Kyungsun Lee
KIAS S ADVANCED ADVANCED ADVANCED (KIAS)

Gravitational edge mode $\mathcal{N} = 1$ super Jackiw-Teitelboim (JT) gravity

6th Mandelstam Theoretical Physics School and Workshop 2024 Recent developments in Large N, Holography and Complexity

Topological insulator

2D topological insulator

"God made the bulk; surfaces were invented by the devil" - W.Pauli

Physical systems with boundary

Casimir effect \overline{a}

3D topological insulator

Gravitational Edge mode

Where are the rest of the symmetry? Do they gone for good?

Bulk Boundary

How boundary affects the gauge symmetry?

Edge mode is the advent of **physical degrees of freedom** on the *boundary* which was originally the gauge redundancy in the *bulk*.

Thus, it is also called as **would-be-gauge mode**.

Gravitational edge mode in JT gravities

Part I. Bosonic JT gravity

KL, Akhil Sivakumar (APCTP), Junggi Yoon (APCTP)

Part II. $N = 1$ supersymmetric JT gravity

Part I. Bosonic JT gravity

Gravitational edge mode in JT gravity

Gravitational Edge Mode in Asymptotically AdS_2 : JT Gravity Revisited

Euihun Joung^a Prithvi Narayan^b Junggi Yoon c,d,e

- Revisit the derivation of the **Schwarzian action**
- **metric fluctuation** with the fixed boundary
-

• Alternative description for the gravitational edge mode from the

• Make connection with the description with **wiggling boundary**

arXiv: **2304.06088**

Jackiw-Teitelboim (JT) 2D dilaton gravity

- Exactly solvable and non-perturbative contributions are also comprehensible
-
-

• Describes low-energy sector of Sachdev-Ye-Kitaev (SYK) model: **Schwarzian theory**

Dilaton Extrinsic curvature
 $I_{\rm JT} = \int_M d^2x \sqrt{g} \phi(R+2) + 2 \int_{\partial M} du \sqrt{h} \phi(K-K_0)$ *Teitelboim '83, Jackiw '85*

• Describes near-horizon region of near-extremal higher-dimensional black holes

Classical solution of JT gravity

 $I_{\rm JT} = \int_{\cal M} d^2 x \sqrt{g} \phi(R + 2)$

Classical solution

$$
ds^2 = (r^2-1) d\tau^2 + \frac{dr^2}{r^2-1}
$$

Integrate out $\phi \Rightarrow R = -2$ The remaining degrees of freedom are all on the boundary.

Dilaton

$$
2)+2\int_{\partial\mathcal{M}}du\sqrt{h}\phi(K-K_0)
$$

I. Wiggling boundary With fixed proper boundary length

II. Metric fluctuation

With fixed asymptotic boundary condition

Two descriptions for the edge mode in JT gravity

I. Wiggling boundary

$$
ds^2 = (\rho^2-1) du^2 + \frac{d\rho^2}{\rho^2-1}
$$

 $f(u)^2-1$

ر. ⇢ $f = \frac{(0, v_0, v_0)}{(1, v_0)} = 1 + \epsilon^2 \left(\frac{1}{v_0} - \frac{v_0}{v_0} \right)$ ⁺ *^O* ⇢4 *,* (3.37)

Dilaton

\n
$$
\phi(u) = r(u) = \frac{1}{\epsilon \tau'(u)} + \mathcal{O}(\epsilon) \qquad K = \frac{(t, \nabla_t n)}{(t, t)} = 1 + \epsilon^2
$$

$$
ds^2 = (r^2-1)d\tau^2 + \frac{dr^2}{r^2-1}
$$

J.Maldacena, D.Stanford, and Z.Yang '16

Schwarzian action..?

$$
\kappa_{-K_{0}} = \epsilon^{2} \left(\frac{\tau'''}{\tau'} - \frac{3}{2} \frac{\tau''^{2}}{\tau'^{2}} + \frac{1}{2} \tau'^{2} - \frac{1}{2} \right) +
$$
\n
$$
\phi(u) = r(u) = \frac{1}{\epsilon \tau'(u)} + \mathcal{O}(\epsilon)
$$
\n
$$
\frac{1}{2\tau'} \bigg) \quad \mathbf{S} \text{ch}[\tau, u] = \frac{\tau'''}{\tau'} - \frac{3}{2} \left(\frac{\tau}{\tau} \right)
$$

II. Metric fluctuation

Fefferman-Graham (FG) gauge $G_{uu}(\rho,u)=\rho^2+G(u)+\ldots$

$$
ds^2=\frac{d\rho^2}{\rho^2-r_h^2}+G_{uu}(\rho,u)du^2
$$

Which coordinate transformation map still satisfy FG gauge condition?

$$
g_{\tau\tau}(r,\tau) = r^2 + g(\tau)
$$

= $\frac{\rho}{\tau'(u)} + \frac{1}{4\rho} \left(\frac{\tau''(u)^2}{\tau'(u)^3} - \frac{1}{\tau'(u)} + \tau'(u) \right) + \mathcal{O}(\rho^{-3})$
= $\tau(u) - \frac{1}{2\rho^2} \tau''(u) + \mathcal{O}(\rho^{-4})$

 \boldsymbol{r}

 τ

Metric fluctuation

$$
G_{uu}=\rho^2-\frac{1}{2}\big(\tau'^2+1\big)-\frac{\tau'''}{\tau'}+\frac{3\tau''^2}{2\tau'^2}+\mathcal{O}\big(\rho^{-2}\big)
$$

$$
ds^2=\frac{dr^2}{r^2-r_h^2}+g_{\tau\tau}(r,\tau)d\tau^2
$$

One more step for the Schwarzian action

Schwarzian action at finite temperature Path integral measure $\mathcal{D}\tau(u)\rightarrow \frac{\mathcal{D}u(\tau)}{u'(\tau)}$ $I_{JT}\rightarrow -2\int d\tau \Big(\text{Sch}[u;\tau]+\frac{1}{2}u'^2-\frac{1}{2}\Big).$ E.Witten, D.Stanford '17

Inversion $\tau(u) \rightarrow u(\tau)$

$$
\text{Sch}[\tau;u]\rightarrow -\tau'^2\text{Sch}[u;\tau]
$$

From two descriptions of gravitational edge mode, we equivalently have

$$
I_{JT}=-2\int du\tau'\biggl(-\frac{1}{\tau'^2}{\rm Sch}[\tau,u]-\frac{1}{2}+\frac{1}{2\tau'^2}\biggr)
$$

$$
\tau'(u)\to \frac{1}{u'(\tau)}
$$

Two descriptions?

I. Wiggling boundary

Exact AdS_2 metric

with **fluctuating boundary**

II. Metric fluctuation

Fluctuating AdS_2 metric

with fixed boundary

Isometry of exact Poincaré disk metric

Poincaré upper half plane

$$
ds^2=\frac{4dwd\bar{w}}{|w-\bar{w}|^2}
$$

$$
w \longrightarrow \frac{aw+b}{cw+d}
$$

$$
z\longrightarrow \dfrac{z(ia-b+c+id)-a+i(b+c)}{z(a+i(b+c)-d)+ia+b-c}
$$

Poincaré disk

Gauge symmetry of Schwarzian

Exact Poincaré disk

Boundary isometry is redundant one that maps into the **gauge** SL(2,ℝ) **symmetry** of Schwarzian theory

$$
\begin{array}{ll}\text{\textbf{(isometry }} & z \longrightarrow \frac{z(ia-b+c+id)-a+i(b+c)+d}{z(a+i(b+c)-d)+ia+b-c+id} \\ \text{\textbf{ndary isometry }} & \tan\frac{u}{2} \longrightarrow \frac{a\tan\frac{u}{2}+b}{c\tan\frac{u}{2}+d} \end{array}
$$

Bulk isometry

Boundary

Part II. $N = 1$ supersymmetric JT gravity

Supersymmetric JT gravity

$I_{sJT} = i \int_{\mathcal{M}} dz d\bar{z} d\theta d\bar{\theta} \, \mathsf{E} \, \Phi \left(\mathcal{R}_{\theta \bar{\theta}} - 2 \right) + 2 \int_{\partial \mathcal{M}} du d\vartheta \, e \, \Phi(\mathcal{K} - \mathcal{K}_0)$

Curvatures $R, K \longrightarrow \mathcal{R}_{\theta\bar{\theta}}, \mathcal{K}$ Supercurvatures

Classical solutions

$$
I_{sJT} = i \int_{\mathcal{M}} dz d\bar{z} d\theta d\bar{\theta} \mathsf{E} \, \Phi \left(\mathcal{R}_{\theta \bar{\theta}} - 2 \right) + 2 \int_{\partial \mathcal{M}} du d\vartheta \, e \, \Phi(\mathcal{K} - \mathcal{K}_0)
$$

(Bosonic) conformal gauge and classical solution

$$
ds^2=4e^{2\Sigma}dzd\bar{z}
$$

$$
e^{\Sigma}=\frac{1}{1-z\bar{z}}\ ,\quad \Phi=\frac{1+z\bar{z}}{1-z\bar{z}}
$$

nformal gauge
\nwhere
$$
E_{\text{holo}} = \begin{pmatrix} e^{\Sigma} & De^{\Sigma/2} \\ -\eta e^{\Sigma} & D(\eta e^{\Sigma/2}) \end{pmatrix}
$$

$$
ds^2=4dy^M{\sf E}_M{}^{\sf z}dy^N{\sf E}_N{}^{\sf \bar{z}}
$$

$$
e^{\Sigma}=\frac{1}{1-z\bar{z}+i\theta\bar{\theta}}\;,\quad \Phi=\frac{1+z\bar{z}}{1-z\bar{z}+i}
$$

Wiggling boundary

$$
\frac{du^2}{\epsilon^2} = ds^2 \quad \left(= 4dy^m e_m{}^{\mathbb{Z}} dy^n e_n{}^{\overline{\mathbb{Z}}}\right)
$$

 $z = -ie^{i\tau(u)}(1 - \epsilon \tau'(u) + \mathcal{O}(\epsilon^2))$

Matching the proper boundary length

Bosonic Supersymmetric

$$
\frac{\left(du^2 + v^2 d\vartheta\right)^2}{\epsilon^2} = 4dy^M \mathsf{E}_M{}^{\mathbb{Z}} dy^N \mathsf{E}_N{}^{\overline{\mathbb{Z}}}
$$

$$
z = -ie^{i\tau(u)} \left(1 - \epsilon \left((\mathcal{D}\xi)^2 - \xi \mathcal{D}^2 \xi \right) + \mathcal{O}(\epsilon^2) \right)
$$

$$
\theta = e^{\frac{i\tau(u)}{2}} \left(\xi - \epsilon \left(\xi (\mathcal{D}\xi)^2 / 2 - i \mathcal{D}^2 \xi \right) + \mathcal{O}(\epsilon^2) \right)
$$

$$
\mathcal{T}^{\mathbf{z}}\,=\,\partial_u y^N \mathsf{E}_N{}^{\mathbf{z}} = \frac{1}{2\epsilon} \frac{\mathcal{D}\theta}{\mathcal{D}\bar{\theta}} \qquad \mathcal{N}_{\mathbf{z}}\,=\,\frac{i}{2}\frac{\mathcal{D}\bar{\theta}}{\mathcal{D}\theta}
$$

super-Schwarzian

In terms of component fields *τ*(*u*), *ψ*(*u*) $\mathrm{sSch}[\tau,\xi;u,\vartheta]+\frac{1}{2}\xi(\mathcal{D}\xi)^3=\frac{\vartheta}{2}\biggl[(1-\frac{\xi}{2})^{2}\biggr]\,.$ $+\bigg(1+\frac{1}{2}\bigg)$

$$
\begin{aligned} & (u), \psi(u) \\ & (\psi\psi')\bigg(\text{Sch}[\tau,u]+\frac{1}{2}{\tau'}^2\bigg)+\psi\psi'''+3\psi'\psi''\bigg] \\ & (\psi\psi')\bigg)\psi''+\frac{1}{2}\psi\bigg(\text{Sch}[\tau,u]+\frac{1}{2}{\tau'}^2\bigg) \end{aligned}
$$

Super extrinsic curvature

$$
\mathcal{K}=4\epsilon^2\bigg(\text{sSch}[\tau,\xi;u,\vartheta]+\frac{1}{2}\xi(\mathcal{D}\xi)^3\bigg)+\mathcal{O}\big(\epsilon^3\big)\hspace{1cm}\text{sSch}[\tau,\xi;u,\vartheta]=\frac{\mathcal{D}^4\xi}{\mathcal{D}\xi}-2\frac{\mathcal{D}^2\xi\mathcal{D}^3\xi}{(\mathcal{D}\xi)^2}
$$

$$
\mathcal{D}\tau = \xi \mathcal{D}\xi \quad \Rightarrow \quad \xi = \sqrt{\tau'(u)} \bigg(\vartheta + \psi(u) + \frac{1}{2} \vartheta \psi(u) \psi'(u) \bigg)
$$

Metric fluctuation

 $(w,\eta,\bar{w},\bar{\eta})$

$$
\mathcal{E}_M{}^A
$$

Asymptotic boundary condition (~FG gauge condition)

$$
\mathcal{E}_M{}^A\,=\,\begin{pmatrix} \mathcal{E}_{\text{holo}}&0\\ 0&\mathcal{E}_{\text{anti-holo}} \end{pmatrix}
$$

Superconformal transformation

$$
z\to w(z,\theta),\quad \theta\to \tau
$$

$$
\begin{array}{ccccc}\n\bar{p} & & & \xrightarrow{\hspace{0.5cm}} & (z,\theta,\bar{z},\bar{\theta}) \\
& \longleftrightarrow & & \mathsf{E}_N{}^B\n\end{array}
$$

$$
\mathsf{E}_N{}^B = \begin{pmatrix} \mathsf{E}_{\text{holo}} & 0 \\ 0 & \mathsf{E}_{\text{anti-holo}} \end{pmatrix}
$$

- $\rightarrow \eta(z,\theta), \quad \bar z \rightarrow \bar w(\bar z,\bar \theta), \quad \bar \theta \rightarrow \bar \eta(\bar z,\bar \theta).$
- $Dw = \eta D\eta$, $\bar{D}\bar{w} = \bar{\eta}\bar{D}\bar{\eta}$

Superconformal transformation

$$
\begin{array}{l} z\to w(z,\theta),\quad \theta\to \eta(z,\theta),\quad \bar z\to \bar w(\bar z,\bar \theta),\quad \bar \theta\to \bar \eta(\bar z,\bar \theta)\\ \\ Dw\,=\, \eta {\sf D} \eta\ ,\qquad \bar {\sf D} \bar w\,=\, \bar \eta \bar {\sf D} \bar \eta\end{array}
$$

$$
w(z, \theta) = F(z + \theta \Psi(z)) = F(z) + \theta \Psi(z) \partial_z F(z)
$$

$$
\eta(z, \theta) = \sqrt{\partial_z F(z)} \left(\theta + \Psi(z) + \frac{1}{2} \theta \Psi(z) \partial_z \Psi(z) \right)
$$

$$
\mathcal{K}-\mathcal{K}_0=4\epsilon^2\bigg(\text{sSch}[\tau,\xi;u,\vartheta]+\frac{1}{2}\xi(\mathcal{D}\xi)^3-\frac{1}{2}\vartheta\bigg)+\mathcal{O}\big(\epsilon^3\big)
$$

Asymptotic solution of F , Ψ in the order of $(1 - r)$ can be found as $F = -ie^{i\tau(u)}\bigg(1 - (1-r)\tau'(u) + \frac{(1-r)^2}{2}\big(\tau'(u)^2 - \tau'(u) - i\tau''(u)\big) + {\cal O}\big((1-r)^3\big)\bigg)$ $\Psi=e^{\frac{i\tau(u)}{2}}\biggl(\psi(u)+(1-r)\biggl(i\psi'(u)-\frac{\psi(u)}{2}\biggr)-\frac{(1-r)^2}{2}\biggl(\psi''(u)+\frac{\psi(u)}{4}\biggr)+\mathcal{O}\bigl((1-r)^3\bigr)\biggr)$

One more step to get the super-Schwarzian

$$
I_{sJT}\quad\longrightarrow\quad 4\int du d\vartheta ({\cal D}\xi)^{-2}\biggl(\text{sSch}[\tau,\xi;u,\vartheta]+\frac{1}{2}\xi ({\cal D}\xi)^3-\frac{1}{2}\vartheta\biggr)+{\cal O}(\epsilon)
$$

$$
(u,\vartheta)
$$

 $\mathrm{Sch}[\tau,\xi;u,\vartheta] = -(D\xi)^3\,\mathrm{Sch}[u,\vartheta;\tau,\xi], \quad dud\vartheta = d\tau d\xi(D\xi)^{-1}$

super-Schwarzian action at finite temperature $I_{sJT} \quad \longrightarrow \quad -4 \int d\tau d\xi \bigg(\textrm{sSch} [\tau]$

Inversion

$$
\longleftrightarrow \qquad (\tau,\xi)
$$

$$
[u,\vartheta;\tau,\xi]+\frac{1}{2}\vartheta(D_\xi\vartheta)^3-\frac{1}{2}\xi\bigg)+\mathcal{O}(\epsilon)
$$

- Two descriptions to derive the gravitational edge mode dynamics
- gravity
- We directly derived the **finite temperature** super-Schwarzian action
- from the BF theory with supergroup $OSp(2,1)$.

• Confirmed the derivation of the $\mathcal{N}=1$ super-Schwarzian from super-JT

without relying on the transformation from the zero temperature one.

• We also worked out the derivation of the $\mathcal{N}=1$ super-Schwarzian action

Gravitational edge modes…

on the manifold with nontrivial topology? on non-AdS geometry? at finite boundary? in higher-dimensional gravity?

