

6TH MANDELSTAM THEORETICAL PHYSICS SCHOOL AND WORKSHOP 2024

 24 0

COMPLEX LANGEVIN STUDY OF SPONTANEOUS SO(10) SYMMETRY BREAKING IN EUCLIDEAN IKKT MATRIX MODEL

ARPITH KUMAR CCNU WUHAN, CHINA

16th Jan, 12:00 - 12:30 sast University of Wits, Johannesburg, South Africa

ONGOING WORK WITH ANOSH JOSEPH AND PIYUSH KUMAR COMPLEX LANGEVIN STUDY OF SPONTANEOUS SO(10) SYMMETRY BREAKING IN EUCLIDEAN IKKT MATRIX MODEL

PLAN OF TALK

- 1. IKKT matrix model, SSB, and associated sign problem
- 2. Complex Langevin Method (CLM)
- 3. CLM to IKKT: Challenges and results
- 4. Summary and ongoing work

IKKT MATRIX MODEL

Ishibashi, Kawai, Kitazawa, Tsuchiya (1996)

• Matrix models are promising candidate for non-perturbative formulation of superstrings

• Inspired from Green-Schwarz action of type IIB superstring with Schild gauge

Matrix Regularization	$\{A^{a}, A^{b}\} \rightarrow i \left[X^{a}, X^{b}\right]$ <i>phase-space</i>
Hoppe (1982)	vol $r \to Ir$

- Can be derived from dimensional reduction of $10d \ \mathcal{N} = 1$ SYM theory to a point Jevicki, Yoneya (1997)
- Spacetime emerges dynamically from the eigenvalues of Hermitian matrices
- Our motivation: dynamical compactification (phenomenological admissibility) *Why we live in three spatial dimensions?*

IKKT MATRIX MODEL

Ishibashi, Kawai, Kitazawa, Tsuchiya (1996)

Euclidean IKKT Model Wick rotated: $X_0 \rightarrow iX_{10}$, $\Gamma^0 \rightarrow -i\Gamma_{10}$

$$Z = \int \mathscr{D}X \, \mathscr{D}\psi \, e^{-(S_b + S_f)}$$
$$S_b = -\frac{1}{4}N \, \mathrm{tr}\left([X_\mu, X_\nu]^2\right)$$
$$S_f = -\frac{1}{2}N \, \mathrm{tr}\left(\psi_\alpha \, \Gamma^\mu_{\alpha\beta} \, [X_\mu, \psi_\beta]\right)$$

Z finite Krauth, Nicolai and Staudacher (1998) Austing and Wheater (2001) Vectors X_{μ} Majorana-Weyl spinors ψ_{α}

 $X_{\mu}, \psi_{\alpha} : N \times N$ Hermitian traceless matrices $\Gamma^{\mu} : 2^4 \times 2^4$ gamma matrices

 $\mu, \nu = 1, 2..., 10$ $\alpha, \beta = 1, 2, ..., 16$

EUCLIDEAN IKKT: Symmetries

- Euclidean action is invariant under following symmetries
 - A. SU(N) gauge symmetry
 - B. $\mathcal{N} = 2$ supersymmetry
 - C. SO(10) rotational symmetry

$$Z = \int \mathscr{D}X \, \mathscr{D}\psi \, e^{-(S_b + S_f)}$$
$$S_b = -\frac{1}{4}N \, \mathrm{tr}\left([X_\mu, X_\nu]^2\right)$$
$$S_f = -\frac{1}{2}N \, \mathrm{tr}\left(\psi_\alpha \, \Gamma^\mu_{\alpha\beta} \, [X_\mu, \psi_\beta]\right)$$

A. Gauge Symmetry: SU(N)

$$X_{\mu} \to X'_{\mu} = U^{\dagger} X_{\mu} U$$

 $\psi_{\alpha} \to \psi'_{\alpha} = U^{\dagger} \psi_{\alpha} U$

• Inherited from $10D \mathcal{N} = 1$ SYM, for $U \in SU(N)$

EUCLIDEAN IKKT: Symmetries

- Euclidean action is invariant under following symmetries
 - A. SU(N) gauge symmetry
 - B. $\mathcal{N} = 2$ supersymmetry
 - C. SO(10) rotational symmetry

$$Z = \int \mathscr{D}X \, \mathscr{D}\psi \, e^{-(S_b + S_f)}$$
$$S_b = -\frac{1}{4}N \, \mathrm{tr}\left([X_\mu, X_\nu]^2\right)$$
$$S_f = -\frac{1}{2}N \, \mathrm{tr}\left(\psi_\alpha \, \Gamma^\mu_{\alpha\beta} \, [X_\mu, \psi_\beta]\right)$$

B. Supersymmetry: $\mathcal{N} = 2$

$$\delta^{(1)}X_{\mu} = i\overline{\epsilon}_{1}\Gamma_{\mu}\psi \qquad \qquad \delta^{(2)}X_{\mu} = 0$$

$$\delta^{(1)}\psi = -\frac{i}{2}\left[X_{\mu}, X_{\nu}\right]\Gamma^{\mu\nu}\epsilon_{1} \qquad \qquad \delta^{(2)}\psi = \epsilon_{2}$$

• Two set of supersymmetries: $\delta^{(1)}S = \delta^{(2)}S = 0$

EUCLIDEAN IKKT: Symmetries

- Euclidean action is invariant under following symmetries
 - A. SU(*N*) gauge symmetry
 - B. $\mathcal{N} = 2$ supersymmetry
 - C. SO(10) rotational symmetry

$$Z = \int \mathscr{D}X \, \mathscr{D}\psi \, e^{-(S_b + S_f)}$$
$$S_b = -\frac{1}{4}N \, \mathrm{tr}\left([X_\mu, X_\nu]^2\right)$$
$$S_f = -\frac{1}{2}N \, \mathrm{tr}\left(\psi_\alpha \, \Gamma^\mu_{\alpha\beta} \, [X_\mu, \psi_\beta]\right)$$

C. Rotational Symmetry: SO(10)

$$X_{\mu} \to X'_{\mu} = \Lambda^{\rho}_{\mu} X_{\rho}$$

• Spontaneously broken:

SO(10) \longrightarrow SO(*d*) matrix d.o.f. gravitational d.o.f.

dynamical compactification

NUMERICAL SIGN PROBLEM AND SSB INVESTIGATION

Integrating out fermions, we obtain Fermion • matrix \mathcal{M} :

$$\mathcal{M}_{a\alpha,b\beta} = \frac{N}{2} \Gamma^{\mu}_{\alpha\beta} \mathrm{Tr}\left(X_{\mu}\left[t^{a},t^{b}\right]\right)$$

Г

anti-symmetric matrix: $16(N^2 - 1) \times 16(N^2 - 1)$

complex nature:

$$Pf\mathcal{M} = |Pf\mathcal{M}| e^{i\theta}$$

fluctuates wildly

$$Z = \int \mathscr{D}X \ \mathscr{D}\psi \ e^{-(S_b + S_f)}$$
$$Z = \int \mathscr{D}X \ \mathbf{Pf}\mathscr{M} \ e^{-S_b} = \int \mathscr{D}X \ e^{-S_{\text{eff}}}$$
$$S_{\text{eff}} = S_b - \ln(\mathbf{Pf}\mathscr{M})$$
$$S_b = -\frac{1}{4}N \ \text{tr}\left([X_\mu, X_\nu]^2\right)$$

NUMERICAL SIGN PROBLEM AND SSB INVESTIGATION

- MC and 1/*D* expansion to bosonic IKKT model No SSB Hotta, Nishimura and Tsuchiya (1998)
- MC to phase-quenched IKKT model with | Pf.*M* | No SSB Ambjorn, Anagnostopoulos, Bietenholz, Hotta and Nishimura (2000) Anagnostopoulos, Azuma and Nishimura (2013)

why phase quenched?

 $e^{-S_{\rm eff}} \rightarrow {\rm probability weight}$

sign problem in Monte Carlo!

• Phase $e^{i\theta}$ responsible for SSB!

how to incorporate complex phase?

complex Langevin

COMPLEX LANGEVIN STUDY OF SPONTANEOUS SO(10) SYMMETRY BREAKING IN EUCLIDEAN IKKT MATRIX MODEL

PLAN OF TALK

- 1. IKKT matrix model, SSB, and inherent sign problem
- 2. Complex Langevin Method (CLM)
- 3. CLM to IKKT: Challenges and results
- 4. Summary and ongoing work

COMPLEX LANGEVIN METHOD

For complex actions: $S = S_{re} + iS_{im}$

 $e^{-(S_{re}+iS_{im})} \rightarrow \text{probability weight}$ \downarrow *complex Langevin dynamics* sign problem in Monte Carlo!

COMPLEX LANGEVIN METHOD IN A NUTSHELL

COMPLEX LANGEVIN METHOD IN A NUTSHELL

Klauder (1983), Parisi (1983)

COMPLEX LANGEVIN METHOD CORRECT CONVERGENCE

Klauder (1983), Parisi (1983)

• Expectation values of holomorphic observables \mathcal{O} in real and complex configuration space

$$\langle \mathcal{O} \rangle_{P(\tau)} = \frac{\int d\phi_x d\phi_y \ P(\phi_x, \phi_y; \tau) \ \mathcal{O}(\phi_x + i\phi_y)}{\int d\phi_x d\phi_y \ P(\phi_x, \phi_y; \tau)}$$

$$\langle \mathcal{O} \rangle_{\rho(\tau)} = \frac{\int d\phi \ \rho(\phi;\tau) \ \mathcal{O}(\phi)}{\int d\phi \ \rho(\phi;\tau)}$$

• Complex Langevin is justified if

$$\lim_{\tau \to \infty} \langle \mathcal{O} \rangle_{P(\tau)} \stackrel{?}{\simeq} \langle \mathcal{O} \rangle_{\rho(\tau)}$$

• When action is complex, no such proof of convergence exists!

COMPLEX LANGEVIN METHOD CORRECTNESS CRITERIA

Aarts, Seiler, and Stamatescu (2009)

$$\langle \mathscr{L}^T \mathscr{O} \rangle = 0$$

$$\mathscr{L}^{T} = \frac{\partial}{\partial \phi_{x}} \left(\frac{\partial}{\partial \phi_{x}} + \operatorname{Re}\left[\frac{\partial S[\Phi]}{\partial \phi_{x}} \right] \right) + \frac{\partial}{\partial \phi_{y}} \left(\operatorname{Im}\left[\frac{\partial S[\Phi]}{\partial \phi_{y}} \right] \right)$$

 \mathcal{L} : Langevin operator

Probability distribution P(u) falls off exponentially or faster

COMPLEX LANGEVIN STUDY OF SPONTANEOUS SO(10) SYMMETRY BREAKING IN EUCLIDEAN IKKT MATRIX MODEL

PLAN OF TALK

- 1. IKKT matrix model, SSB, and associated sign problem
- 2. Complex Langevin Method (CLM)
- 3. CLM to IKKT: Challenges and results
- 4. Summary and ongoing work

APPLYING COMPLEX LANGEVIN METHOD TO IKKT MATRIX MODEL

Investigate Spontaneous SO(10) Symmetry Breaking

Extent of space-time as an order parameter

$$\langle \lambda_{\mu} \rangle = \left\langle \frac{1}{N} \operatorname{tr} \left(X_{\mu} \right)^2 \right\rangle$$

Intact SO(10)

 $\mu = 1, 2, ..., 10$: all equivalent directions

SSB
$$SO(10) \rightarrow SO(d)$$

 $\mu = 1, 2, ..., d$: extended directions $\mu = d + 1, d + 2, ..., 10 - d$: shrunken directions

APPLYING COMPLEX LANGEVIN METHOD TO IKKT MODEL

Bosonic IKKT model

Computational side-note

- MPI-based X_{μ} on μ -th core
- Broadcast/Gather to all cores

• Langevin evolution of X_{μ} at Langevin time τ

$$\frac{\partial (X_{\mu})_{ji}}{\partial \tau} = -\frac{\partial S_b}{\partial (X_{\mu})_{ji}} + (\eta_{\mu})_{ij}(\tau)$$
$$\frac{\partial S_b}{\partial (X_{\mu})_{ji}} = -N\left(\left[X_{\nu}, [X_{\mu}, X_{\nu}]\right]\right)_{ij}$$

Hermitian noise obeying

$$\propto \exp\left(-\frac{1}{4}\int \operatorname{Tr}\left(\eta_{\mu}^{2}(\tau)\right)d\tau\right)$$

APPLYING COMPLEX LANGEVIN METHOD TO IKKT MODEL

Bosonic IKKT model

APPLYING COMPLEX LANGEVIN METHOD TO IKKT MODEL

IKKT model

• Langevin evolution of X_{μ} at Langevin time τ

$$\frac{d(X_{\mu})_{ji}}{d\tau} = -\frac{\partial S_{\text{eff}}}{\partial (X_{\mu})_{ji}} + (\eta_{\mu})_{ij}(\tau)$$
$$\frac{\partial S_{\text{eff}}}{\partial (X_{\mu})_{ji}} = \frac{\partial S_b}{\partial (X_{\mu})_{ji}} - \frac{1}{2} \operatorname{Tr} \left(\frac{\partial \mathscr{M}}{\partial (X_{\mu})_{ji}} \mathscr{M}^{-1} \right)$$

- Challenges: violation of correctness criteria
 - A. Excursion problem
 - B. Singular drift problem

Computational side-note

- MPI-based X_{μ} on μ -th core
- Broadcast/Gather to all cores

Hermitian noise obeying

$$\propto \exp\left(-\frac{1}{4}\int \operatorname{Tr}\left(\eta_{\mu}^{2}(\tau)\right)d\tau\right)$$

CHALLENGES: EXCURSION PROBLEM

- Langevin evolution X_{μ} : SU(N) \rightarrow SL(N, \mathbb{C})
- X_{μ} too far away from Hermitian: results are unreliable
- Hermiticity Norm

$$\mathcal{N}_{H} = -\frac{1}{10N} \sum_{\mu=1}^{10} \operatorname{Tr}\left[\left(X_{\mu} - X_{\mu}^{\dagger} \right)^{2} \right]$$

• Possible solutions: Gauge cooling Seiler, Sexty and Stamatescu (2012)

> Dynamical stabilization Attanasio and Jager (2019)

• Fermion operator *M* has near-zero eigenvalues

$$\mathcal{M}_{a\alpha,b\beta} = \frac{N}{2} \Gamma^{\mu}_{\alpha\beta} \operatorname{Tr} \left(X_{\mu} \left[t^{a}, t^{b} \right] \right)$$

• The drift term diverges: results unreliable

$$\frac{\partial S_{\rm f}}{\partial (X_{\mu})_{ji}} = -\frac{1}{2} \operatorname{Tr}\left(\frac{\partial \mathcal{M}}{\partial (X_{\mu})_{ji}}\mathcal{M}^{-1}\right)$$

• Possible solutions: Mass deformations!

MASS DEFORMATIONS:

 $S \rightarrow S = S_{\rm IKKT} + \Delta S$

Ito and Nishimura (2016)

• In general, $\Delta S = \Delta S_b + \Delta S_f$

$$\Delta S_b \propto \operatorname{Tr}\left(M_{\mu\nu}X_{\mu}X_{\nu}\right)$$

$$\Delta S_f \propto \operatorname{Tr}\left(\psi_{\alpha}\gamma_{\alpha\beta}\psi_{\beta}\right) \text{ shifts eigenvalue } \quad \mathcal{M}_{a\alpha,b\beta} \to \tilde{\mathcal{M}}_{a\alpha,b\beta} = \frac{N}{2}\Gamma^{\mu}_{\alpha\beta}\operatorname{tr}\left(X_{\mu}\left[t^{a},t^{b}\right]\right) + \gamma_{\alpha\beta}\delta_{ab}$$

- Explicitly break the SO(10) rotational symmetry *supersymmetry*?
- Recover original model: $\lim \Delta S \to 0$

SUSY-BREAKING MASS DEFORMATIONS:

Ito and Nishimura (2016)

• Recently, Anagnostopoulos, Azuma, Ito, Nishimura, Okubo, Papadoudis (2020)

breaks SO(10) symmetry:
$$\Delta S_{\rm b} = \epsilon \frac{N}{2} \sum_{\mu} m_{\mu} \operatorname{Tr} \left(X_{\mu} \right)^{2}$$

shifts eigenvalue distribution of \mathcal{M} : $\Delta S_{\rm f} = -m_{\rm f} \frac{N}{2} \operatorname{Tr} \left(\psi_{\alpha} \gamma_{\alpha \beta} \psi_{\beta} \right); \ \gamma = i \Gamma^{8} \Gamma^{9^{\dagger}} \Gamma^{10}$

supersymmetry explicitly broken

 $S \rightarrow S = S_{\rm IKKT} + \Delta S$

• Probe SSB in original IKKT model by extrapolations:

A.
$$N \to \infty$$
 $m_f = 3.0 \implies SO(7)$ B. $\epsilon \to 0$ $\implies m_f = 1.4 \implies SO(4)$ C. $m_f \to 0$ $m_f = 1.0, 0.9, 0.7 \implies SO(3)$ consistent with GEM studyNishimura, Okubo, Sugino (2011)

SUSY-PRESERVING MASS DEFORMATIONS:

$$S \rightarrow S = S_{\rm IKKT} + \Delta S$$

• Analogous to 1*d* BMN matrix model

Berenstein, Maldacena, and Nastase (2002) Bonelli and Natuurkunde (2002)

$$\Delta S = N \operatorname{tr} \left(-M^{\mu\nu} X_{\mu} X_{\nu} + \frac{i}{8} \overline{\psi} N_{3} \psi + i N^{\mu\nu\rho} X_{\mu} [X_{\nu}, X_{\rho}] \right)$$

 $M_{\mu\nu}$: bosonic mass matrix N_3 : fermion mass matrix Myers term

SUSY-PRESERVING MASS DEFORMATIONS:

$$S = S_{\text{IKKT}} + \Delta S \qquad \Delta S = N \operatorname{tr} \left(-M^{\mu\nu} X_{\mu} X_{\nu} + \frac{i}{8} \overline{\psi} N_{3} \psi + i N^{\mu\nu\rho} X_{\mu} [X_{\nu}, X_{\rho}] \right)$$

 $M_{\mu\nu}$: bosonic mass matrix N_3 : fermion mass matrix

Myers term

• Simplest solution:

 $S \rightarrow$

$$\delta X^{\mu} = -\frac{1}{2} \overline{\epsilon} \Gamma^{\mu} \psi$$

$$\delta \psi = \frac{1}{4} \left[X^{\mu}, X^{\nu} \right] \Gamma_{\mu\nu} \epsilon - \frac{i}{16} X^{\mu} \left(\Gamma_{\mu} N_3 + 2N_3 \Gamma_{\mu} \right) \epsilon$$

$$M = -\frac{\Omega^2}{4^3} \left(\mathbb{I}_7 \oplus 3\mathbb{I}_3 \right)$$
$$N_3 = -\Omega \Gamma^8 \Gamma^{9^{\dagger}} \Gamma^{10}$$

$$N^{\mu\nu\rho} = \frac{\Omega}{3!} \sum_{\mu\nu\rho=8}^{10} \epsilon^{\mu\nu\rho}$$

provided flux constraint

SUSY-PRESERVING MASS DEFORMATIONS:

 $S \rightarrow S = S_{\rm IKKT} + \Delta S$

$$\Delta S = N \operatorname{tr} \left(\frac{\Omega^2}{4^3} \sum_{i=1}^7 X_i^2 + \frac{3\Omega^2}{4^3} \sum_{a=8}^{10} X_a^2 + \frac{i\Omega}{3!} e^{abc} X_a[X_b, X_c] - \frac{N\Omega}{8} \psi_{\alpha} \gamma_{\alpha\beta} \psi_{\beta} \right)$$
$$\gamma_{\alpha\beta} = i (\Gamma^8 \Gamma^{9^{\dagger}} \Gamma^{10})_{\alpha\beta}$$

fermion mass term Myers term

bosonic mass term

• Avoids singular drift problem?

shifts eigenvalue
distribution of
$$\mathcal{M}$$
 $\mathcal{M}_{a\alpha,b\beta} \to \mathcal{M}_{a\alpha,b\beta}(\Omega) = \frac{N}{2} \Gamma^{\mu}_{\alpha\beta} \operatorname{tr} \left(X_{\mu} \left[t^{a}, t^{b} \right] \right) - \frac{N\Omega}{8} \gamma_{\alpha\beta} \delta_{ab}$

SUSY-PRESERVING MASS DEFORMATIONS:

$$S \rightarrow S = S_{\rm IKKT} + \Delta S$$

$$\mathcal{M}_{a\alpha,b\beta} \to \mathcal{M}_{a\alpha,b\beta}(\Omega) = \frac{N}{2} \Gamma^{\mu}_{\alpha\beta} \operatorname{tr} \left(X_{\mu} \left[t^{a}, t^{b} \right] \right) - \frac{N\Omega}{8} \gamma_{\alpha\beta} \delta_{ab}$$

SUSY preserving mass deformations evades singular drift problem!

PROBING SSB: SUSY PRESERVING MASS DEFORMATIONS

BOSONIC IKKT MODEL WITH MYERS

$$S_{\rm b} = S_{\rm bIKKT} + N \operatorname{Tr}\left(\frac{\Omega^2}{4^3} \sum_{i=1}^7 X_i^2 + \frac{3\Omega^2}{4^3} \sum_{a=8}^{10} X_a^2 + \frac{i\Omega}{3!} e^{abc} X_a[X_b, X_c]\right) \begin{array}{l} \text{bosonic mass term} \\ \text{Myers term} \end{array}$$

• Extent of space-time as an order parameter $_{0.35}$

•

term

PROBING SSB: SUSY PRESERVING MASS DEFORMATIONS

IKKT DEFORMED MODEL WITH MYERS

$$S = S_{\text{IKKT}} + N \operatorname{tr} \left(\frac{\Omega^2}{4^3} \sum_{i=1}^7 X_i^2 + \frac{3\Omega^2}{4^3} \sum_{a=8}^{10} X_a^2 + \frac{i\Omega}{3!} e^{abc} X_a[X_b, X_c] - \frac{N\Omega}{8} \psi_{\alpha} \gamma_{\alpha\beta} \psi_{\beta} \right)^{\text{bosonic mass term}}_{Myers term} fermion \text{ mass term}_{Myers term}$$

• Extent of space-time as an order parameter

CONCLUSIONS

- Complex Langevin method can detect spontaneous SO(10) symmetry breaking in IKKT matrix model
- SUSY-preserving mass deformations successfully evade singular drift problem

Ongoing work

- Large-*N* extrapolations to investigate exact nature of SO(*d*) symmetric vacuum
- Computation of

$$\frac{\partial S_{\rm f}}{\partial (X_{\mu})_{ji}} = -\frac{1}{2} \operatorname{Tr} \left(\frac{\partial \mathcal{M}}{\partial (X_{\mu})_{ji}} \mathcal{M}^{-1} \right)$$

using *stochastic estimation (noisy estimator method)* with MPI-CUDA based parallel architecture.

ONGOING WORK

• Computation of

$$\frac{\partial S_{\rm f}}{\partial (X_{\mu})_{ji}} = -\frac{1}{2} \operatorname{Tr} \left(\frac{\partial \mathcal{M}}{\partial (X_{\mu})_{ji}} \mathcal{M}^{-1} \right)$$

time complexity

$$O(N^6) \rightarrow O(N^4)$$

using *stochastic estimation (noisy estimator method)* with MPI-CUDA based parallel architecture.

Stochastic Trace T Estimation

$$\operatorname{Tr}\left(\frac{\partial \mathcal{M}}{\partial (X_{\mu})_{ji}}\mathcal{M}^{-1}\right) \simeq \eta^{\dagger} \frac{\partial \mathcal{M}}{\partial (X_{\mu})_{ji}} \frac{\mathcal{M}^{-1}\eta}{\zeta}$$
$$\mathcal{M}^{\dagger}\mathcal{M}\zeta = \mathcal{M}^{\dagger}\eta$$
CG algorithm

- Linear transformation property of fermion matrix ${\mathscr M}$

$$\Psi_{\alpha} \to (\mathscr{M}\Psi)_{\alpha} \equiv (\Gamma_{\mu})_{\alpha\beta} \Big[X_{\mu}, \Psi_{\beta} \Big]$$

$$O(N^4) \rightarrow O(N^3)$$

Deformation parameter: $\Omega = 8$

THANK YOU!

