

Spread Complexity and PT Symmetry

Jaco van Zyl

based on [C Beetar, N Gupta, SS Haque, J Murugan, HJRvZ, 2312.15790]

16 January 2024, University of the Witwatersrand

- [Single Oscillator](#page-16-0)
- [Coupled Oscillators](#page-24-0)

- Central question: How hard is it to synthesize a desired target state with the gates at your disposal?
- Need, $|\phi_r\rangle$, $|\phi_t\rangle$, $\{U_1, U_2, \cdots, U_n\}$, $g(U_1, U_2, \cdots, U_n)$
- Discrete notion of complexity closely related to quantum computational setups
- We will, however, be interested in a continuous notion of complexity

- Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]
- E.g. $SU(1,1)$: Gates $U = e^{\frac{s_1+is_2}{2} a^\dagger a^\dagger \frac{s_1-is_2}{2} aa + i \frac{s_3}{4} (a^\dagger a + aa^\dagger)}$
- Target states: $|\phi_t(s_1, s_2, ..., s_n)\rangle = U(s_1, \cdots, s_n)|\phi_r\rangle$

- Accessible gates are taken to be from some symmetry group [Nielsen, quant-ph/0502070]
- E.g. $SU(1,1)$: Gates $U = e^{\frac{s_1+is_2}{2} a^\dagger a^\dagger \frac{s_1-is_2}{2} aa + i \frac{s_3}{4} (a^\dagger a + aa^\dagger)}$
- Target states: $|\phi_t(s_1, s_2, ..., s_n)\rangle = U(s_1, \cdots, s_n)|\phi_r\rangle$
- We have a manifold of target states on which one can define a metric

 2990 ミー

• Complexity $=$ shortest distance connecting points

• The states $U(s)|\phi_r\rangle$ are generalized coherent states

- The states $U(s)|\phi_r\rangle$ are generalized coherent states
- Stability subgroup $H\subset G$ such that $U_h|\phi_r\rangle=e^{i\phi_h}|\phi_r\rangle$

- The states $U(s)|\phi_r\rangle$ are generalized coherent states
- Stability subgroup $H\subset G$ such that $U_h|\phi_r\rangle=e^{i\phi_h}|\phi_r\rangle$
- Manifold of states \Leftrightarrow group elements of G/H

[Perelemov, math-ph/0203002]

- The states $U(s)|\phi_r\rangle$ are generalized coherent states
- Stability subgroup $H\subset G$ such that $U_h|\phi_r\rangle=e^{i\phi_h}|\phi_r\rangle$
- Manifold of states \Leftrightarrow group elements of G/H

[Perelemov, math-ph/0203002]

•
$$
U = e^{\frac{s_1 + is_2}{2}a^{\dagger}a^{\dagger} - \frac{s_1 - is_2}{2}aa + i\frac{s_3}{4}(a^{\dagger}a + aa^{\dagger})} = e^{\frac{z}{2}a^{\dagger}a^{\dagger}}e^{\frac{z'}{4}(a^{\dagger}a + aa^{\dagger})}e^{\frac{z''}{2}aa}
$$

864SL AB

 \equiv 940

イロト 不優 トイミト イミド

•
$$
U|0\rangle = Ne^{\frac{z}{2}a^{\dagger}a^{\dagger}}|0\rangle
$$
 $|z| < 1$

- A notion of complexity without the need to specify gates [Parker, Cao, Avdoshkin, Scaffidi, Altman, 1812.08657]
- Given a Hamiltonian and reference state one first builds the basis $|O_n|=H^n|\phi_r\rangle$

- A notion of complexity without the need to specify gates [Parker, Cao, Avdoshkin, Scaffidi, Altman, 1812.08657]
- Given a Hamiltonian and reference state one first builds the basis $|O_n|=H^n|\phi_r\rangle$
- **•** From a Gram-Schmidt process one then obtains the Krylov basis $|K_n\rangle$
- The K-complexity (or spread complexity) of a state is then given by $C_K = \sum_n n \langle \phi_t | K_n \rangle \langle K_n | \phi_t \rangle \equiv \langle \phi_t | \hat{K} | \phi_t \rangle$
- The Krylov basis provides an ordered basis for the Hilbert space of target states

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 \equiv

- Given some basis for the Hilbert space of target space in increasing complexity $|B_n\rangle$
- We can define complexity as $\mathcal{C} = \sum_n c_n \langle \phi_t | B_n \rangle \langle B_n | \phi_t \rangle$

イロメ イ団 メイミメイミメ

 299 ŧ.

 \bullet With c_n strictly increasing

- Given some basis for the Hilbert space of target space in increasing complexity $|B_n\rangle$
- We can define complexity as $\mathcal{C} = \sum_n c_n \langle \phi_t | B_n \rangle \langle B_n | \phi_t \rangle$
- \bullet With c_n strictly increasing
- The choice $|B_n\rangle = |K_n\rangle$ minimises the complexity of the time-evolved reference state [Balasubramanian, Caputa Magan, Wu, 2202.06957]

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 2990 ミー

• Spread Complexity is a function of the target state, reference state and Hamiltonian $C(|\phi_t\rangle, |\phi_r\rangle, H)$

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$

 2990

B

- Invariant under unitary transformations $C(|\phi_t\rangle; |\phi_r\rangle, H) = C(U|\phi_t\rangle; U|\phi_r\rangle, UHU^{\dagger})$
- Krylov basis is related by $|K_n\rangle \rightarrow U|K_n\rangle$

- Spread Complexity is a function of the target state, reference state and Hamiltonian $C(|\phi_t\rangle, |\phi_r\rangle, H)$
- Invariant under unitary transformations $C(|\phi_t\rangle; |\phi_r\rangle, H) = C(U|\phi_t\rangle; U|\phi_r\rangle, UHU^{\dagger})$
- Krylov basis is related by $|K_n\rangle \rightarrow U|K_n\rangle$
- If the Hamiltonian is an element from some symmetry algebra, the time-evolved reference state can be represented entirely on the manifold of coherent states

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 \mathbb{B}

•
$$
H = \frac{\alpha}{2} a^{\dagger} a^{\dagger} + \frac{\bar{\alpha}}{2} a a + \frac{\gamma}{4} (a^{\dagger} a + a a^{\dagger})
$$

$$
\bullet\ |K_0\rangle=\textit{Ne}^{\frac{z_0}{2}a^\dagger a^\dagger}|0\rangle
$$

$$
\bullet\ |K_0\rangle=\textit{Ne}^{\frac{z_0}{2}a^\dagger a^\dagger}|0\rangle
$$

- The orbits generated by the elements of $su(1,1)$ can be classified into hyperbolic, parabolic and elliptical [De Alfaro, Fubini, Furlan, 1976]
- This is determined by the sign of $\Delta = \gamma^2 4\alpha\bar\alpha$
- This is unchanged under unitary transformations

- The orbits generated by the elements of $su(1,1)$ can be classified into hyperbolic, parabolic and elliptical [De Alfaro, Fubini, Furlan, 1976]
- This is determined by the sign of $\Delta = \gamma^2 4\alpha\bar\alpha$
- This is unchanged under unitary transformations
- Spread complexity is a field on the manifold of coherent states, given by $C(|z\rangle,|z_0\rangle)=\frac{(z-z_0)(\bar{z}-\bar{z}_0)}{(1-|z|^2)(1-|z_0|^2)}$ [Chattopadhyay, Mitra, HJRvZ, 2302.10489]
- This is special (to rank 1 algebras) where the Krylov basis is $\ket{\Delta} \propto (a^\dagger)^{2n} \ket{0}$ [Caputa, Magan, Patramanis, 2109.03824]

•
$$
R(t) = \langle K_0 | e^{-itH} | K_0 \rangle
$$

- **·** Lanczos coefficients: $H|K_n\rangle = a_n|K_n\rangle + b_n|K_{n-1}\rangle + b_{n+1}|K_{n+1}\rangle$
- Probability amplitudes: $\phi_n(t) = \langle K_0 | e^{-itH} | K_n \rangle$

$$
\bullet \ \ C(t)=\sum_n n|\phi_n(t)|^2
$$

864SL AB

 2990 ミー

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

•
$$
R(t) = \langle K_0 | e^{-itH} | K_0 \rangle
$$

- Lanczos coefficients: $H|K_n\rangle = a_n|K_n\rangle + b_n|K_{n-1}\rangle + b_{n+1}|K_{n+1}\rangle$
- Probability amplitudes: $\phi_n(t) = \langle K_0 | e^{-itH} | K_n \rangle$
- $C(t) = \sum_n n |\phi_n(t)|^2$
- Schrodinger equation: $it\partial_t \phi_n(t) = a_n \phi_n(t) + b_{n-1} \phi_n(t) + b_{n+1} \phi_{n+1}(t)$

•
$$
R(t) = \langle K_0 | e^{-itH} | K_0 \rangle
$$

- Lanczos coefficients: $H|K_n\rangle = a_n|K_n\rangle + b_n|K_{n-1}\rangle + b_{n+1}|K_{n+1}\rangle$
- Probability amplitudes: $\phi_n(t) = \langle K_0 | e^{-itH} | K_n \rangle$
- $C(t) = \sum_n n |\phi_n(t)|^2$
- Schrodinger equation: $it\partial_t\phi_n(t) = a_n\phi_n(t) + b_{n-1}\phi_n(t) + b_{n+1}\phi_{n+1}(t)$
- Can also generate these from the return amplitude

$$
\begin{array}{rcl}\n\phi_n(t) & = & \sum_{m=0}^{n+1} k_{m,n+1} \partial_t^m R(t) \\
k_{m,n+1} & = & \frac{ik_{m-1,n} - a_n k_{m,n} - b_n k_{m,n-1}}{b_{n+1}} \\
\hline\n\end{array}
$$

• We will consider the e.o.m. [Bender, Gianfrida, 2013]

$$
\ddot{x} + \omega^2 x + \mu \dot{x} = -\epsilon y
$$

$$
\ddot{y} + \omega^2 y - \nu \dot{y} = -\epsilon x
$$

- Coupled oscillators that are damped (x) and anti-damped (y)
- Balanced loss and gain achieved when $\mu = \nu \equiv 2\gamma$
- These equations can be derived from the Hamiltonian $H = p_x p_y + \gamma (y p_y - x p_x) + x x y + \frac{\epsilon}{2}$ $\frac{e}{2}(x^2+y^2)$
- $\varkappa \equiv \omega^2 \gamma^2$
- PT symmetric $P: x \leftrightarrow -y$, $p_x \leftrightarrow -p_y$ $T: p_x \rightarrow -p_x$
- PT symmetric systems with balanced loss gain exhibit phase QGASL AB transitions

KORKAR KERKER SAGA

• Equations of motion

$$
\ddot{x} + \omega^2 x + 2\gamma \dot{x} = -\epsilon y
$$

$$
\ddot{y} + \omega^2 y - 2\gamma \dot{y} = -\epsilon x
$$

At the classical level solutions of the form $x=e^{i\lambda t}$ satisfies

$$
\bullet\ \lambda^4-2(\omega^2-2\gamma^2)\lambda^2+(\omega^4-\epsilon^2)=0
$$

• Different phases depending on the realness of the frequencies - on the quantum level this leads to phases of unbroken or broken PT symmetry

Figure: In the underdamped case there are three distinct regimes for the Figure. In the underdamped case there are three distinct regimes for the frequencies. If $\epsilon > 2\sqrt{\varkappa}\gamma$ and $\epsilon < \gamma^2 + \varkappa$ the frequencies are real - this corresponds to the lightest shading above. This window closes as γ corresponds to the lightest shading above. This window closes as γ
approaches $\sqrt{\varkappa}$ and after $\gamma > 2\sqrt{\varkappa}$ it is no longer possible to obtain two real frequencies. $(\varkappa \equiv \omega^2 - \gamma^2)$

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$

•
$$
H = p_x p_y + \gamma (yp_y - xp_x) + xxy + \frac{\epsilon}{2}(x^2 + y^2)
$$

- Can define oscillators $a = \frac{x + ip_x}{\sqrt{2}}$ $\frac{ip_x}{2}$; $b = \frac{y+ip_y}{\sqrt{2}}$ 2
- Hamiltonian is an element of the algebra spanned by $\{aa, a^\dagger a^\dagger, a^\dagger a + aa^\dagger\} \cup \{bb, b^\dagger b^\dagger, b^\dagger b + bb^\dagger\} \cup$ $\{ab, a^{\dagger}b, b^{\dagger}a, a^{\dagger}b^{\dagger}\}$
- Manifold of coherent states $|z_{aa},z_{bb},z_{ab}\rangle = N e^{\frac{z_{aa}}{2} a^\dagger a^\dagger} e^{\frac{z_{bb}}{2} b^\dagger b^\dagger} e^{z_{ab} a^\dagger b^\dagger} |0,0\rangle$

$$
\bullet \ \ e^{-itH}|z_{aa},z_{bb},z_{ab}\rangle = |z_{aa}(t),z_{bb}(t),z_{ab}(t)\rangle
$$

• Return amplitude is of the schematic form

$$
\langle z_{aa}, z_{bb}, z_{ab} | e^{-itH} | z_{aa}, z_{bb}, z_{ab} \rangle \sim (1 + \sum_{a,b=\pm} c_{ab} e^{i(a\omega_{+} + b\omega_{-})t})^{-\frac{1}{2}}
$$

$$
\bullet \omega_{\pm} = \sqrt{\varkappa - \gamma^2 \pm \sqrt{\epsilon^2 - 4\gamma^2 \varkappa}}
$$

- The frequencies **do not** depend on the choice of reference coherent state
- The class of orbit is determined solely by the frequencies
- Reference state: $e^{-\frac{i}{4} \log(\Omega)(x p_x + p_x x + y p_y + p_y y)} |0,0\rangle$

[Complexity](#page-2-0) [Single Oscillator](#page-16-0) [Coupled Oscillators](#page-24-0) [Results](#page-28-0) [Conclusions](#page-32-0)

Underdamped, strong coupling

Figure: The spread complexity for $\varkappa = 1.5$, $\Omega = 1$, and $N = 80$ for various values of γ . At least, 99% of the probability is captured.

 299

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$

Figure: The spread complexity approximated with the first 40 probability amplitudes for $\varkappa = 2.0$, $\Omega = 1.0$, $\gamma = 0.01$, $\epsilon = 1.014$. At least 99.99% of the time-evolved reference state is captured.

Figure: The spread complexity of the time-evolved reference state as a function of time with $\varkappa = 2.0$, $\epsilon = 0.0$, and varying values for γ for the under-damped weakly coupled system. The first 50 probability amplitudes are included in the summation, capturing at least 95% of the probability.

QGASLAB

 QQ

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$

- **•** Spread Complexity is capable of differentiating between the PT-symmetric and broken PT-symmetric phases of coupled oscillators
- In the PT-symmetric phase, the spectrum is real and eigenfunctions are normalisable - this gives rise to elliptical orbits on the manifold of coherent states. The complexity is bounded
- In fact, spread complexity can also differentiate between the weakly coupled and strongly coupled broken PT-symmetric phases
- The bounded nature of complexity may be a generate property unbroken PT-symmetric phases
- . Would be fascinating to compare these results with an opendesing system descriptionKID KA KERKER KING

Thank you for your attention!

Research is supported by the "Quantum Technologies for Sustainable Development" grant from the National Institute for Theoretical and Computational Sciences

