.P. Rodrigues (NITheCS and MITP) Y-M coupled matrices Mandesltam VI Talk 2024 9 / 30



Collective Field Hamiltonian and constraints

In general,

Ω(C ,C ′) =
∑
A

∂ϕ†(C)

∂X †
A

∂ϕ(C ′)

∂XA
, w(C) =

∑
A

∂2ϕ(C)

∂X †
A∂XA

.

Ω(C ,C ′) joins two loops into a sum of single loops, and w(C) splits a given loop into a sum
of two (in general smaller) loops.

The collective field Hamiltonian Hcol is ideally suited to a numerical approach based on
minimisation of the effective potential Veff , in a truncated loop space Hcol → Htrunc

col .
Already some time ago [Jevicki, Karim, Rodrigues, Levine,1983, 1984] this approach was
successfully implemented for 2 + 1 lattice gauge theories.

Systems of unitary matrices have a phase transition between a strong and weak phase, and it
was then established that in the weak coupling phase the minimization has to be
accompanied by a constraint: {

Minimize V trunc
eff ,

Ω(C ,C ′) ⪰ 0.

In other words, the large N expectation values of the loop variables ϕ(C) must satisfy the
constraint that the matrix Ω(C ,C ′) is semi-positive definite, with a number of eigenvalues
saturating to zero in the weak coupling regime. This was shown to also be the case when
considering loop equations [Rodrigues, 1985] .

J.P. Rodrigues (NITheCS and MITP) Y-M coupled matrices Mandesltam VI Talk 2024 9 / 30



Collective Field Hamiltonian and constraints

In general,

Ω(C ,C ′) =
∑
A

∂ϕ†(C)

∂X †
A

∂ϕ(C ′)

∂XA
, w(C) =

∑
A

∂2ϕ(C)

∂X †
A∂XA

.

Ω(C ,C ′) joins two loops into a sum of single loops, and w(C) splits a given loop into a sum
of two (in general smaller) loops.

The collective field Hamiltonian Hcol is ideally suited to a numerical approach based on
minimisation of the effective potential Veff , in a truncated loop space Hcol → Htrunc

col .
Already some time ago [Jevicki, Karim, Rodrigues, Levine,1983, 1984] this approach was
successfully implemented for 2 + 1 lattice gauge theories.

Systems of unitary matrices have a phase transition between a strong and weak phase, and it
was then established that in the weak coupling phase the minimization has to be
accompanied by a constraint: {

Minimize V trunc
eff ,

Ω(C ,C ′) ⪰ 0.

In other words, the large N expectation values of the loop variables ϕ(C) must satisfy the
constraint that the matrix Ω(C ,C ′) is semi-positive definite, with a number of eigenvalues
saturating to zero in the weak coupling regime. This was shown to also be the case when
considering loop equations [Rodrigues, 1985] .

J.P. Rodrigues (NITheCS and MITP) Y-M coupled matrices Mandesltam VI Talk 2024 9 / 30



Constraint and density of eigenvalues

This constraint is not difficult to understand: the large N limit of the single unitary matrix
integral has a well known third order phase transition [Gross, Witten, 1980], described in terms
of the density of its (phases of) eigenvalues ρ(θ) as:

ρ(θ) = 1
2π

(1 + 2
λ
cos θ), −π ≤ θ ≤ π for λ ≥ 2,{

ρ(θ) = 2
πλ

cos θ
2

√
λ
2
− sin2 θ

2
, |θ| < 2 sin−1 λ

2

ρ(θ) = 0, 2 sin−1 λ
2
≤ |θ| ≤ π

}
for λ ≤ 2.

In the strong coupling regime, the density of eigenvalues is periodic with period 2π. For
weak coupling, the density of eigenvalues develops finite support within the interval [−π, π],
and ρ(θ) = 0 outside this finite support.

A similar phase transition is present in the large N limit of the quantum mechanics of single
unitary matrix systems. Hermitian matrix systems are always in the weak phase, so ensuring
that ϕ(x) = 0 outside their finite support in order that the density of states remains
non-negative is of paramount importance.

For a single hermitian N × N matrix M, with invariants ϕk = Tr(e−ikM), the density of
eigenvalues is simply its Fourier transform.Then Ω(x , y) = ∂x∂y (ϕ(x)δ(x − y)), and Ω(x , y)

is seen to have zero eigenvalues when the density matrix < x |ϕ̂|y >= ϕ(x)δ(x − y) has zero
eigenvalues, or when ϕ(x) = 0. For single matrix systems then, this constraint on Ω is easily
related to the requirement that the density is non-negative.
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Density of eigenvalues - another look

(a) Density of eigenvalues at λ = 3 (b) Density of eigenvalues at λ = 1
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Quantum mechanics of two massless Y-M coupled matrices

Our system is then [Mathaba, Mulokwe, Rodrigues, 2306.00935 [hep-th]]

Ĥ =
1

2

2∑
A=1

TrP2
A −

g2
YM

N
Tr[X1,X2]

2 =
1

2

2∑
A=1

TrP2
A + Tr(V (XA)).

PA is canonical conjugate to XA. In our convention, ’t Hooft’s coupling λ is λ = g2
YM

The U(N) invariant loops are single traces of products of the matrices XA, up to cyclic
permutations:

ϕ(C) = Tr(...Xm1
1 Xm2

2 X n1
1 X n2

2 ...) .

For instance, with two matrices one has [1 1] = Tr(X 2
1 ) , [1 2] = Tr(X1X2), [2 2] = Tr(X 2

2 ),
with three matrices [1 1 1] = Tr(X 3

1 ) , [1 1 2] = Tr(X 2
1X2),

[1 2 2] = Tr(X1X 2
2 ) , [2 2 2] = Tr(X 3

2 ), etc.

We let ϕ(C) → ϕ(C)/N
l(C)
2

+1 and then

Hcol =
1

2N2

∑
C ,C ′

π†(C)Ω(C ,C ′)π(C ′) + N2Veff (ϕ)

Veff (ϕ) ≡
1

8

∑
C ,C ′

w(C)Ω−1(C ,C ′)w†(C ′) + V (ϕ).
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Truncation of loop space

The large N background is then the minimum of Veff subject to the constraint that Ω(C ,C ′)
is semi-positive definite.

For a given l (l ≥ 4), Ω is truncated to be a NΩ × NΩ matrix, where NΩ is the number of
loops of length l or less. Ω itself, however, depends on loops with lengths up to
lmax = 2l − 2. If Nloops is the number of loops with length lmax or less, then Veff is a
function of Nloops:

V trunc
eff (ϕ(C),C = 1, ...,Nloops) =

1
8

∑NΩ
C ,C ′=1

w(C)Ω−1(C ,C ′)w†(C ′) + V (ϕ)

lmax NΩ Nloops

8 23 93
10 37 261
12 57 801
14 93 2615
16 153 8923
18 261 31237

How is the constraint enforced ?
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Master Variables

To minimize V trunc
eff subject to the constraint Ω(C ,C ′) ⪰ 0, we introduce master variables

ϕα that explicitly satisfy the constraint:

Ω(C ,C ′) =
∑
α

∂ϕ†(C)

∂ϕα

∂ϕ(C ′)

∂ϕα
⪰ 0

Specifically, we choose X1 to be diagonal and X2 a N × N hermitian matrix. The master
field then has N2 + N real components ϕα, α = 1, 2, ...,N(N + 1).

The planar limit is obtained by minimizing V trunc
eff with respect to the master variables. More

precisely, at the minimum,

∂V trunc
eff

∂ϕα
≡

Nloops∑
C=1

∂V trunc
eff

∂ϕ(C)

∂ϕ(C)

∂ϕα

∣∣∣
ϕ0
α

= 0, α = 1, 2, ...,N(N + 1)

ϕplanar(C) ≡ ϕ(C)|ϕ0
α
, C = 1, ...,Nloops.

In general, ∂V trunc
eff /∂ϕ(C) ̸= 0. The planar background is specified by the large N

expectation values ϕplanar(C) of all gauge invariant operators.

We have chosen a truncation with lmax = 14, that is, 2615 Nloops and a 93× 93 Ω matrix.
For the master field, we took N = 51, corresponding to 2652 master variables.
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Scaling properties in the massless limit

Recall

Ĥ =
1

2

2∑
A=1

TrP2
A −

g2
YM

N
Tr[X1,X2]

2 .

PA is canonical conjugate to XA ,A = 1, 2.

This system has one dimensional parameter only, gYM . Its dimension and that of the fields
XA are:

[gYM ] =
3

2
, [X1] = [X2] = −

1

2
.

We expect a simple algebraic dependence on gYM of all physical quantities, determined by
their energy dimensions (ℏ = c = 1). For instance,

e = Λe g
2/3
YM , TrX 2

1 = Λ[11] g
−2/3
YM , TrX 4

1 = Λ[1111] g
−4/3
YM , etc.,

where e is any energy of the system.

We considered 15 values of gYM , ranging from 1 to 12, chosen so that they are reasonably
distributed over this range in both a linear and logarithmic scale:

gYM

1 1.28403 1.64872 2 2.6 3.25 4 5 6 7 8 9 10 11 12

Working directly in this massless limit, the optimization algorithm exhibited remarkable
stable convergence to the system’s minimum for all gYM .
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Planar quantities - ground state energy

Plot of large N ground state energies versus gYM :

We fit the data to the curve
e0/N

2 = A0 g
p
YM ,

by performing a least squares fit to the logarithmic plot, with result. We find:

lnA0 = −0.117625(8) , p = 0.666671(5) .

This linear fit is shown below
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Planar quantities

The accuracy with which the interpolation matches the exact scaling p = 2/3 at this level of
truncation is remarkable. We are then justified in setting p = 2/3 and fit the data to the
scaling function

e0/N
2 = Λ0 g

2/3
YM ,

(
= Λ0 λ

1/3
)

(1)

with result
Λ0 = 0.889034(3). (2)

The fit of the large N planar ground state energies to the scaling function is shown below.
The level of accuracy with which the numerically obtained planar ground state energies
match the scaling behaviour at this level of truncation is again remarkable.

Taking into account possible truncation dependent errors, the final scaling dependence on ’t
Hooft’s coupling for the planar ground state energy of the massless system as:

e0/N
2 = 0.8890(2)λ1/3
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Planar quadratic correlators

We consider the correlator Tr(Z†Z)/N2 = (TrX 2
1 +TrX 2

2 )/N
2, (Z ≡ X1 + iX2) and do same

analysis.

The results are presented in the table and figures below

Parameters of (log) linear fit p = −2/3 fixed Final scaling function

lnAZ†Z p ΛZ†Z Tr(Z†Z)/N2

-0.07219(7) -0.66672(4) 0.93027(3) 0.930(1)λ−1/3

(c) Linear fit of lnTrZ†Z/N2 versus ln gYM (d) Fit of TrZ†Z/N2 to scaling function

0.9303 g
−2/3
YM

The scaling power for the large N planar correlator is again predicted with a high level of
accuracy, and their numerical values match with a high level of precision the scaling
behaviour.
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Quartic correlators

For invariant loops with 4 matrices, we consider the loops Tr(Z†ZZ†Z)/N3 and
tr(Z†Z†ZZ)/N3, and carry out the same analysis, summarized in table and figures below.

Log linear fit p = −4/3 Final

lnA p Λ Scaling function

Tr(Z†ZZ†Z)/N3 0.4441(1) -1.33340(6) 1.55895(8) 1.559(8)λ−2/3

Tr(Z†Z†ZZ)/N3 0.2333(1) -1.33341(8) 1.26261(8) 1.263(6)λ−2/3

(i) Linear fit of the log of 4 matrices loop
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Spectrum

Master variables can be used to obtain the spectrum of the O(N0) = O(1) quadratic
collective Hamiltonian [Koch, Jevicki, Liu, Mathaba, Rodrigues, 2022] ( based on [Jevicki and

Rodrigues, 1984]). The “mass matrix” is a NLoops × NLoops matrix, with NLoops − NΩ

unphysical zero modes.

The mass of the third excited state and of all other higher excited states show the expected
increase with coupling. Not so for the two lowest lying states (more on these later)
Same analysis as before is carried out. Levels 3− 15 are shown in the table below

Log linear fit p = 2/3 fixed Final

n lnAn p Λn Scaling function

e3 0.4624(1) 0.66657(7) 1.58767(9) 1.588(1) λ1/3

e4 0.4627(1) 0.66656(6) 1.58806(8) 1.588(1) λ1/3

e5 0.645(6) 0.650(3) 1.862(8) 1.86(3) λ1/3

e6 0.873(6) 0.660(4) 2.373(8) 2.37(3) λ1/3

e7 0.885(3) 0.661(2) 2.406(5) 2.41(3) λ1/3

e8 1.09(1) 0.651(6) 2.91(2) 2.91(11) λ1/3

e9 1.112(7) 0.652(4) 2.98(1) 2.98(10)λ1/3

e10 1.159(3) 0.663(2) 3.170(5) 3.17(2) λ1/3

e11 1.167(2) 0.662(1) 3.191(5) 3.19(2)λ1/3

e12 1.34(2) 0.62(1) 3.57(5) 3.57(18) λ1/3

e13 1.336(6) 0.660(3) 3.77(1) 3.77(6) λ1/3

e14 1.361(5) 0.657(3) 3.85(1) 3.85(7) λ1/3

e15 1.382(7) 0.655(4) 3.92(2) 3.92(8) λ1/3
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Spectrum patterns

(m) Linear fit of the log of e3,4,5 versus
ln gYM . e3,4 form a l = ±2 doublet, e5 is
a l = 0 singlet

(n) Fit of the n = 3, 4, 5 masses to

scaling functions Λ3,4,5 g
2/3
YM

(o) Linear fit of the log of e6,7,8,9 versus
ln gYM . e6,7 form a l = ±3 doublet and
e8,9 a l = ±1 doublet

(p) Fit of n = 6, 7, 8, 9 masses to scaling

function Λ6,7,8,9 g
2/3
YM
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More on Spectrum

Further spectrum energies

(q) Linear fit of the log of e10,...,15
versus ln gYM .They form 3
l = ±4,±2,±0 doublets.

(r) Fit of the n = 10, ..., 15 masses to

scaling function Λ10,11,12,13,14,15 g
2/3
YM

For the lowest excited sates e1 and e2, numerically, their masses do not increase with the
coupling, and remain very small compared with the other massive excited states. These are
the U(N) traced fundamental single particle states TrX1 and TrX2, and we associate them
with the non interacting (free) U(1)× U(1) subgroup of the Hamiltonian. Numerically, one
should recall that the eigenvalues of the mass matrix include Nloops − NΩ unphysical zero
eigenvalues, so these modes will mix with physical zero modes if present in the system.

In order to confirm numerically that, indeed, our interpretation that e1 and e2 are decoupled
zero mass states, we ”switch on” masses in the Hamiltonian and seek evidence that indeed
e1 and e2 remain decoupled states with masses equal to their ”bare” masses. This will also
allow us to compare our results with the few planar results available in the literature.
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More on Spectrum

Further spectrum energies

(u) Linear fit of the log of e10,...,15
versus ln gYM .They form 3
l = ±4,±2,±0 doublets.

(v) Fit of the n = 10, ..., 15 masses to

scaling function Λ10,11,12,13,14,15 g
2/3
YM
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coupling, and remain very small compared with the other massive excited states. These are
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Y-M coupled matrices with masses - planar quantities

Given that the leading large gYM behaviour of the large N energy, that of the massless limit,
has been established, we can obtain the next, mass dependent, power dependence on gYM .
The least squares fit result for the exponent is −0.630(2), in other words p = −2/3 to a high
degree of accuracy. Setting p = −2/3, we obtain at this truncation level:

e0/N
2 = 0.8890(2)λ1/3 + 0.4518(1)

m2

λ1/3
+ ...

(w) Strong coupling linear fit to

ln(e0 − Λ0g
2/3
YM

)/N2 versus ln gYM

(x) Fit of e0/N
2 to mass corrected scaling

function (m = 2)

The following table compares our large N planar results to those available in the literature.

This article [Morita,Yoshida, 2020] [Han, Hartnoll,Krutho, 2020]

e0/N2 0.8890(2)λ1/3 + 0.4518(1) m2

λ1/3 + ... 0.882λ1/3 + ... 0.882λ1/3 + 0.401 m2

λ1/3 + ...

TrZ†Z/N2 0.930(1)λ−1/3 + ... 0.913λ−1/3 + ... 0.968λ−1/3 + ...

Table: Literature comparison
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Spectrum with masses

One finds that the energies e1 and e2 remain constant and very close to the ”bare” mass
value m = 2. In the massless limit then, these states remain massless, confirming the
interpretation provided in the previous slides.

For the next 3 states, we display the mass corrected large gYM scaling function

Figure: Numerical results for the masses e3,4,5 and fit to mass corrected scaling functions.
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3 massless matrices - preliminary results

We considered 9 values of ’t Hooft’s coupling λ = e−4, e−3, ..., e3, e4, and a truncation with
lmax = 10, corresponding to 9503 Nloops and a 225× 225 Ω matrix. For the master field, we
took N = 69, corresponding to 2N2 + N = 9591 master variables.

The accuracy of the planar O(3) symmetry is illustrated below

λ = e−4 λ = 1 λ = e4

[11] 1.6622 0.4380 0.1155
[22] 1.6625 0.4382 0.1156
[33] 1.6625 0.4381 0.1156

[1111] 5.5667 0.3866 0.0269
[2222] 5.5687 0.3868 0.0269
[3333] 5.5683 0.3867 0.0269
[1122] 2.5855 0.1796 0.0125
[1133] 2.5856 0.1796 0.0125
[2233] 2.5848 0.1796 0.0125
[1212] 0.3985 0.0276 0.0019
[1313] 0.3984 0.0276 0.0019
[2323] 0.3981 0.0276 0.0019

Table: Discrete symmetries
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3 massless matrices - planar quantities and scaling

As for the 2 matrix case, we fit the planar ground state energies to the curve e0/N2 = A0 λ
p

by performing a least squares fit to the logarithmic plot, with result. We find
lnA0 = 0.3131 , p = 0.3333.
This linear fit is shown below

Similarly for TrX 2
1 + TrX 2

2 + TrX 2
3 = A2 λ

p , we find lnA2 = 0.2753 , p = −0.3333. The
linear fit is shown below:
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3 massless matrices - lowest bound states

As was the case for the 2 matrix system, the 3 the U(N) traced fundamental single particle
states remain massless. All the other bound states acquire masses scaling with the coupling
constant as determined by its dimensions. It is of interest to consider the spectrum structure
of the lowest lying bound states.

Lowest non-zero spectrum states at 3 different coupling values:

λ = e−4 λ = 1 λ = e4

e4 0.0972 1.671 14.08
e5 0.2427 3.500 50.10
e6 0.2429 3.501 50.14
e7 0.2430 3.503 50.18
e8 0.2431 3.504 50.21
e9 0.2431 3.508 50.25

A clear pattern of degeneracies is evident, with a lowest mass singlet and a quintuplet
(corresponding to a traceless symmetric matrix).
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Summary

We studied the large N dynamics of two massless Yang-Mills coupled matrix quantum
mechanics, by minimization of a loop truncated Jevicki-Sakita effective collective field
Hamiltonian.

The loop space constraints are handled by the use of master variables.

The method is successfully applied directly in the massless limit for a range of values of the
Yang-Mills coupling constant, and the scaling behaviour of different physical quantities
derived from their dimensions are obtained with a high level of precision.

We consider both planar properties of the theory, such as the large N ground state energy
and multi-matrix correlator expectation values, and also the spectrum of the theory.

For the spectrum, we establish that the U(N) traced fundamental constituents remain
massless and decoupled from other states, and that bound states develop well defined mass
gaps, with the mass of the two degenerate lowest lying bound states being determined with a
particularly high degree of accuracy.

Similar preliminary 3 matrix results were presented.
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Open questions

More matrices

Quenched eigenvalues and 3d physics?

BMN

Supersymmetry

More gravity properties?

Finite temperature, ...



Thank you !
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