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Outline

Explain what is meant by “quantum” symmetry

Review N = 2 superconformal theories, arising as orbifolds of the N’ = 4
theory

Briefly discuss the types of spin chains that arise in the planar limit of these
theories

Construct the quantum symmetry of the Z, orbifold theory



Lie groups and Lie algebras
e Lie groups «» Symmetry in physics
G = eizk ok Tk

e TX are Lie algebra generators

e SU(2) — theory of spin in Quantum Mechanics
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e Product is non-commutative, e.g. SxSy, # Sy Sy

where



The coproduct
e Algebra elements act naturally on a representation space {|v')} (Hilbert

space in QM) . .
Sz|t) = > 1), Sz[i) = 3 1)

e How does S act on [¢1) @ [15)?



The coproduct

e Algebra elements act naturally on a representation space {|v')} (Hilbert
space in QM)

h h
S 1) = > 1), S [i) = 3 1)

e How does S act on [¢1) @ [15)?

AS)(|91) @ [1h2)) = (S 1)) ® [tb2) + |91) @ (S]eb2))



The coproduct

e Algebra elements act naturally on a representation space {|v')} (Hilbert
space in QM)

h h
S 1) = > 1), S [i) = 3 1)

How does S act on |th1) ® |12)?

AS)(|91) @ [1h2)) = (S 1)) ® [tb2) + |91) @ (S]eb2))

We have just used a coproduct:

AX)=X@1+10X

A is co-commutative: 742 o A(X) = A(X)
Hopf algebra: Allow A to be non-co-commutative



Hopf Algebras

e An algebra A (over a field k) is a vector space together with a product
m: A A— Aandaunitmapn:k — A
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(+ more diagrams)



Hopf Algebras

e A coalgebra A is instead equipped with a coproduct A : A - A® A and a
counite: A — k

AR AR A
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(+ more diagrams)



Hopf Algebras

e A bialgebra is both an algebra and a coalgebra in a compatible way

ARAR A AQARQ A
m®?// \\§®m A®ﬁ// \\5®A
A A A A A A A A

N AN

(+ more diagrams)

e A Hopf Algebra is a bialgebra equipped with an antipode S : A — A
m(S®id)ocA=m(id® S)oA=noe.



Quasitriangular Hopf algebras

Would like both m and A to be non-commutative
However, there can still be a relation between A and 75 A.

riz 0 A(a) = R(A(Q)R™

R: A® A— A® Ais called an R-matrix.
Quantum Yang—Baxter Equation (QYBE)

Ri2R13R23 = ResRi3 Rz (RiserSIkperpn = stkpRiranr/Sm)

A Hopf algebra with R satisfying the YBE is called quasitriangular —
“Quantum Group”

The YBE guarantees that the algebra is not too trivial



Drinfeld twists

Given an initial Hopf algebra, we can twist it to produce (in general) a
quasi-Hopf algebra

Drinfeldtwist F: A A — AR A

Ar(a) = F(A(a))F ', Rr— Fp - R-F-1

To get a Hopf algebra, F should satisfy the cocycle condition

(1@ F)(de A)F=(F®1)(A®id)F

e Then, Rr will satisfy the QYBE
If not = quasi-Hopf algebra (non-associative)



The N = 4 SYM theory

e Maximal supersymmetry in d = 4
e Contains a gauge field A, 4 spinors wé, and 3 complex scalars &

e All'in the adjoint of SU(N) gauge group — N x N matrices
e Convenient to use N' = 1 superspace notation

£ = / d*0Tre?’ o6~ 9" o' + ( / d?ow + / d?@W) +
e Chiral Superfields ¢’ = ¢/ + 9y, + 60?F', i=1,2,3
e N = 4 superpotential:
W= g Tr &'[02, 0% = I ¢ Tr o ik
e The actual potential of the QFT is derived as

_owow
0 O




Reducing supersymmetry

In previous work, looked at the A/ = 1 marginal deformations of A" = 4 SYM
[Dlamini, KZ *19]

Wis = kTr (<D1 [¢2, c])3]q Ik g ((¢1)3 + (¢2)3 + (¢3)3)>

g-commutator [X, Y], = XY — q¥YX

Identified a Drinfeld twist which takes us from (q, h) = (1, 0) to the general
case = SU(3)q,n

Does not satisfy the cocycle condition

Today we will look at ' = 2 theories, which are not purely superpotential
deformations.



Z, orbifold of A’ = 4 SYM
e Start with A/ = 4 SYM with SU(2N) gauge group
e 6 real (3 complex) scalar fields: SO(6) ~ SU(4) R-symmetry group

Project (V, X, Y,Z) — (V,—X,-Y,Z) in R-symmetry space

Project by [---] — ~[- - -]y in colour space, where

_{ Inxn 0
7( 0 _INXN)

End up with /' = 2 SYM with SU(N); x SU(N), gauge group
(41 0 (0 X2 [ 0 Yy
2=(% 2) o x=( 0) v=( %)

Z’s adjoints, X, Y bifundamentals



Z, orbifold of N/ = 4 SYM

e Represent using a quiver diagram:

— v,
Z 1G. Y. .9222

e Superpotential:  Wy—4 = igTr(X[Y, Z]) —
Winzo = ig (Tra(Ya1Z11 X12 — Xo1Z11 Y12) — Try(X12Zo2 Yo1r — Y12Z22X21))

e The SU(4)r symmetry is (naively) broken to SU(2), x SU(2)g x U(1).



Marginally deformed orbifold

Move away from the orbifold point: g # go

W = igq Tra(Ya1Z11 X12 — Xo1Z11 Y12) — ig2 Tr1(X12Z22 Yo1 — Y1222 Xo1)

Still preserves N = 2 supersymmetry

Studied in detail in [Gadde,Pomoni,Rastelli *10].

Leads to interesting spin chains in the planar limit

Focus on holomorphic SU(3) sector

» Unbroken SU(2) subsector made up of X, Y fields
> “SU(2)-like” subsector made up of X, Z fields

First recall how spin chains arise in N' = 4 SYM



Spin chains from A/ = 4 SYM

[Minahan-Zarembo '02]
Take planar limit N — oo

Observables are gauge invariant operators
E.g. SU(2) scalar sector: X, Y

O(x) = Tr[ - XXXYXXXYXX - -]

We want to diagonalise the dilatation operator of the theory

DO(x) = (L+ ~)O(x) ~: anomalous dimension

Difficult problem because of operator mixing
At one-loop, D acts exactly like a Heisenberg Hamiltonian
Integrability = Solution of the A/ = 4 spectral problem



XY sector: Diagrams

e F-term contributions to the Hamiltonian

Yi2 Xo1 Y13 Xog Xo Yiz
e Will rescale by g1g» and define k = g»/9;.



XY sector: Hamiltonian

e N = 2 picture
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e “Dynamical N = 4” picture
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XZ sector: Diagrams

e F-term contributions to the Hamiltonian

e Will again rescale by g1g» and define x = g»/9;.



XZ sector: Hamiltonian

e N = 2 picture

00 0 00
0 x -1 00
0 -1 ' 0 0
00 0 00
Hit=109 0 0 0 0
00 0 00
00 0 00
00 0 00

e “Dynamical N = 4” picture

00 0 0
0 -1 0
T=lo -1 «' 0
0 0 0 0

0 0
0 0
0 0
0 0
0 0
k=1 —1
—1 K
0 0

oo
N
\
cocoo

[cNeoNoNoNeNolNoNe]

on:

(eoNeoNeNe]

Xi12X21
Xi2Z22
Z11 X12
Z112Z41
X1 X12
Xa1Z41
Zo2 Xo
ZooZoo

on:

XX
XZ
zX
zz



Dynamical spin chains

e The XY chain is strictly alternating:

2s 25+1 2s+2 25+3 2s+4 2s+5 2546 2547
e The XZ chain is “dynamical”: The Hamiltonian depends on the number of X’s
crossed.

z Hx z Hx x Hx x Hyv x Hx z Hyv x Hy z

2s 25+1 25+2 25+3 25+4 25+5 25+6 2s+7

e Introduced a “dynamical” parameter taking two values A, \’ (more later)
e )\« X when crossing X, Y, unchanged when crossing Z



Alternating chains

There is extensive condensed-matter literature on
alternating chains, though mostly for the antiferromagnetic case

E.g. the bimetallic chain MnNi(NO;)4(en),(en = ethylenediamide)

Pa fafag o

[Feyerherm, Mathoniére, Kahn, J. Phys. Condens. Matter 13, 2639 (2001)]

Have been studied with various techniques such as the recursion method
[Viswanath,Muller '94], also long-wavelength approximations [Huang et al. *91]

It is not known whether such chains are integrable (solvable by some type of
Bethe Ansatz)



Quantum Symmetry

[work with E. Andriolo, H. Bertle, E. Pomoni and X. Zhang]
First, understand the symmetries better

Xi2

Yo
Ge1 e

Xo1

Naively, SU(4)g — SU(2),”"? x SU(2)5%* x U(1)

Eight broken generators: R% , RY, , R%, R + conjugates

Relate fields which now belong to different SU(N) x SU(N) representations

e Claim: Can upgrade them to true generators in a quantum version of SU(4)g

E.g. wanttowrite:  [R3X%, =22, , R3Z% = X%




Quantum Symmetry
e Gauge indices of all fields to the right need to be flipped

A(e%)

L X2l Yo1 Xy — - L1 L1441 Yia Xor -

Can achieve this with a suitable coproduct = Quantum algebra

Structure is that of a quantum groupoid [Lu '96, Xu '99]

Path groupoid: Like a group, but not all compositions of elements are allowed.
The allowed paths are those given by the quiver.

Unbroken generators have the Lie algebraic coproduct Ay(a) = I a+a® |

For the broken generators we define:

No(a)=I®a + a®y , where v(Xj) = Xit1

To complete the algebra we also need A(y) =~y ® v



Twist

e Can move away from the orbifold point by a Drinfeld twist

A(a) = FAy(a)F ™!

(For 3-deformation see [Garus '17], also [Dlamini, KZ '16,19] for LS)

We require that A preserves the F-term relations:
1
INCDI <X12222 - 5211)(12) =0

A suitable twist is:

1 if the gauge index is 1

F=Il®kx 2 where s= { —1 i the gauge index is 2

Recall that ~ flips the gauge index = soy= —vo s



Twisted coproduct

¢ Twisting the unbroken generators has no effect:
Alos)=(lor 2)(I®os+os@ )(I® k) =(I®os+ 030 ))

But on the broken generators we find:

Aloy) = (/®n_%)(/®ai +ogt ®’}/)(I®I€%) =(I® ot +0r ®YK®)

Defining K = vk®, and also A,(s) = s ® /, our final coproducts are:

|A(0x)=1®0s + 020K , AK)=KaK |

e K2 =1 = Compatibility of the coproduct with the algebra product
A(loy,0-]) = [A(0+), A(o-)]

e The SU(2) commutation relations are not deformed, unlike in Uy(s1(2))



Iterated coproduct
e The twist satisfies the cocycle condition
Fiz 0 (Ao ®id)(F) = Faz 0 (id ® Ao)(F) =: Fg)
giving
A®)(a) = FgaP(a)F) = Iolva+vacK+av KoK

e Similarly we find the L-site coproduct for the broken/revived generators:

AD@) =) " IgI®aaK®K---

i

e By construction, the coproduct preserves the quantum plane relations
e The superpotential is now invariant under all SU(3) generators

ARG > W= 2O GE ) e W =28 (1) e W =0



Is this useful?

e The Hamiltonian does not commute with A(a) (for the broken a’s).

e So we do not expect x-deformed multiplets to map 1-1 to eigenstates
of the Hamiltonian

e Algebraic Bethe Ansatz: Assume there exists an R-matrix R(u), depending
on a spectral parameter u

e Our twist is in the quantum plane limit (u — oo for rational integrable models)
e The full twist will also be u-dependent, such that

R(u, k) = F(u)21 R(u, k=1)F(u);;
e So we expect a different twist/coproduct for each u (i.e. each eigenvalue of H)

o For BPS states, it turns out that ABPS(a, k) = A(a, 1/k).

e Agrees with the direct diagonalisation in [Gadde,Pomoni,Rastelli *10]



Example: BPS spectrum
Xi2Xo1 X12X21

J(ABPS(O'{Z)
X12Xo1 X12Zp2 + £ X12X01 Z11 Xi2 + X12Zo2Xo1 X12 + 211 X12X21 X2
lABPS(O.)_(Z)
$X12Xe1 211211 + X12Zo2Xo1 Zi1 + L X12Z02Z00 Xo1 + 1211 X12Xe1 211 + Z11 X12Zo2Xo1 + 1211211 X12 X1
1
e To get a closed eigenstate, add the state with {1 <+ 2, x <+ x~'} and impose
cyclicity. We find the following BPS state:
1
R (Xi2Xo1 211 Z11) + Tr(Xi2202X21 Z11) + T (X12222222X21)

e This state is not protected by ' = 2 supersymmetry. The fact that it still has
E = 0 is a consequence of the quantum symmetry



Twisted SU(4) groupoid

e We have extended this to multiplets in the full deformed SU(4) sector
[Andriolo, Bertle, Pomoni, Zhang, KZ, to appear]

e Mainly focused on L =2 (20’,15) and L = 3 (50, 10) etc.

e The non-BPS multiplets of the closed Hamiltonian at x = 1 break up into
several multiplets as x # 1

e Main idea: Can partially untwist the Hamiltonian to make the open multiplets
agree with those at the orbifold point, while leaving the closed spectrum
unchanged. Schematically:

R'(u,r) = G(u)21 R(u, k)G(U);; = Hbpen = Hopen + 0Hopen (but Hg = H)

¢ In this basis the splitting is only due to the closed boundary conditions
e First step towards constructing F(u)



Not discussed

Coordinate Bethe Ansatz for the 2-magnon problem

3-magnon scattering in special cases (D. Bozkurt, E. Pomoni)

Dynamical Yang-Baxter equation (Felder)

Interpretation as dilute RSOS model (with A. Roux)

Hints of integrability in the XY sector (with M. de Leeuw, E. Pomoni, A.
Retore)

More general N = 2 orbifolds, e.g. Z, Dx (with J. Bath)



Summary

e Spin chains for /' = 2 orbifold theories are dynamical

e The naively broken SU(4)g generators are not lost but can be upgraded to
generators of a quantum groupoid

e Found a simple twist that takes us away from the orbifold point
e The twist leads to a quantum groupoid coproduct

e Studied short chains with the goal of better understanding the twist and the
implications of this quantum symmetry

Thanks for your attention!



