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Outline

• Explain what is meant by “quantum” symmetry

• Review N = 2 superconformal theories, arising as orbifolds of the N = 4
theory

• Briefly discuss the types of spin chains that arise in the planar limit of these
theories

• Construct the quantum symmetry of the Z2 orbifold theory



Lie groups and Lie algebras

• Lie groups ↔ Symmetry in physics

G = ei
∑

k αk T k

• T k are Lie algebra generators

• SU(2) → theory of spin in Quantum Mechanics

S⃗ = x̂Sx + ŷSy + ẑSz

where

Sx =
1
2

(
0 1
1 0

)
, Sy =

1
2

(
0 −i
i 0

)
, Sz =

1
2

(
1 0
0 −1

)

• Product is non-commutative, e.g. SxSy ̸= SySx



The coproduct

• Algebra elements act naturally on a representation space {|ψ ⟩} (Hilbert
space in QM)

Sz |↑ ⟩ =
ℏ
2
|↑ ⟩ , Sz |↓ ⟩ = −ℏ

2
|↓ ⟩

• How does S⃗ act on |ψ1 ⟩ ⊗ |ψ2 ⟩?

∆(S⃗)(|ψ1 ⟩ ⊗ |ψ2 ⟩) = (S⃗ |ψ1 ⟩)⊗ |ψ2 ⟩+ |ψ1 ⟩ ⊗ (S⃗ |ψ2 ⟩)

• We have just used a coproduct:

∆(X ) = X ⊗ 1 + 1 ⊗ X

• ∆ is co-commutative: τ12 ◦∆(X ) = ∆(X )

• Hopf algebra: Allow ∆ to be non-co-commutative
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Hopf Algebras

• An algebra A (over a field k ) is a vector space together with a product
m : A⊗A → A and a unit map η : k → A

�
�

�	

@
@
@R

@
@
@R

�
�

�	

A⊗A⊗A

A⊗AA⊗A

A
m m

m ⊗ id id ⊗ m

(+ more diagrams)



Hopf Algebras

• A coalgebra A is instead equipped with a coproduct ∆ : A → A⊗A and a
counit ϵ : A → k
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Hopf Algebras

• A bialgebra is both an algebra and a coalgebra in a compatible way
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• A Hopf Algebra is a bialgebra equipped with an antipode S : A → A

m (S ⊗ id) ◦∆ = m (id ⊗ S) ◦∆ = η ◦ ϵ .



Quasitriangular Hopf algebras

• Would like both m and ∆ to be non-commutative
• However, there can still be a relation between ∆ and τ12∆.

τ12 ◦∆(a) = R(∆(a))R−1

• R : A⊗A → A⊗A is called an R-matrix.
• Quantum Yang–Baxter Equation (QYBE)

R12R13R23 = R23R13R12

(
R i j

s r R
s k
l pRr p

m n = R j k
s pR i p

r nRr s
l m

)

• A Hopf algebra with R satisfying the YBE is called quasitriangular →
“Quantum Group”

• The YBE guarantees that the algebra is not too trivial



Drinfeld twists

• Given an initial Hopf algebra, we can twist it to produce (in general) a
quasi-Hopf algebra

• Drinfeld twist F : A⊗A −→ A⊗A

∆F (a) = F (∆(a))F−1 , RF = F21 · R · F−1

• To get a Hopf algebra, F should satisfy the cocycle condition

(1 ⊗ F )(id ⊗∆)F = (F ⊗ 1)(∆⊗ id)F

• Then, RF will satisfy the QYBE
• If not ⇒ quasi-Hopf algebra (non-associative)



The N = 4 SYM theory
• Maximal supersymmetry in d = 4
• Contains a gauge field Aµ, 4 spinors ψA

α, and 3 complex scalars ϕi .
• All in the adjoint of SU(N) gauge group → N × N matrices
• Convenient to use N = 1 superspace notation

L =

∫
d4θTregVΦie−gVΦi +

(∫
d2θW +

∫
d2θ̄W

)
+ · · ·

• Chiral Superfields Φi = ϕi + θαψi
α + θ2F i , i = 1,2,3

• N = 4 superpotential:

W = g Tr Φ1[Φ2,Φ3] =
g
3
ϵijk Tr ΦiΦjΦk

• The actual potential of the QFT is derived as

V =
∂W̄
∂ϕ̄i

∂W
∂ϕi



Reducing supersymmetry

• In previous work, looked at the N = 1 marginal deformations of N = 4 SYM
[Dlamini, KZ ’19]

WLS = κTr
(
Φ1[Φ2,Φ3]q +

h
3
(
(Φ1)3 + (Φ2)3 + (Φ3)3))

• q–commutator [X ,Y ]q = XY − qYX

• Identified a Drinfeld twist which takes us from (q,h) = (1,0) to the general
case ⇒ SU(3)q,h

• Does not satisfy the cocycle condition
• Today we will look at N = 2 theories, which are not purely superpotential

deformations.



Z2 orbifold of N = 4 SYM
• Start with N = 4 SYM with SU(2N) gauge group

• 6 real (3 complex) scalar fields: SO(6) ∼ SU(4) R-symmetry group

• Project (V ,X ,Y ,Z ) → (V ,−X ,−Y ,Z ) in R-symmetry space

• Project by [· · · ] → γ[· · · ]γ in colour space, where

γ =

(
IN×N 0

0 −IN×N

)

• End up with N = 2 SYM with SU(N)1 × SU(N)2 gauge group

Z =

(
Z11 0
0 Z22

)
, X =

(
0 X12

X21 0

)
, Y =

(
0 Y12

Y21 0

)

• Z ’s adjoints, X ,Y bifundamentals



Z2 orbifold of N = 4 SYM

• Represent using a quiver diagram:

1 2

X12

X21

Y21

Y12Z11 Z22

• Superpotential: WN=4 = igTr(X [Y ,Z ]) →

WN=2 = ig (Tr2(Y21Z11X12 − X21Z11Y12)− Tr1(X12Z22Y21 − Y12Z22X21))

• The SU(4)R symmetry is (naively) broken to SU(2)L × SU(2)R × U(1).



Marginally deformed orbifold

• Move away from the orbifold point: g1 ̸= g2

W = ig1 Tr2(Y21Z11X12 − X21Z11Y12)− ig2 Tr1(X12Z22Y21 − Y12Z22X21)

• Still preserves N = 2 supersymmetry

• Studied in detail in [Gadde,Pomoni,Rastelli ’10].

• Leads to interesting spin chains in the planar limit

• Focus on holomorphic SU(3) sector
▶ Unbroken SU(2) subsector made up of X ,Y fields
▶ “SU(2)-like” subsector made up of X ,Z fields

• First recall how spin chains arise in N = 4 SYM



Spin chains from N = 4 SYM
[Minahan-Zarembo ’02]

• Take planar limit N → ∞
• Observables are gauge invariant operators
• E.g. SU(2) scalar sector: X ,Y

O(x) = Tr [· · ·XXXYXXXYXX · · · ]

• We want to diagonalise the dilatation operator of the theory

DO(x) = (L + γ)O(x) γ: anomalous dimension

• Difficult problem because of operator mixing
• At one-loop, D acts exactly like a Heisenberg Hamiltonian
• Integrability ⇒ Solution of the N = 4 spectral problem



XY sector: Diagrams

• F-term contributions to the Hamiltonian

X12 Y21

X12 Y21

g2
1

X12 Y21

Y12 X21

−g2
1

Y21 X12

Y21 X12

g2
2

Y21 X12

X21 Y12

−g2
2

Y12 X21

Y12 X21

g2
1

Y12 X21

X12 Y21

−g2
1

X21 Y12

X21 Y12

g2
2

X21 Y12

Y21 X12

−g2
2

• Will rescale by g1g2 and define κ = g2/g1.



XY sector: Hamiltonian

• N = 2 picture

Hℓ,ℓ+1 =



0 0 0 0 0 0 0 0
0 κ−1 −κ−1 0 0 0 0 0
0 −κ−1 κ−1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 κ −κ 0
0 0 0 0 0 −κ κ 0
0 0 0 0 0 0 0 0


on:



X12X21
X12Y21
Y12X21
Y12Y21
X21X12
X21Y12
Y21X12
Y21Y12


• “Dynamical N = 4” picture

H1 =


0 0 0 0
0 κ−1 −κ−1 0
0 −κ−1 κ−1 0
0 0 0 0

 , H2 =


0 0 0 0
0 κ −κ 0
0 −κ κ 0
0 0 0 0

on:


XX
XY
YX
YY


i



XZ sector: Diagrams

• F-term contributions to the Hamiltonian

Z11 X12

Z11 X12

g2
1

Z11 X12

X12 Z22

−g1g2

X12 Z22

X12 Z22

g2
2

X12 Z22

Z11 X12

−g1g2

Z22 X21

Z22 X21

g2
2

Z22 X21

X21 Z11

−g1g2

X21 Z11

X21 Z11

g2
1

X21 Z11

Z22 X21

−g1g2

• Will again rescale by g1g2 and define κ = g2/g1.



XZ sector: Hamiltonian

• N = 2 picture

Hi,i+1 =



0 0 0 0 0 0 0 0
0 κ −1 0 0 0 0 0
0 −1 κ−1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 κ−1 −1 0
0 0 0 0 0 −1 κ 0
0 0 0 0 0 0 0 0


on:



X12X21
X12Z22
Z11X12
Z11Z11
X21X12
X21Z11
Z22X21
Z22Z22


.

• “Dynamical N = 4” picture

H1 =


0 0 0 0
0 κ −1 0
0 −1 κ−1 0
0 0 0 0

 ,H2 =


0 0 0 0
0 κ−1 −1 0
0 −1 κ 0
0 0 0 0

 on:


XX
XZ
ZX
ZZ


i



Dynamical spin chains

• The XY chain is strictly alternating:

H2 H1 H2 H1 H2 H1 H2

2s 2s+1 2s+2 2s+3 2s+4 2s+5 2s+6 2s+7

• The XZ chain is “dynamical”: The Hamiltonian depends on the number of X ’s
crossed.

Z Z X X X Z X ZHλ Hλ Hλ Hλ′ Hλ Hλ′ Hλ′

2s 2s+1 2s+2 2s+3 2s+4 2s+5 2s+6 2s+7

• Introduced a “dynamical” parameter taking two values λ, λ′ (more later)
• λ↔ λ′ when crossing X ,Y , unchanged when crossing Z



Alternating chains

• There is extensive condensed-matter literature on
alternating chains, though mostly for the antiferromagnetic case

• E.g. the bimetallic chain MnNi(NO2)4(en)2(en = ethylenediamide)

[Feyerherm, Mathonière, Kahn, J. Phys. Condens. Matter 13, 2639 (2001)]

• Have been studied with various techniques such as the recursion method
[Viswanath,Müller ’94], also long-wavelength approximations [Huang et al. ’91]

• It is not known whether such chains are integrable (solvable by some type of
Bethe Ansatz)



Quantum Symmetry
[work with E. Andriolo, H. Bertle, E. Pomoni and X. Zhang]

• First, understand the symmetries better

1 2

X12

X21

Y21
Y12Z11 Z22

• Naively, SU(4)R → SU(2)i=1,2
L × SU(2)i=3,4

R × U(1)

• Eight broken generators: R1
3 , R1

4 , R2
3 , R2

4 + conjugates

• Relate fields which now belong to different SU(N)× SU(N) representations

• Claim: Can upgrade them to true generators in a quantum version of SU(4)R

• E.g. want to write: R3
2X a

â = Z a
a , R2

3Z a
a = X a

â



Quantum Symmetry
• Gauge indices of all fields to the right need to be flipped

· · ·Z11X12Z22Y21X12 · · ·
∆(σXZ

− )
−→ · · ·Z11Z11Z11Y12X21 · · ·

• Can achieve this with a suitable coproduct ⇒ Quantum algebra

• Structure is that of a quantum groupoid [Lu ’96, Xu ’99]

• Path groupoid: Like a group, but not all compositions of elements are allowed.
The allowed paths are those given by the quiver.

• Unbroken generators have the Lie algebraic coproduct ∆o(a) = I ⊗ a + a ⊗ I

• For the broken generators we define:

∆o(a) = I ⊗ a + a ⊗ γ , where γ(Xi) = Xi+1

• To complete the algebra we also need ∆(γ) = γ ⊗ γ



Twist
• Can move away from the orbifold point by a Drinfeld twist

∆(a) = F∆o(a)F−1

• (For β-deformation see [Garus ’17], also [Dlamini, KZ ’16,’19] for LS)

• We require that ∆ preserves the F -term relations:

∆(σXZ
± ) ▷

(
X12Z22 −

1
κ

Z11X12

)
= 0

• A suitable twist is:

F = I ⊗ κ−
s
2 where s =

{
1 if the gauge index is 1
−1 if the gauge index is 2

• Recall that γ flips the gauge index ⇒ s ◦ γ = −γ ◦ s



Twisted coproduct
• Twisting the unbroken generators has no effect:

∆(σ3) = (I ⊗ κ−
s
2 )(I ⊗ σ3 + σ3 ⊗ I)(I ⊗ κ

s
2 ) = (I ⊗ σ3 + σ3 ⊗ I)

• But on the broken generators we find:

∆(σ±) = (I ⊗ κ−
s
2 )(I ⊗ σ± + σ± ⊗ γ)(I ⊗ κ

s
2 ) = (I ⊗ σ± + σ± ⊗ γκs)

• Defining K = γκs, and also ∆o(s) = s ⊗ I, our final coproducts are:

∆(σ±) = I ⊗ σ± + σ± ⊗ K , ∆(K ) = K ⊗ K

• K 2 = 1 ⇒ Compatibility of the coproduct with the algebra product

∆([σ+, σ−]) = [∆(σ+),∆(σ−)]

• The SU(2) commutation relations are not deformed, unlike in Uq(sl(2))



Iterated coproduct
• The twist satisfies the cocycle condition

F12 ◦ (∆o ⊗ id)(F ) = F23 ◦ (id ⊗∆o)(F ) =: F(3)

giving

∆(3)(a) = F(3)∆
(3)
o (a)F−1

(3) = I ⊗ I ⊗ a + I ⊗ a ⊗ K + a ⊗ K ⊗ K

• Similarly we find the L-site coproduct for the broken/revived generators:

∆(L)(a) =
∑

i

· · · I ⊗ I ⊗ ai ⊗ K ⊗ K · · ·

• By construction, the coproduct preserves the quantum plane relations

• The superpotential is now invariant under all SU(3) generators

∆(3)(σXY
±,3) ▷W = ∆(3)(σXZ

±,3) ▷W = ∆(3)(σYZ
±,3) ▷W = 0



Is this useful?

• The Hamiltonian does not commute with ∆(a) (for the broken a’s).
• So we do not expect κ-deformed multiplets to map 1-1 to eigenstates

of the Hamiltonian
• Algebraic Bethe Ansatz: Assume there exists an R-matrix R(u), depending

on a spectral parameter u
• Our twist is in the quantum plane limit (u → ∞ for rational integrable models)
• The full twist will also be u-dependent, such that

R(u, κ) = F (u)21R(u, κ=1)F (u)−1
12

• So we expect a different twist/coproduct for each u (i.e. each eigenvalue of H)

• For BPS states, it turns out that ∆BPS(a, κ) = ∆(a,1/κ).

• Agrees with the direct diagonalisation in [Gadde,Pomoni,Rastelli ’10]



Example: BPS spectrum
X12X21X12X21

X12X21X12Z22 + κX12X21Z11X12 + X12Z22X21X12 + κZ11X12X21X12

κX12X21Z11Z11 + X12Z22X21Z11 + 1
κ

X12Z22Z22X21 + κZ11X12X21Z11 + Z11X12Z22X21 + κZ11Z11X12X21

∆BPS(σXZ
− )

∆BPS(σXZ
− )

· · ·

• To get a closed eigenstate, add the state with {1 ↔ 2, κ↔ κ−1} and impose
cyclicity. We find the following BPS state:

κTr1(X12X21Z11Z11) + Tr1(X12Z22X21Z11) +
1
κ

Tr1(X12Z22Z22X21)

• This state is not protected by N = 2 supersymmetry. The fact that it still has
E = 0 is a consequence of the quantum symmetry



Twisted SU(4) groupoid

• We have extended this to multiplets in the full deformed SU(4) sector
[Andriolo, Bertle, Pomoni, Zhang, KZ, to appear]

• Mainly focused on L = 2 (20′,15) and L = 3 (50, 10) etc.
• The non-BPS multiplets of the closed Hamiltonian at κ = 1 break up into

several multiplets as κ ̸= 1
• Main idea: Can partially untwist the Hamiltonian to make the open multiplets

agree with those at the orbifold point, while leaving the closed spectrum
unchanged. Schematically:

R′(u, κ) = G(u)21R(u, κ)G(u)−1
12 ⇒ H ′

open = Hopen + δHopen (but H ′
c = Hc)

• In this basis the splitting is only due to the closed boundary conditions
• First step towards constructing F (u)



Not discussed

• Coordinate Bethe Ansatz for the 2-magnon problem

• 3-magnon scattering in special cases (D. Bozkurt, E. Pomoni)

• Dynamical Yang-Baxter equation (Felder)

• Interpretation as dilute RSOS model (with A. Roux)

• Hints of integrability in the XY sector (with M. de Leeuw, E. Pomoni, A.
Retore)

• More general N = 2 orbifolds, e.g. Zk ,Dk (with J. Bath)



Summary

• Spin chains for N = 2 orbifold theories are dynamical

• The naively broken SU(4)R generators are not lost but can be upgraded to
generators of a quantum groupoid

• Found a simple twist that takes us away from the orbifold point

• The twist leads to a quantum groupoid coproduct

• Studied short chains with the goal of better understanding the twist and the
implications of this quantum symmetry

Thanks for your attention!


