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Considering a broad range of the audience 
I would like to take this opportunity to introduce these very interesting 
topics (to me) but boring looking subjects (chaos?, complexity?) to hep-
th/gr people. 
In the end of my talk, however, I hope you get to like them like me. 

I will try to convey motivations, history, basic ideas of the topics 
instead of too much technical details.

Comments on Quantum Chaos and Complexity
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Comments on Quantum Chaos and Complexity

Both are not well defined yet. 

So, the current status of the research strategies is based on 
 educated guess, imagination, and trial and errors, 

but not the rigorous proof.

44
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Comments on Quantum Chaos and Complexity

For fun,  

Let’s ask AI (Artificial Intelligence)

55
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“Space Opera Theater” by Midjourney

AI-painter “MidJourney” wins 1st prize at Colorado State Fair

66



Quantum chaos and complexity

Midjourney 
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Quantum Chaos

Level spacing statistics 

Thermalization 
(ETH, Quantum device) 
Quantum black holes 

Quantum gravity

Out-of-time-order correlator  
(OTOC) 

Random Matrix Theory
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Comments on Quantum Chaos and Complexity

Now 

Let’s get more serious

99
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Krylov Complexity: a new diagnose of quantum chaos
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[Reminder] 
Quantum Chaos 

Why?



Classical Physics Quantum physics

Classical  Chaos Quantum chaos

ℏ → 0

ℏ → 0

“Quantum” is more fundamental. “Classical” is approximation. 
Quantum chaos may exist even without classical counter part. 
We do not need to stick to classical concept.
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[Reminder] 
Quantum Chaos 

Why?



Who is the first raising the issue of quantum chaos 
In physics literature? 

15



16



I have thought a hundred times as much about the quantum problems as I have about general relativity. 

1905: Photon concept 

1916: Quantum theory of radiation 

1917: Quantum chaos 

1925: Bose-Einstein condensation 

1935: EPR paradox
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First identification of the problem of quantizing chaotic motion

How to quantize?Non-integrable (chaotic)

Before Schrödinger equation (1926)

Non- chaotic
Not ergodic?

How to thermalize in quantum system?
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First identification of the problem of quantizing chaotic motion

Forgotten for 55 years 
And 

Rediscovered (independently) in 1971

19
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History of quantum chaos

Michael Berry
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History of quantum chaos

BGS conjecture

Berry Tabor conjecture

Michael Berry
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History of quantum chaos

BGS conjecture

Berry Tabor conjecture

Michael Berry Look at the energy level instead of the classical path
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History of quantum chaos

BGS conjecture

Sinai Billiard (classical) Sinai Billiard (quantum)

Berry Tabor conjecture

Michael Berry Look at the energy level instead of the classical path
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History of quantum chaos

BGS conjecture

Berry Tabor conjecture

Michael Berry Look at the energy level instead of the classical path

Single particle in a cavity
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History of quantum chaos

BGS conjecture

Berry Tabor conjecture

Heavy nuclei

Wigner 
Hopeless to predict  the exact energy levels  
of complex systems such as large nuclei 
Focus on statistical property 
Property of random matrix

chaotic?
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Infinitely strong interaction       ~ universality  ~ black hole 
Maximally chaotic                   ~ universality  ~ black hole

~ random (matrix)

Holography
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Quantum Chaos

Level spacing statistics 

Thermalization 
(ETH, Quantum device) 
Quantum black holes 

Quantum gravity

Out-of-time-order correlator  
(OTOC) 

Random Matrix Theory

Krylov complexity?



Quantum complexity 
why?



Quantum complexity 
why?

Entanglement is not enough.  
What else do we need?
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Entanglement Entropy
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Entanglement Entropy

Shines Ryu Tadashi Takayanagi

Successful agreements   
with field theory computation
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“Distance” between two sates?

does varying over Hamiltonians lead to an almost space-filling set on SU(2K)? The answer

is no; the number of parameters specifying H (the J ’s) is polynomial in K and given by

Eq. 2.10. Thus for a given k the dimension of the set covered by k-local evolution is only

slightly bigger than a 2K-dimensional subset.

On the other hand we may ask: For each Hamiltonian is the motion on the 2K-torus

ergodic? Generically the answer is yes. Ergodicity is equivalent to the incommensurability

of the energy eigenvalues, a condition which will be satisfied for almost all members of the

ensemble of J ’s.

To summarize, while the A-system is formally defined on a 4K-dimensional configura-

tion space, the e↵ective dimension of the system is actually much smaller ⇠ 2K .

In Sec. 2.1 we explained that by starting with a random time-dependent quantum

Hamiltonian, a stochastic system can be defined. That stochastic system can be thought

of as a classical stochastic version of the auxiliary system A. Reference [17] refers to such

systems as Brownian circuits. In that case, since the Hamiltonian is now time-dependent,

the motion on SU(2K) is a random walk not restricted to a torus—it fills up all 4K

dimensions and is ergodic on SU(2K).

4 Geometry of Complexity

4.1 The Distance Between Quantum States

Consider the question: how far apart are two quantum states |Ai and |Bi? The usual

measure of the distance between them is defined by

dAB = arccos |hB|Ai|. (4.1)

The distance dAB is bounded between 0 (when the two states are the same) and ⇡/2 (when

the two states are orthogonal). The metric defined by Eq. 4.1 is called the Fubini-Study

metric. It has the property that if dAB is very small then the expectation values of all

observables in the states |Ai and |Bi are very close. But this definition misses something

important. Suppose we have a very large number of qubits in a complicated pure state that

looks thermal, although it is actually pure. Now add one more qubit, either in state |0i or
state |1i. Let’s call the two states that we get this way |Ai and |Bi. They are orthogonal

so they are as far apart as possible according to Eq. 4.1. But in some sense they are not

very di↵erent; they only di↵er by the orientation of a single qubit.

14

0 ⇠ ⇡/2(closest) (farthest)(inner-product) distance:

1903.12621 Brown and Susskind

However, in some sense they are close

|0000000001i|0000000000iAre these close or far?

“easy” or “difficult” transform

Need a new distance reflecting this sense: “Complexity distance?”

Far in the inner-product sense

Complexity

Similarity vs Distance?
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~How hard (minimal number of gates)  
from the reference to target state

Complexity of quantum states

| T i = U | RiFor given states

New distance in Hilbert space

For a given operator

Complexity of operator (unitary transformation)

U = gngn�1 · · · g2g1 ~ minimum number of gates

I U

| (n)i = gn....g3g2g1| (0)i

= u(n)| (0)i. (3.1)

Here u(n) is an element of SU(2K). Let us think of 3.1 as defining a path in the space

SU(2K). This is schematically shown in the left side of figure 4. The path begins at

The left side shows a discrete path induced by a series of gates. The right side shows a
curve induced by a Hamiltonian evolution.

Figure 4: The shaded area represents the group manifold SU(2K).

u(0) = I and ends at u(n). The rule for such paths is that every link corresponds to a gate

and therefore displaces the endpoint by a one or two qubit operator.

With these concepts in hand we can define the complexity of a unitary operator u as

the smallest number of gates of any circuit that can yield u as an outcome. That is to say,

it is the number of links of the shortest allowable path connecting I and u.

In the past, random quantum circuits have been used to model black hole evolution

[7][1] but our real interest is in continuous Hamiltonian evolution. Part of the reason

for this paper is to draw attention to an innovation of Nielsen and collaborators [5][6]

who introduced a continuum description of complexity. Their purpose was to construct

an approximation to a quantum circuit that used Hamiltonian evolution and Riemannian

geometry. However, the methods of [5][6] seems well suited to the study of Hamiltonian

systems of the kind that may represent black hole evolution.

7

New distance in Unitary group

Complexity
norm of H. In bases {eI}, H = eIY I and the metric components can be expressed as

g̃IJ =
1

2
@2F̃ (H)2/(@Y I@Y J), F̃ (H)2 = g̃IJY

IY J . (2.3)

Note that giving the norm F̃ is equivalent to giving a metric g̃IJ under a bases.
To obtain the metric in the group manifold with the coordinate XI , the metric needs

to be transformed by a coordinate transformation

gIJ(X) = g̃KLM
K

I (X)ML

J (X) , (2.4)

where the transformation matrix is defined as Y I(s)ds = M I

K
(X)dXK . (See appendix B

for a concrete example.) The complexity of an operator Ŵ (s) :=
 �P e

R s
0 iH(s̃)ds̃ , denoted by

C(Ŵ (s)), is defined by the minimal length of all curves which connect Ŵ (s) to identity:

C(Ŵ (s))) = min

Z
s

0
F̃ (H(s̃))ds̃ , (2.5)

where H(s̃) satisfy Ŵ (s) =
 �P e

R s
0 iH(s̃)ds̃.

After we obtain the complexity for all operators in the SU(n) group based on Eq. (2.5),
the complexity between two pure quantum states in an n-dimensional Hilbert space can be
expressed as the following optimal problem

C(| 1i, | 2i) = min
n
C(U) | 8 Û 2 O, | 2i = Û | 1i

o
, (2.6)

where the unitary operator may belong to some restricted set O, which is a subgroup of
SU(n) group and depends on detailed physical problems. Thus, the norm F̃ plays a central
role when we analyse the complexity in quantum systems. Once we obtain the norm F̃ ,
the metric in the SU(n) group (and its any subgroup) is computed. By this metric, the
minimal geodesic length connecting the identity and the target operator, which is nothing
but the complexity of the operator, is computed. The complexity between two states is the
minimal complexity of the operators shown in Eq. (2.6). In this paper, we will only focus
on the complexity of unitary operators.

Note that the complexity is right-invariant, because H itself is invariant under the
right-translation c ! cx̂ for 8x̂ 2 SU(n). However, for a left translation c(s) 7! x̂c(s), the
generator will be transformed as

H(s) 7! x̂H(s)x̂† ,

which is different from H(s) in general. If there is no additional symmetry, F̃ (H) 6=
F̃ (x̂Hx̂†), the complexity is not left-invariant but only right-invariant.

2.2 Bi-invariant complexity geometry

Nielsen’s (only) right-invariant complexity is a good tool for the studies on quantum com-
putation and quantum circuit systems. Many recent works such as [26–28] and [21, 25,
29, 37, 47] try to generalize this idea to the studies on QFT/QM. These works assume
that the complexity is only right-invariant. However, if the complexity in QFT/QM is only

– 3 –

Relation between two
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Quantum Computer

Input state output state

Complexity

[Computer science] quantifying the difficulty of carrying out a task. (Computational) complexity
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Complexity

[Computer science] quantifying the difficulty of carrying out a task. (Computational) complexity

Quantum Computer Quantum Circuit~(Circuit) complexity

Minimal number of gates for the transformation from the reference to target state

| T i = U | Ri = gngn�1 · · · g2g1| Ri

ex)

G = abefa

G = ceab

G = dbe

complexity = 3

X1

X2

X3

|0⟩

H

Tr

Tr

Y1

Y2

X1

X2

X3

H

Y1

Y2

Z1

W1

W2

Figure 5: A general quantum circuit (left) and its unitary purification (right).

Note that it is inevitable that the size of Q is exponential in n and m in the worst case [70]. Further
details on the facts comprising this theorem can be found in Nielsen and Chuang [84] and Kitaev,
Shen, and Vyalyi [68].

III.3 Unitary purifications of quantum circuits

The connection between the general and unitary quantum circuits can be understood through the
notion of a unitary purification of a general quantum circuit. This may be thought of as a very
specific manifestation of the Stinespring Dilation Theorem [95], which implies that general quantum
operations can be represented by unitary operations on larger systems. It was first applied to the
quantum circuit model by Aharonov, Kitaev, and Nisan [10], who gave several arguments in favor
of the general quantum circuit model over the unitary model. The term purification is borrowed
from the notion of a purification of a mixed quantum state, as the process of unitary purification
for circuits is similar in spirit. The universal gate described in the previous section has the effect of
making the notion of a unitary purification of a general quantum circuit nearly trivial at a technical
level.

Suppose that Q is a quantum circuit taking input qubits (X1, . . . , Xn) and producing output
qubits (Y1, . . . , Ym), and assume there are k ancillary gates and l erasure gates among the gates of
Q to be labelled in an arbitrary order as G1, . . . , Gk and K1, . . . , Kl, respectively. A new quantum
circuit R may then be formed by removing the gates labelled G1, . . . , Gk and K1, . . . , Kl; and to
account for the removal of these gates the circuit R takes k additional input qubits (Z1, . . . , Zk) and
produces l additional output qubits (W1, . . . , Wl). Figure 5 illustrates this process. The circuit R is
said to be a unitary purification of Q. It is obvious that R is equivalent to Q, provided the qubits
(Z1, . . . , Zk) are initially set to the |0⟩ state and the qubits (W1, . . . , Wl) are traced-out, or simply
ignored, after the circuit is run—for this is precisely the meaning of the removed gates.

Despite the simplicity of this process, it is often useful to consider the properties of unitary
purifications of general quantum circuits.

III.4 Oracles in the quantum circuit model

Oracles play an important, and yet uncertain, role in computational complexity theory; and the
situation is no different in the quantum setting. Several interesting oracle-related results, offering
some insight into the power of quantum computation, will be discussed in this article.

Oracle queries are represented in the quantum circuit model by an infinite family

{Rn : n ∈ N}

10

Universal gate sets = {a,b,c,d,e,f}
Ambiguity
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Why chaos and complexity?

Is quantum theory explored enough? 
Entanglement? 
 Complexity?

What is thermalization? 
Infinitely strong interaction       ~ universality  ~ black hole 
Maximally chaotic.                 ~ universality  ~ black hole

Chaos

Complexity

Complexity: how much things are complex
Chaos: how fast things get complex  

                    ~ fast increase of complexity

Complexity and chaos

Complexity by definition has nothing to do with Chaos 
Complexity in principle has nothing to do with Hamiltonian



Krylov Complexity
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Krylov complexity

"Krylov complexity” is a well-defined concept 
proposed as a diagnose of quantum chaos (which is not-well defined) 

Comments on quantum chaos and complexity

Circuit complexity is not well-defined
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Contents

Short Review on Krylov Complexity 

- Operator growth 

- Krylov space 

- Lanczos coefficient 

   -  Krylov complexity 

Success in lattice systems 

Towards field theory 

- Too good to be true 

- How to extract info from the power spectrum 

  (IR/UV cutoff effect)

Cornelius (Cornel) Lanczos (1893-1974):  
a Hungarian-American and later Hungarian-Irish 
mathematician and physicist.

Aleksey Nikolaevich Krylov (1863 –1945) 
a Russian naval engineer, applied mathematician 

1994
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ex) 1D spin chain

Operator growth

The time evolution of an operator O by a time independent Hamiltonian H

Baker-Campbell-Hausdorff (BCH) formula 

1812.08657: Parker et al.
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ex) 1D spin chain

Operator growth

The time evolution of an operator O by a time independent Hamiltonian H

Baker-Campbell-Hausdorff (BCH) formula 

1812.08657: Parker et al.
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Operator growth

The time evolution of an operator O by a time independent Hamiltonian H

Baker-Campbell-Hausdorff (BCH) formula 

1812.08657: Parker et al.

The set of operators         defines a basis of the so-called Krylov space associated to the operator 
Regard the operator as a state               in the Hilbert space of operators 

{𝒪̃n} 𝒪
𝒪 → |𝒪)

(Lanczos algorithm: Gram–Schmidt procedure) 

Inner product: Wightman inner product

Krylov basis

: Lanczos coefficients  {bn}
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Operator growth

The time evolution of an operator O by a time independent Hamiltonian H

1812.08657: Parker et al.

The set of operators         defines a basis of the so-called Krylov space associated to the operator 
Regard the operator as a state               in the Hilbert space of operators 

{𝒪̃n} 𝒪
𝒪 → |𝒪)

(Lanczos algorithm: Gram–Schmidt procedure) 

Inner product: Wightman inner product

Krylov basis

: Lanczos coefficients  {bn}

“probability amplitudes” 
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Krylov complexity

Krylov complexity

Discrete “Schrodinger equation”

“probability amplitudes” 

bn = hopping amplitudes 
a quantum-mechanical particle on a 1- dimensional chain. 

average position over the chain 

1812.08657: Parker et al.
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Short Review on Krylov Complexity 

- Operator growth 

- Krylov space 

- Lanczos coefficient 

   -  Krylov complexity 

Success in lattice systems 

Towards field theory 

- Too good to be true 

- How to extract info from the power spectrum 

  (IR/UV cutoff effect)

Cornelius (Cornel) Lanczos (1893-1974):  
a Hungarian-American and later Hungarian-Irish 
mathematician and physicist.

Aleksey Nikolaevich Krylov (1863 –1945) 
a Russian naval engineer, applied mathematician 

1994
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K-complexity from the auto-correlation function 

Auto-correlation function

ΠW(t) =
1

2π ∫
∞

−∞
dω e−iωt fW(ω)

C(t) = ΠW(t) = φ0(t)

Moments

Lanczos coefficients from moments 

fW(ω)

μ2n

1812.08657: Parker et al.

Power spectrum
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Computation method

Lanczos coefficients

C(t) = ΠW(t) = φ0(t)

fW(ω) μ2n

bn

1
2π ∫

∞

−∞
dω e−iωt fW(ω)

ΠW(t) =

K-complexity

1812.08657: Parker et al.



Success in lattice systems
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Universal operator growth hypothesis

Lanczos coefficients {bn} grow as fast as possible
Krylov complexity grows exponentially 

the slowest possible decay of the power spectrum 
In a chaotic quantum system

bn ∼ αn

fW(ω) ∼ e− π |ω |
2α

Universal operator growth hypothesis

fW(ω)

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

1812.08657: Parker et al.

fW(ω) ∼ e− ω
ω0 Is a signature of classical chaos
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Universal operator growth hypothesis

Lanczos coefficients {bn} grow as fast as possible
Krylov complexity grows exponentially 

the slowest possible decay of the power spectrum 
In a chaotic quantum system

bn ∼ αn

fW(ω) ∼ e− π |ω |
2α

fW(ω)

Universal operator growth hypothesis

fW(ω)

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

1812.08657: Parker et al.



Towards Field theory
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Free massive scalar in d-dimensions

Wightman 2-point function

Power spectrum

fW(ω) μ2n bn

2212.14702: Camargo,  
Jahnke, KYK, Nishida

m=0, d=4

fW(ω) ∼ e− β |ω |
2 ∼ e− π |ω |

2α
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Counter example in QFT

Lanczos coefficients {bn} grow as fast as possible?? 
In a chaotic quantum system In free QFT

bn ∼ αn ∼
π
β

n

Power spectrum (m=0, d=4)

2212.14429: Avdoshikin, Dymarsky, Smolkin
2212.14702: Camargo, Jahnke, KYK, Nishida

Free theory is chaotic?

fW(ω) ∼ e− β |ω |
2 ∼ e− π |ω |

2α (α =
π
β )

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺
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Lanczos coefficients {bn} grow as fast as possible! 
In a chaotic quantum system In general QFT

bn ∼ αn ∼
π
β

n

Power spectrum (m=0, d=4)

2212.14429: Avdoshikin, Dymarsky, Smolkin
2212.14702: Camargo, Jahnke, KYK, Nishida

General QFT is chaotic?  No

fW(ω) ∼ e− β |ω |
2 ∼ e− π |ω |

2α (α =
π
β )

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Power spectrum

(α =
π
β )

(t =
iβ
2 )

fW(ω) ∼ e− β |ω |
2 ∼ e− π |ω |

2α

Wightman 2-point function

Subtlety in QFT

Too good to be true

2104.09514: Dymarsky, Smolkin



bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Only if bn is a smooth function of n, Otherwise

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Too good to be true

Chaos

Chaos ⟺

⟺

Counter example:  
Field theory 
Krylov complexity in saddle-dominated scrambling 
(2203.03534: Bhattacharjee, Cao, Nandy, Pathak)

fW(ω)



fW(ω)

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Only if bn is a smooth function of n, Otherwise

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺

Too good to be true

Chaos

Chaos ⟺

⟺

Counter example:  
Field theory 
Krylov complexity in saddle-dominated scrambling 
(2203.03534: Bhattacharjee, Cao, Nandy, Pathak)

Need to investigate these relations further. 
How to extract (chaotic) information from the power spectrum?

m
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Computation method

Lanczos coefficients

C(t) = ΠW(t) = φ0(t)

fW(ω) μ2n

bn

1
2π ∫

∞

−∞
dω e−iωt fW(ω)

ΠW(t) =

K-complexity

1812.08657: Parker et al.
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Non-trivial mass (IR-cutoff) effect: staggering

Power spectrum

Moments to Lanczos coefficients (d=5)

Staggering: two families for even n and odd n

mβ = 80

2212.14702: Camargo, Jahnke, KYK, Nishida
2212.14429: Avdoshikin, Dymarsky, Smolkin
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Staggering

α ≤
π
β

2212.14702: Camargo,  
Jahnke, KYK, NishidaNon-trivial mass (IR-cutoff) effect: staggering

mβ = 80

mβ

e− β |ω |
2

m
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Lanczos coefficients

C(t) = ΠW(t) = φ0(t)

fW(ω) μ2n

bn

1
2π ∫

∞

−∞
dω e−iωt fW(ω)

ΠW(t) =

K-complexity

2212.14702: Camargo,  
Jahnke, KYK, NishidaNon-trivial mass (IR-cutoff) effect: K-complexity
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Lanczos coefficients

C(t) = ΠW(t) = φ0(t)

fW(ω) μ2n

bn

1
2π ∫

∞

−∞
dω e−iωt fW(ω)

ΠW(t) =

K-complexity

Early time: oscillation:  
- larger m, shorter period 
Late time: oscillation disappears 
- cancelation due to large n 
Exponential increase 
- larger m, slower increase 
- mass effect

2212.14702: Camargo,  
Jahnke, KYK, NishidaNon-trivial mass (IR-cutoff) effect: K-complexity
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2212.14702: Camargo,  
Jahnke, KYK, NishidaNon-trivial mass (IR-cutoff) effect: K-complexity

K𝒪(t) ∼ eλ̃t

Staggering

bn ∼ αnfW(ω) ∼ e− π |ω |
2α ⟺ ⟺



Complexity of state
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Spread complexity

Spread complexity

Complexity of a state

2202.06957: Balasubramanian et al.

H =
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Spread complexity

Spread complexity

Complexity of a state

2202.06957: Balasubramanian et al.

H =



66

Spread complexity

Spread complexity

Complexity of a state

2202.06957: Balasubramanian et al.

H =

Survival amplitude
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Spread complexity

Thermo Field Double (TFD) state

2202.06957: Balasubramanian et al.

Observations for RMT, SYK  
Universal for Maximal chaos? Why? 

What if not TFD

Survival amplitude



Other ways?
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Fluctuations of the Lanczos coefficients

2306.11632: Camargo, Jahnke, Jeong, KYK, Nishida
2305.16669: Hashimoto, Murata, Tanahashi, Ryota Watanabe 

2112.12128: Rabinovici, Sanchez-Garrido, Shir, Sonner

H =

Variation of Lanczos coefficients? 
Spectral rigidity?



Summary
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Chaos: beyond RMT, better resolution, dynamics.    Krylov-complexity

Summary

No time ~ Long time limit (time-energy uncertainty) 
No operator or state dependence?

H =

Krylov complexity has a better “resolution” than level statistics 
Krylov (spread) complexity has time dynamics 
Krylov basis has info for the operator or state 
Krylov(spread) complexity has no ambiguity by minimization over basis

Complex (nuclear spectrum) ~ Random matrix theory 

Level repulsion 
Spectral rigidity
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Chaos: beyond RMT, better resolution, dynamics.    Krylov-complexity

Summary

Observations, conjectures, justification? 

Holographic counterpart? 

Black hole interior?

No time ~ Long time limit (time-energy uncertainty) 
No operator or state dependence?

Complex (nuclear spectrum) ~ Random matrix theory 

Level repulsion 
Spectral rigidity

OTOC


