Gravitational edge mode in $\mathcal{N} = 1$ super Jackiw-Teitelboim (JT) gravity

6th Mandelstam Theoretical Physics School and Workshop 2024 Recent developments in Large N, Holography and Complexity

Kyungsun Lee KI I I I I KOREA INSTITUTE FOR ADVANCED STUDY (KIAS)

Topological insulator

2D topological insulator

"God made the bulk; surfaces were invented by the devil" - W.Pauli

Physical systems with boundary

Casimir effect - - -

3D topological insulator

Gravitational Edge mode

Where are the rest of the symmetry? Do they gone for good?

Bulk

Boundary

How boundary affects the gauge symmetry?

Thus, it is also called as would-be-gauge mode.

Edge mode is the advent of physical degrees of freedom on the **boundary** which was originally the gauge redundancy in the **bulk**.

Gravitational edge mode in JT gravities

Part I. Bosonic JT gravity

KL, Akhil Sivakumar (APCTP), Junggi Yoon (APCTP)

Part II. $\mathcal{N} = 1$ supersymmetric JT gravity

Part I. Bosonic JT gravity

Gravitational edge mode in JT gravity

Gravitational Edge Mode in Asymptotically AdS₂ : JT Gravity Revisited

Euihun Joung^a Prithvi Narayan^b Junggi Yoon^{c,d,e}

- Revisit the derivation of the Schwarzian action
- metric fluctuation with the fixed boundary

arXiv: 2304.06088

Alternative description for the gravitational edge mode from the

Make connection with the description with wiggling boundary

Jackiw-Teitelboim (JT) 2D dilaton gravity

- Exactly solvable and non-perturbative contributions are also comprehensible

$I_{\rm JT} = \int_{\mathcal{M}} d^2x \sqrt{g} \phi(R+2) + 2 \int_{\partial \mathcal{M}} du \sqrt{h} \phi(K-K_0)$ **Extrinsic curvature** Teitelboim '83, Jackiw '85

Describes low-energy sector of Sachdev-Ye-Kitaev (SYK) model: Schwarzian theory

• Describes near-horizon region of near-extremal higher-dimensional black holes

Classical solution of JT gravity

 $I_{
m JT} = \int_{\cal M} d^2 x \sqrt{g} \phi(R+2)$

Classical solution

$$ds^2 = (r^2-1)d au^2 + rac{dr^2}{r^2-1}$$

Integrate out $\phi \Rightarrow R = -2$ The remaining degrees of freedom are all on the boundary.

Dilaton

$$2)+2\int_{\partial\mathcal{M}}du\sqrt{h}\phi(K-K_0)$$

Two descriptions for the edge mode in JT gravity

I. Wiggling boundary With fixed proper boundary length

II. Metric fluctuation

With fixed asymptotic boundary condition

I. Wiggling boundary

$$ds^2 = (
ho^2 - 1) du^2 + rac{d
ho^2}{
ho^2 - 1} \qquad egin{pmatrix} (
ho, u) \ g_{\mu
u}, heta \ g_{\mu
u}, h$$

$$ho=\epsilon^{-1}$$

Dilaton
$$\mathbf{Ex}$$
 $\phi(u) = r(u) = rac{1}{\epsilon au'(u)} + \mathcal{O}(\epsilon)$

J.Maldacena, D.Stanford, and Z.Yang '16

trinsic curvature $K = rac{(t, abla_t n)}{(t, t)} = 1 + \epsilon^2 igg(rac{ au'''}{ au'} - rac{3}{2} rac{ au''^2}{ au'^2} + rac{1}{2} au'^2 igg) + \mathcal{O}(\epsilon^4)$

Schwarzian action..?

$$K-K_0=\epsilon^2\Big(rac{ au''}{ au'}-rac{3}{2}rac{ au''^2}{ au'^2}+rac{1}{2} au'^2-rac{1}{2}\Big)+
onumber\ \phi(u)=r(u)=rac{1}{\epsilon au'(u)}+\mathcal{O}(\epsilon)
onumber\ rac{1}{2 au'}\Big)$$
 . Sch $[au,u]=rac{ au'''}{ au'}-rac{3}{2}igg(rac{ au}{ au}igg)$

II. Metric fluctuation

$$ds^2=rac{d
ho^2}{
ho^2-r_h^2}+G_{uu}(
ho,u)du^2$$

Fefferman-Graham (FG) gauge $G_{uu}(ho,u)= ho^2+G(u)+\dots$

Metric fluctuation

$$G_{uu} =
ho^2 - rac{1}{2}ig(au'^2+1ig) - rac{ au'''}{ au'} + rac{3 au''^2}{2 au'^2} + \mathcal{O}ig(
ho^{-2}ig)$$

$$ds^2 = rac{dr^2}{r^2-r_h^2} + g_{ au au}(r, au)d au^2$$

Which coordinate transformation map still satisfy FG gauge condition?

$$g_{\tau\tau}(r,\tau) = r^{2} + g(\tau)$$

$$r = \frac{\rho}{\tau'(u)} + \frac{1}{4\rho} \left(\frac{\tau''(u)^{2}}{\tau'(u)^{3}} - \frac{1}{\tau'(u)} + \tau'(u) \right) + \mathcal{O}(\rho^{-3})$$

$$\tau = \tau(u) - \frac{1}{2\rho^{2}} \tau''(u) + \mathcal{O}(\rho^{-4})$$

au

One more step for the Schwarzian action

From two descriptions of gravitational edge mode, we equivalently have

$$I_{JT} = -2 \int du au' igg(- rac{1}{ au'^2} {
m Sch}[au, u] - rac{1}{2} + rac{1}{2 au'^2} igg)$$

$$au'(u) o rac{1}{u'(au)}$$

Schwarzian action at finite temperature Path integral measure $\mathcal{D} au(u) ightarrow rac{\mathcal{D}u(au)}{u'(au)}$ $I_{JT} ightarrow -2\,\int d au \Big(\operatorname{Sch}[u; au]+rac{1}{2}u'^2-rac{1}{2}\,\Big)$ E.Witten, D.Stanford '17

Inversion $\tau(u) \rightarrow u(\tau)$

$${
m Sch}[au;u]
ightarrow - au'^2{
m Sch}[u; au]$$

Two descriptions?

I. Wiggling boundary

Exact AdS₂ metric

with fluctuating boundary

II. Metric fluctuation

Fluctuating AdS_2 metric

with fixed boundary

Isometry of exact Poincaré disk metric

Poincaré upper half plane

$$ds^2 = rac{4dw dar{w}}{|w-ar{w}|^2}$$

$$w \longrightarrow rac{aw+b}{cw+d}$$

Poincaré disk

$$z \longrightarrow rac{z(ia-b+c+id)-a+i(b+d)}{z(a+i(b+c)-d)+ia+b-d}$$

Gauge symmetry of Schwarzian

Exact Poincaré disk

Bulk

Bou

Boundary isometry is redundant one that maps into the $SL(2,\mathbb{R})$ gauge symmetry of Schwarzian theory

$$\begin{array}{ll} \textbf{x isometry} & z \longrightarrow \frac{z(ia-b+c+id)-a+i(b+c)+d}{z(a+i(b+c)-d)+ia+b-c+id}\\ \textbf{ndary isometry} & \tan \frac{u}{2} \longrightarrow \frac{a \tan \frac{u}{2}+b}{c \tan \frac{u}{2}+d} \end{array}$$

Part II. $\mathcal{N} = 1$ supersymmetric JT gravity

Supersymmetric JT gravity

Space

Metric

R, K**Curvatures**

$I_{sJT} = i \int_{\mathcal{M}} dz d\bar{z} \, d\theta d\bar{\theta} \, \mathsf{E} \, \Phi \left(\mathcal{R}_{\theta\bar{\theta}} - 2 \right) + 2 \int_{\partial \mathcal{M}} du d\vartheta \, e \, \Phi(\mathcal{K} - \mathcal{K}_0)$

 $g_{\mu\nu} \longrightarrow \mathsf{E}_M^A$

Supervielbein

 $\mathcal{R}_{ hetaar{ heta}},~\mathcal{K}$ **Supercurvatures**

Classical solutions

$$I_{sJT} = i \int_{\mathcal{M}} dz d\bar{z} \, d\theta d\bar{\theta} \, \mathsf{E} \, \Phi \left(\mathcal{R}_{\theta\bar{\theta}} - 2 \right) + 2 \int_{\partial\mathcal{M}} du d\vartheta \, e \, \Phi(\mathcal{K} - \mathcal{K}_0)$$

(Bosonic) conformal gauge and classical solution

$$ds^2 = 4e^{2\Sigma}dzdar{z}$$
 $e^{\Sigma} = rac{1}{1-zar{z}}\,, \ \ \Phi = rac{1+zar{z}}{1-zar{z}}$

where
$$E_{holo} = \begin{pmatrix} e^{\Sigma} & De^{\Sigma/2} \\ -\eta e^{\Sigma} & D(\eta e^{\Sigma/2}) \end{pmatrix}$$

$$ds^2 = 4dy^M \mathsf{E}_M{}^{\mathbb{Z}} dy^N \mathsf{E}_N{}^{\overline{\mathbb{Z}}}$$

$$e^{\Sigma} = rac{1}{1-zar{z}+i hetaar{ heta}} \ , \quad \Phi = rac{1+zar{z}}{1-zar{z}+i}$$

Wiggling boundary

Bosonic

$$\frac{du^2}{\epsilon^2} = ds^2 \quad \left(=4dy^m e_m{}^{\mathbb{Z}} dy^n e_n{}^{\overline{\mathbb{Z}}}\right)$$

 $z = -ie^{i\tau(u)}(1 - \epsilon\tau'(u) + \mathcal{O}(\epsilon^2))$

Matching the proper boundary length

Supersymmetric

$$\frac{\left(du^2 + \vartheta d\vartheta\right)^2}{\epsilon^2} = 4dy^M \mathsf{E}_M{}^{\mathbb{Z}} dy^N \mathsf{E}_N{}^{\overline{\mathbb{Z}}}$$

$$z = -ie^{i\tau(u)} \left(1 - \epsilon \left((\mathcal{D}\xi)^2 - \xi \mathcal{D}^2 \xi\right) + \mathcal{O}(\epsilon^2)\right)$$
$$\theta = e^{\frac{i\tau(u)}{2}} \left(\xi - \epsilon \left(\xi(\mathcal{D}\xi)^2/2 - i\mathcal{D}^2 \xi\right) + \mathcal{O}(\epsilon^2)\right)$$

$$\mathcal{T}^{\mathbb{Z}} = \partial_{u} y^{N} \mathsf{E}_{N}{}^{\mathbb{Z}} = rac{1}{2\epsilon} rac{\mathcal{D}\theta}{\mathcal{D}\bar{\theta}} \qquad \mathcal{N}_{\mathbb{Z}} = rac{i}{2} rac{\mathcal{D}\theta}{\mathcal{D}\theta}$$

super-Schwarzian

Super extrinsic curvature

$$\mathcal{K} = 4\epsilon^2 igg(ext{sSch}[au, \xi; u, artheta] + rac{1}{2} \xi(\mathcal{D}\xi)^3 igg) + \mathcal{O}ig(\epsilon^3ig) \qquad ext{sSch}[au, \xi; u, artheta] = rac{\mathcal{D}^4 \xi}{\mathcal{D}\xi} - 2rac{\mathcal{D}^2 \xi \mathcal{D}^3 \xi}{(\mathcal{D}\xi)^2}$$

$$\mathcal{D} au = \xi \mathcal{D} \xi \quad \Rightarrow \quad \xi = \sqrt{ au'(u)} igg(artheta + \psi(u) + rac{1}{2} artheta \psi(u) \psi'(u) igg)$$

In terms of component fields $\tau(u)$ $\mathrm{sSch}[\tau,\xi;u,\vartheta] + \frac{1}{2}\xi(\mathcal{D}\xi)^3 = \frac{\vartheta}{2}\left[\left(1 - \frac{1}{2}\psi\right)^3\right]$

$$egin{aligned} & \psi(u) \ & \psi(\psi') igg(\mathrm{Sch}[au,u] + rac{1}{2} au'^2 igg) + \psi\psi''' + 3\psi'\psi'' igg] \ & \psi\psi' igg) \psi'' + rac{1}{2}\psiigg(\mathrm{Sch}[au,u] + rac{1}{2} au'^2 igg) \end{aligned}$$

Metric fluctuation

 $(w,\eta,ar{w},ar{\eta}$

$$\mathcal{E}_M{}^A$$

Asymptotic boundary condition (~FG gauge condition)

$$\mathcal{E}_M{}^A = egin{pmatrix} \mathcal{E}_{ ext{holo}} & 0 \ 0 & \mathcal{E}_{ ext{anti-holo}} \end{pmatrix}$$

Superconformal transformation

$$z
ightarrow w(z, heta), \quad heta
ightarrow w(z, heta)$$

$$egin{array}{lll} egin{array}{lll} & \longleftrightarrow & (z, heta,ar z,ar heta) \ & \leftarrow & egin{array}{lll} & egin{array}{llll} & egin{a$$

$$\mathsf{E}_N{}^B = \begin{pmatrix} \mathsf{E}_{\mathrm{holo}} & 0\\ 0 & \mathsf{E}_{\mathrm{anti-holo}} \end{pmatrix}$$

- $o \eta(z, heta), \quad ar{z} o ar{w}(ar{z},ar{ heta}), \quad ar{ heta} o ar{\eta}(ar{z},ar{ heta}),$
- $\mathsf{D}w \,=\, \eta\mathsf{D}\eta \;, \qquad \bar{\mathsf{D}}\bar{w} \,=\, \bar{\eta}\bar{\mathsf{D}}\bar{\eta}$

Superconformal transformation

$$egin{aligned} z o w(z, heta), & heta o \eta(z, heta), & ar{z} o ar{w}(ar{z},ar{ heta}), & ar{ heta} o ar{\eta}(ar{z},ar{ heta}) \ \end{aligned}$$
 $egin{aligned} \mathsf{D}w &= \eta\mathsf{D}\eta \ , & ar{\mathsf{D}}ar{w} \,=\,ar{\eta}ar{\mathsf{D}}ar{\eta} \end{aligned}$

$$w(z,\theta) = F\left(z + \theta\Psi(z)\right) = F(z) + \theta\Psi(z)\partial_z F(z)$$
$$\eta(z,\theta) = \sqrt{\partial_z F(z)} \left(\theta + \Psi(z) + \frac{1}{2}\theta\Psi(z)\partial_z\Psi(z)\right)$$

$$\mathcal{K}-\mathcal{K}_0=4\epsilon^2ig(\mathrm{sSch}[au,\xi;u,artheta]+rac{1}{2}\xi(\mathcal{D}\xi)^3-rac{1}{2}arthetaig)+\mathcal{O}ig(\epsilon^3ig)$$

Asymptotic solution of F, Ψ in the order of (1 - r) can be found as $F = -i e^{i au(u)} igg(1 - (1 - r) au'(u) + rac{(1 - r)^2}{2} igg(au'(u)^2 - au'(u) - i au''(u) igg) + \mathcal{O}igg((1 - r)^3 igg) igg)$ $\Psi = e^{rac{i au(u)}{2}}igg(\psi(u) + (1-r)igg(i\psi'(u) - rac{\psi(u)}{2}igg) - rac{(1-r)^2}{2}igg(\psi''(u) + rac{\psi(u)}{4}igg) + \mathcal{O}igg((1-r)^3igg) igg)$

One more step to get the super-Schwarzian

$$I_{sJT} \quad \longrightarrow \quad 4 \int du dartheta (\mathcal{D}\xi)^{-2} igg(\mathrm{sSch}[au,\xi;u,artheta] + rac{1}{2} \xi (\mathcal{D}\xi)^3 - rac{1}{2} artheta igg) + \mathcal{O}(\epsilon)$$

$$(u, \vartheta)$$

 $\mathrm{Sch}[au,\xi;u,artheta]=-(D\xi)^3\,\mathrm{Sch}[u,artheta; au,\xi],\quad dudartheta=d au d\xi(D\xi)^{-1}$

super-Schwarzian action at finite temperature $I_{sJT} \longrightarrow -4 \int d au d\xi \Big({ m sSch} [$

Inversion

$$\longleftrightarrow \quad (au, \xi)$$

$$[u,artheta; au,\xi]+rac{1}{2}artheta(D_{\xi}artheta)^{3}-rac{1}{2}\xiig)+\mathcal{O}(\epsilon)$$

- Two descriptions to derive the gravitational edge mode dynamics
- gravity
- We directly derived the finite temperature super-Schwarzian action
- from the BF theory with supergroup OSp(2,1).

• Confirmed the derivation of the $\mathcal{N} = 1$ super-Schwarzian from super-JT

without relying on the transformation from the zero temperature one.

• We also worked out the derivation of the $\mathcal{N} = 1$ super-Schwarzian action

Gravitational edge modes...

on the manifold with nontrivial topology? on non-AdS geometry? at finite boundary? in higher-dimensional gravity?

