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Complexity

Central question: How hard is it to synthesize a desired target
state with the gates at your disposal?

Need, |ϕr ⟩, |ϕt⟩, {U1,U2, · · · ,Un}, g(U1,U2, · · · ,Un)

Discrete notion of complexity closely related to quantum
computational setups

We will, however, be interested in a continuous notion of
complexity
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Nielsen Complexity

Accessible gates are taken to be from some symmetry group
[Nielsen, quant-ph/0502070]

E.g. SU(1, 1): Gates U = e
s1+is2

2
a†a†− s1−is2

2
aa+i

s3
4
(a†a+aa†)

Target states: |ϕt(s1, s2, ..., sn)⟩ = U(s1, · · · , sn)|ϕr ⟩

We have a manifold of target states on which one can define a
metric

Complexity = shortest distance connecting points
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Coherent States

The states U(s)|ϕr ⟩ are generalized coherent states

Stability subgroup H ⊂ G such that Uh|ϕr ⟩ = e iϕh |ϕr ⟩

Manifold of states ⇔ group elements of G/H
[Perelemov, math-ph/0203002]

U = e
s1+is2

2
a†a†− s1−is2

2
aa+i

s3
4
(a†a+aa†) = e

z
2
a†a†e

z′
4
(a†a+aa†)e

z′′
2
aa

U|0⟩ = Ne
z
2
a†a† |0⟩ |z | < 1
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Coherent States
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Spread Complexity

A notion of complexity without the need to specify gates
[Parker, Cao, Avdoshkin, Scaffidi, Altman, 1812.08657]

Given a Hamiltonian and reference state one first builds the
basis |On) = Hn|ϕr ⟩

From a Gram-Schmidt process one then obtains the Krylov
basis |Kn⟩

The K-complexity (or spread complexity) of a state is then
given by CK =

∑
n n⟨ϕt |Kn⟩⟨Kn|ϕt⟩ ≡ ⟨ϕt |K̂ |ϕt⟩

The Krylov basis provides an ordered basis for the Hilbert
space of target states
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Spread Complexity

Given some basis for the Hilbert space of target space in
increasing complexity |Bn⟩

We can define complexity as C =
∑

n cn⟨ϕt |Bn⟩⟨Bn|ϕt⟩

With cn strictly increasing

The choice |Bn⟩ = |Kn⟩ minimises the complexity of the
time-evolved reference state [Balasubramanian, Caputa Magan, Wu, 2202.06957]
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Spread Complexity

Spread Complexity is a function of the target state, reference
state and Hamiltonian C (|ϕt⟩; |ϕr ⟩,H)

Invariant under unitary transformations
C (|ϕt⟩; |ϕr ⟩,H) = C (U|ϕt⟩;U|ϕr ⟩,UHU†)

Krylov basis is related by |Kn⟩ → U|Kn⟩

If the Hamiltonian is an element from some symmetry algebra,
the time-evolved reference state can be represented entirely on
the manifold of coherent states
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Single Oscillator

H = α
2 a

†a† + ᾱ
2 aa+

γ
4 (a

†a+ aa†)
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γ = 3.5|α|
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Single Oscillator

|K0⟩ = Ne
z0
2
a†a† |0⟩
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Single Oscillator

|K0⟩ = Ne
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Orbits

The orbits generated by the elements of su(1, 1) can be
classified into hyperbolic, parabolic and elliptical
[De Alfaro, Fubini, Furlan, 1976]

This is determined by the sign of ∆ = γ2 − 4αᾱ

This is unchanged under unitary transformations

Spread complexity is a field on the manifold of coherent
states, given by C (|z⟩, |z0⟩) = (z−z0)(z̄−z̄0)

(1−|z|2)(1−|z0|2)
[Chattopadhyay, Mitra, HJRvZ, 2302.10489]

This is special (to rank 1 algebras) where the Krylov basis is
always |Kn⟩ ∼ (a†)2n|0⟩ [Caputa, Magan, Patramanis, 2109.03824]
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Return Amplitude

R(t) = ⟨K0|e−itH |K0⟩

Lanczos coefficients:
H|Kn⟩ = an|Kn⟩+ bn|Kn−1⟩+ bn+1|Kn+1⟩

Probability amplitudes: ϕn(t) = ⟨K0|e−itH |Kn⟩

C (t) =
∑

n n|ϕn(t)|2

Schrodinger equation:
it∂tϕn(t) = anϕn(t) + bn−1ϕn(t) + bn+1ϕn+1(t)

Can also generate these from the return amplitude

ϕn(t) =
n+1∑
m=0

km,n+1∂
m
t R(t)

km,n+1 =
ikm−1,n − ankm,n − bnkm,n−1

bn+1
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Coupled Oscillators

We will consider the e.o.m. [Bender, Gianfrida, 2013]

ẍ + ω2x + µẋ = −ϵy

ÿ + ω2y − νẏ = −ϵx

Coupled oscillators that are damped (x) and anti-damped (y)

Balanced loss and gain achieved when µ = ν ≡ 2γ

These equations can be derived from the Hamiltonian
H = pxpy + γ(ypy − xpx) + κxy + ϵ

2(x
2 + y2)

κ ≡ ω2 − γ2

PT symmetric P : x ↔ −y , px ↔ −py T : pa → −pa

PT symmetric systems with balanced loss gain exhibit phase
transitions
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Coupled Oscillators

Equations of motion

ẍ + ω2x + 2γẋ = −ϵy

ÿ + ω2y − 2γẏ = −ϵx

At the classical level solutions of the form x = e iλt satisfies

λ4 − 2(ω2 − 2γ2)λ2 + (ω4 − ϵ2) = 0

Different phases depending on the realness of the frequencies
- on the quantum level this leads to phases of unbroken or
broken PT symmetry
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Coupled Oscillators

κ 2 κ
ϵ

κ

γ

Figure: In the underdamped case there are three distinct regimes for the
frequencies. If ϵ > 2

√
κγ and ϵ < γ2 + κ the frequencies are real - this

corresponds to the lightest shading above. This window closes as γ
approaches

√
κ and after γ > 2

√
κ it is no longer possible to obtain two

real frequencies. (κ ≡ ω2 − γ2)
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Coupled Oscillators

H = pxpy + γ(ypy − xpx) + κxy + ϵ
2(x

2 + y2)

Can define oscillators a = x+ipx√
2

; b =
y+ipy√

2

Hamiltonian is an element of the algebra spanned by{
aa, a†a†, a†a+ aa†

}
∪
{
bb, b†b†, b†b + bb†

}
∪{

ab, a†b, b†a, a†b†
}

Manifold of coherent states
|zaa, zbb, zab⟩ = Ne

zaa
2
a†a†e

zbb
2
b†b†ezaba

†b† |0, 0⟩

e−itH |zaa, zbb, zab⟩ = |zaa(t), zbb(t), zab(t)⟩
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Results

Return amplitude is of the schematic form

⟨zaa, zbb, zab|e−itH |zaa, zbb, zab⟩ ∼ (1+
∑

a,b=±
cabe

i(aω++bω−)t)−
1
2

ω± =
√

κ − γ2 ±
√
ϵ2 − 4γ2κ

The frequencies do not depend on the choice of reference
coherent state

The class of orbit is determined solely by the frequencies

Reference state: e−
i
4
log(Ω)(xpx+pxx+ypy+pyy)|0, 0⟩
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Underdamped, strong coupling

Figure: The spread complexity for κ = 1.5, Ω = 1, and N = 80 for
various values of γ. At least, 99% of the probability is captured.
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Underdamped, Rabi Oscillations

Figure: The spread complexity approximated with the first 40 probability
amplitudes for κ = 2.0, Ω = 1.0, γ = 0.01, ϵ = 1.014. At least 99.99%
of the time-evolved reference state is captured.
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Underdamped, Weak Coupling

Figure: The spread complexity of the time-evolved reference state as a
function of time with κ = 2.0, ϵ = 0.0, and varying values for γ for the
under-damped weakly coupled system. The first 50 probability amplitudes
are included in the summation, capturing at least 95% of the probability.
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Conclusions

Spread Complexity is capable of differentiating between the
PT-symmetric and broken PT-symmetric phases of coupled
oscillators

In the PT-symmetric phase, the spectrum is real and
eigenfunctions are normalisable - this gives rise to elliptical
orbits on the manifold of coherent states. The complexity is
bounded

In fact, spread complexity can also differentiate between the
weakly coupled and strongly coupled broken PT-symmetric
phases

The bounded nature of complexity may be a generate
property unbroken PT-symmetric phases

Would be fascinating to compare these results with an open
system description
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