Complexity 0000000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions 00

Spread Complexity and PT Symmetry

Jaco van Zyl

based on [C Beetar, N Gupta, SS Haque, J Murugan, HJRvZ, 2312.15790]

16 January 2024, University of the Witwatersrand

Complexity 0000000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions 00
Talk Lavou	t			

- 2 Single Oscillator
- 3 Coupled Oscillators

Complexity ●000000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Complexity				

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $|\phi_r\rangle$, $|\phi_t\rangle$, $\{U_1, U_2, \cdots, U_n\}$, $g(U_1, U_2, \cdots, U_n)$
- Discrete notion of complexity closely related to quantum computational setups
- We will, however, be interested in a continuous notion of complexity

Complexity o●ooooo	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions 00
Nielsen (Complexity			

- Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]
- E.g. SU(1,1): Gates $U = e^{\frac{s_1+is_2}{2}a^{\dagger}a^{\dagger} \frac{s_1-is_2}{2}aa + i\frac{s_3}{4}(a^{\dagger}a + aa^{\dagger})}$
- Target states: $|\phi_t(s_1, s_2, ..., s_n)\rangle = U(s_1, \cdots, s_n)|\phi_r\rangle$

Complexity o●ooooo	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Nielsen (Complexity			

- Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]
- E.g. SU(1,1): Gates $U = e^{\frac{s_1+is_2}{2}a^{\dagger}a^{\dagger} \frac{s_1-is_2}{2}aa + i\frac{s_3}{4}(a^{\dagger}a + aa^{\dagger})}$
- Target states: $|\phi_t(s_1, s_2, ..., s_n)\rangle = U(s_1, \cdots, s_n)|\phi_r\rangle$
- We have a manifold of target states on which one can define a metric

A D N A 目 N A E N A E N A B N A C N

• Complexity = shortest distance connecting points

Complexity 00●0000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Coherent St	ates			

• The states $U(s)|\phi_r angle$ are generalized coherent states

Complexity 00●0000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Coherent	States			

- The states $U(s) |\phi_r \rangle$ are generalized coherent states
- Stability subgroup $H\subset G$ such that $U_h|\phi_r
 angle=e^{i\phi_h}|\phi_r
 angle$

Complexity 00●0000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Coherent S	tates			

- The states $U(s) |\phi_r\rangle$ are generalized coherent states
- Stability subgroup $H\subset G$ such that $U_h|\phi_r
 angle=e^{i\phi_h}|\phi_r
 angle$
- Manifold of states \Leftrightarrow group elements of G/H

[Perelemov, math-ph/0203002]

Complexity 00●0000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions 00
Coherent 9	States			

- The states $U(s)|\phi_r\rangle$ are generalized coherent states
- Stability subgroup $H\subset G$ such that $U_h|\phi_r
 angle=e^{i\phi_h}|\phi_r
 angle$
- Manifold of states \Leftrightarrow group elements of G/H

[Perelemov, math-ph/0203002]

•
$$U = e^{\frac{s_1 + is_2}{2}a^{\dagger}a^{\dagger} - \frac{s_1 - is_2}{2}aa + i\frac{s_3}{4}(a^{\dagger}a + aa^{\dagger})} = e^{\frac{z}{2}a^{\dagger}a^{\dagger}}e^{\frac{z'}{4}(a^{\dagger}a + aa^{\dagger})}e^{\frac{z''}{2}aa}$$

DGASLAD

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

•
$$U|0
angle = Ne^{rac{z}{2}a^{\dagger}a^{\dagger}}|0
angle \qquad |z|<1$$

Complexity 000●000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Coherent S	States			

Complexity 0000●00	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Spread Co	mplexity			

- A notion of complexity without the need to specify gates [Parker, Cao, Avdoshkin, Scaffidi, Altman, 1812.08657]
- Given a Hamiltonian and reference state one first builds the basis $|O_n) = H^n |\phi_r\rangle$

Complexity 0000●00	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Spread Con	nplexity			

- A notion of complexity without the need to specify gates [Parker, Cao, Avdoshkin, Scaffidi, Altman, 1812.08657]
- Given a Hamiltonian and reference state one first builds the basis $|O_n) = H^n |\phi_r\rangle$
- From a Gram-Schmidt process one then obtains the Krylov basis $|K_n\rangle$
- The K-complexity (or spread complexity) of a state is then given by $C_K = \sum_n n \langle \phi_t | K_n \rangle \langle K_n | \phi_t \rangle \equiv \langle \phi_t | \hat{K} | \phi_t \rangle$
- The Krylov basis provides an **ordered** basis for the Hilbert space of target states

Complexity 00000●0	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Spread C	omplexity			

- Given some basis for the Hilbert space of target space in increasing complexity $|B_n\rangle$
- We can define complexity as $C = \sum_n c_n \langle \phi_t | B_n \rangle \langle B_n | \phi_t \rangle$

・ロト ・四ト ・ヨト ・ヨト

€ 990

• With *c_n* strictly increasing

Complexity 00000●0	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Spread C	omplexity			

- Given some basis for the Hilbert space of target space in increasing complexity $|B_n\rangle$
- We can define complexity as $C = \sum_n c_n \langle \phi_t | B_n \rangle \langle B_n | \phi_t \rangle$
- With c_n strictly increasing
- The choice $|B_n\rangle = |K_n\rangle$ minimises the complexity of the time-evolved reference state [Balasubramanian, Caputa Magan, Wu, 2202.06957]

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Complexity 000000●	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Spread C	omplexity			

 Spread Complexity is a function of the target state, reference state and Hamiltonian C(|φ_t⟩; |φ_r⟩, H)

◆日 > < 同 > < 国 > < 国 >

ж

- Invariant under unitary transformations $C(|\phi_t\rangle; |\phi_r\rangle, H) = C(U|\phi_t\rangle; U|\phi_r\rangle, UHU^{\dagger})$
- Krylov basis is related by $|K_n
 angle o U|K_n
 angle$

Complexity 000000●	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions
Spread Co	omplexity			

- Spread Complexity is a function of the target state, reference state and Hamiltonian C(|φ_t⟩; |φ_r⟩, H)
- Invariant under unitary transformations $C(|\phi_t\rangle; |\phi_r\rangle, H) = C(U|\phi_t\rangle; U|\phi_r\rangle, UHU^{\dagger})$
- Krylov basis is related by $|K_n
 angle o U|K_n
 angle$
- If the Hamiltonian is an element from some symmetry algebra, the time-evolved reference state can be represented entirely on the manifold of coherent states

(日) (四) (日) (日) (日)

•
$$H = \frac{\alpha}{2}a^{\dagger}a^{\dagger} + \frac{\bar{\alpha}}{2}aa + \frac{\gamma}{4}(a^{\dagger}a + aa^{\dagger})$$

Complexity	Single Oscillator	Coupled Oscillators	Results	Conclusions
0000000	○●○○○		0000	00
Single Os	scillator			

•
$$|K_0\rangle = Ne^{\frac{z_0}{2}a^{\dagger}a^{\dagger}}|0\rangle$$

QGASLAB

Complexity 0000000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions 00
Single Os	cillator			

•
$$|K_0\rangle = Ne^{\frac{z_0}{2}a^{\dagger}a^{\dagger}}|0\rangle$$

Complexity	Single Oscillator	Coupled Oscillators	Results	Conclusions
0000000	000●0		0000	00
Orbits				

- The orbits generated by the elements of su(1,1) can be classified into hyperbolic, parabolic and elliptical [De Alfaro, Fubini, Furlan, 1976]
- This is determined by the sign of $\Delta=\gamma^2-4\alpha\bar{\alpha}$
- This is unchanged under unitary transformations

Complexity 0000000	Single Oscillator 000●0	Coupled Oscillators	Results 0000	Conclusions
Orbits				

- The orbits generated by the elements of su(1, 1) can be classified into hyperbolic, parabolic and elliptical [De Alfaro, Fubini, Furlan, 1976]
- This is determined by the sign of $\Delta=\gamma^2-4\alpha\bar{\alpha}$
- This is unchanged under unitary transformations
- Spread complexity is a field on the manifold of coherent states, given by $C(|z\rangle, |z_0\rangle) = \frac{(z-z_0)(\bar{z}-\bar{z}_0)}{(1-|z|^2)(1-|z_0|^2)}$ [Chattopadhyay, Mitra, HJRvZ, 2302.10489]
- This is special (to rank 1 algebras) where the Krylov basis is always $|K_n
 angle \sim (a^\dagger)^{2n}|0
 angle$ [Caputa, Magan, Patramanis, 2109.03824]

Complexity 0000000	Single Oscillator 0000●	Coupled Oscillators	Results 0000	Conclusions
Return Amp	olitude			

•
$$R(t) = \langle K_0 | e^{-itH} | K_0 \rangle$$

• Lanczos coefficients:

 $H|K_n\rangle = a_n|K_n\rangle + b_n|K_{n-1}\rangle + b_{n+1}|K_{n+1}\rangle$

• Probability amplitudes: $\phi_n(t) = \langle K_0 | e^{-itH} | K_n \rangle$

•
$$C(t) = \sum_n n |\phi_n(t)|^2$$

Complexity	Single Oscillator	Coupled Oscillators	Results	Conclusions
0000000	0000●		0000	00
Return Am	plitude			

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

•
$$R(t) = \langle K_0 | e^{-itH} | K_0 \rangle$$

Lanczos coefficients:

 $H|K_n\rangle = a_n|K_n\rangle + b_n|K_{n-1}\rangle + b_{n+1}|K_{n+1}\rangle$

- Probability amplitudes: $\phi_n(t) = \langle K_0 | e^{-itH} | K_n \rangle$
- $C(t) = \sum_n n |\phi_n(t)|^2$
- Schrodinger equation: $it\partial_t\phi_n(t) = a_n\phi_n(t) + b_{n-1}\phi_n(t) + b_{n+1}\phi_{n+1}(t)$

Complexity	Single Oscillator	Coupled Oscillators	Results	Conclusions
0000000	0000●		0000	00
Return Am	plitude			

•
$$R(t) = \langle K_0 | e^{-itH} | K_0 \rangle$$

Lanczos coefficients:

 $H|K_n\rangle = a_n|K_n\rangle + b_n|K_{n-1}\rangle + b_{n+1}|K_{n+1}\rangle$

- Probability amplitudes: $\phi_n(t) = \langle K_0 | e^{-itH} | K_n \rangle$
- $C(t) = \sum_{n} n |\phi_n(t)|^2$
- Schrodinger equation: $it\partial_t \phi_n(t) = a_n \phi_n(t) + b_{n-1} \phi_n(t) + b_{n+1} \phi_{n+1}(t)$
- Can also generate these from the return amplitude

$$\phi_n(t) = \sum_{m=0}^{n+1} k_{m,n+1} \partial_t^m R(t)$$

$$k_{m,n+1} = \frac{ik_{m-1,n} - a_n k_{m,n} - b_n k_{m,n-1}}{b_{n+1}}$$
DEASLAB

SASLAB

Complexity	Single Oscillator	Coupled Oscillators	Results	Conclusions
0000000		●000	0000	00
Coupled Os	cillators			

• We will consider the e.o.m. [Bender, Gianfrida, 2013]

$$\begin{aligned} \ddot{x} + \omega^2 x + \mu \dot{x} &= -\epsilon y \\ \ddot{y} + \omega^2 y - \nu \dot{y} &= -\epsilon x \end{aligned}$$

- Coupled oscillators that are damped (x) and anti-damped (y)
- Balanced loss and gain achieved when $\mu=\nu\equiv 2\gamma$
- These equations can be derived from the Hamiltonian $H = p_x p_y + \gamma (yp_y - xp_x) + \varkappa xy + \frac{\epsilon}{2}(x^2 + y^2)$

•
$$\varkappa \equiv \omega^2 - \gamma^2$$

- PT symmetric $P: x \leftrightarrow -y$, $p_x \leftrightarrow -p_y$ $T: p_a \rightarrow -p_a$
- PT symmetric systems with balanced loss gain exhibit phase transitions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complexity 0000000	Single Oscillator	Coupled Oscillators ○●○○	Results 0000	Conclusions
Coupled Os	cillators			

• Equations of motion

$$\begin{aligned} \ddot{x} + \omega^2 x + 2\gamma \dot{x} &= -\epsilon y \\ \ddot{y} + \omega^2 y - 2\gamma \dot{y} &= -\epsilon x \end{aligned}$$

• At the classical level solutions of the form $x = e^{i\lambda t}$ satisfies

•
$$\lambda^4 - 2(\omega^2 - 2\gamma^2)\lambda^2 + (\omega^4 - \epsilon^2) = 0$$

 Different phases depending on the realness of the frequencies

 on the quantum level this leads to phases of unbroken or broken PT symmetry

Complexity 0000000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions		
Coupled Oscillators						

Figure: In the underdamped case there are three distinct regimes for the frequencies. If $\epsilon > 2\sqrt{\varkappa}\gamma$ and $\epsilon < \gamma^2 + \varkappa$ the frequencies are real - this corresponds to the lightest shading above. This window closes as γ approaches $\sqrt{\varkappa}$ and after $\gamma > 2\sqrt{\varkappa}$ it is no longer possible to obtain two real frequencies. ($\varkappa \equiv \omega^2 - \gamma^2$)

イロト イポト イヨト イヨト

Complexity 0000000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions	
Coupled Oscillators					

•
$$H = p_x p_y + \gamma (y p_y - x p_x) + \varkappa x y + \frac{\epsilon}{2} (x^2 + y^2)$$

- Can define oscillators $a = \frac{x + ip_x}{\sqrt{2}}$; $b = \frac{y + ip_y}{\sqrt{2}}$
- Hamiltonian is an element of the algebra spanned by $\{aa, a^{\dagger}a^{\dagger}, a^{\dagger}a + aa^{\dagger}\} \cup \{bb, b^{\dagger}b^{\dagger}, b^{\dagger}b + bb^{\dagger}\} \cup \{ab, a^{\dagger}b, b^{\dagger}a, a^{\dagger}b^{\dagger}\}$
- Manifold of coherent states $|z_{aa}, z_{bb}, z_{ab}\rangle = Ne^{\frac{z_{aa}}{2}a^{\dagger}a^{\dagger}}e^{\frac{z_{bb}}{2}b^{\dagger}b^{\dagger}}e^{z_{ab}a^{\dagger}b^{\dagger}}|0,0\rangle$

•
$$e^{-itH}|z_{aa}, z_{bb}, z_{ab}\rangle = |z_{aa}(t), z_{bb}(t), z_{ab}(t)\rangle$$

Complexity 0000000	Single Oscillator	Coupled Oscillators	Results ●000	Conclusions
Results				

• Return amplitude is of the schematic form

$$\langle z_{aa},z_{bb},z_{ab}|e^{-it\mathcal{H}}|z_{aa},z_{bb},z_{ab}
angle\sim(1+\sum_{a,b=\pm}c_{ab}e^{i(a\omega_++b\omega_-)t})^{-rac{1}{2}}$$

•
$$\omega_{\pm} = \sqrt{\varkappa - \gamma^2 \pm \sqrt{\epsilon^2 - 4\gamma^2 \varkappa}}$$

- The frequencies **do not** depend on the choice of reference coherent state
- The class of orbit is determined solely by the frequencies
- Reference state: $e^{-\frac{i}{4}\log(\Omega)(xp_x+p_xx+yp_y+p_yy)}|0,0\rangle$

Figure: The spread complexity for $\varkappa = 1.5$, $\Omega = 1$, and N = 80 for various values of γ . At least, 99% of the probability is captured.

(日)

Figure: The spread complexity approximated with the first 40 probability amplitudes for $\varkappa = 2.0$, $\Omega = 1.0$, $\gamma = 0.01$, $\epsilon = 1.014$. At least 99.99% of the time-evolved reference state is captured.

Figure: The spread complexity of the time-evolved reference state as a function of time with $\varkappa = 2.0$, $\epsilon = 0.0$, and varying values for γ for the under-damped weakly coupled system. The first 50 probability amplitudes are included in the summation, capturing at least 95% of the probability.

QGASLAB

(日)

Complexity 0000000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions ●0
Conclusions				

- Spread Complexity is capable of differentiating between the PT-symmetric and broken PT-symmetric phases of coupled oscillators
- In the PT-symmetric phase, the spectrum is real and eigenfunctions are normalisable - this gives rise to elliptical orbits on the manifold of coherent states. The complexity is **bounded**
- In fact, spread complexity can also differentiate between the weakly coupled and strongly coupled broken PT-symmetric phases
- The bounded nature of complexity may be a generate property unbroken PT-symmetric phases

Complexity 0000000	Single Oscillator	Coupled Oscillators	Results 0000	Conclusions ⊙●

Thank you for your attention!

Research is supported by the "Quantum Technologies for Sustainable Development" grant from the National Institute for Theoretical and Computational Sciences

