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Gravitational Energy Conditions: Classical and Quantum

▶ Expect energy density to be positive in General Relativity.

▶ Null energy condition is Tabk
akb ≥ 0.

▶ All energy conditions of GR violated by quantum effects.

▶ Averaged null energy condition,
∫
dλ⟨Tab⟩kakb ≥ 0, proven.

1605.08072, 1610.05308



Quantum Null Energy Condition

▶ For CFT2, QNEC is

Q± = 2π⟨T±±⟩ −
(
S ′′ +

6

c
S ′2
)

≥ 0,

where S is the entanglement entropy (EE) for any interval, and prime
denotes variations of EE w.r.t. null deformations of one of the end-points
of the interval. 1506.02669

▶ Can be rephrased in terms of relative entropy,

S(σ|ρ) = −Tr ρ(log σ − log ρ),

as

lim
y ′→y

δ2S(σ|ρ)
δV (y)δV (y ′)

≥ 0,
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Quenches in CFT2

▶ Dynamics of isolated quantum systems subject to intense research.

▶ Quenches in 1 + 1-dimensions an exciting arena to study thermalisation,
theoretically, numerically, and experimentally. 1603.02889, 1008.3477, 1603.04409

▶ Evolution of EE after quenches is of particular interest. 1305.7244

▶ CFT2 amenable to analytic calculations.
Holographic dual AdS3 gravity similarly tractable.



Quantum Thermodynamics

▶ Generalization of thermodynamics to interacting finite-dimensional
quantum systems using measures of accessible quantum information.
1806.06107

▶ Widely applicable, from quantum engines to chemical reactions.

▶ Generalized Clausius inequalities: 1005.4495

∆Sirr = S(ρτ |ρeqτ ) ≥ 2
d2(ρτ , ρ

eq
τ )

d2(e1,1, e2,2)
.

▶ ∆Sirr/τ is also bounded from above. Related to Bekenstein bound.
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Banados Geometries

▶ States with Q± = 0 termed quantum equilibrium states. 1901.04499

▶ Dual AdS3 described by Banados geometries: with L± ≡ L±(x
±),

ds2 = 2dr dt −
(
r2 − 2(L+ + L−)

)
dt2 + 2(L+ − L−)dt dx + r2dx2.

▶ Boundary energy-momentum tensor has components

⟨t±±⟩ =
c

12π
L±(x

±).

▶ L± = µ2
± are BTZ geometries, with

TH =
2

π

µ+µ−

µ+ + µ−
, s =

c

6
(µ+ + µ−).



Generalizing Banados Geometries

▶ Consider the metric

ds2 = 2dr dt −
(
r2 − 2m(t, x))

)
dt2 + 2j(t, x)dt dx + r2dx2,

supported by the bulk energy-momentum tensor

Ttt =
q

r
+

∂xp

r2
+

p j

r3
, Ttx =

p

r
.

▶ Einstein equations satisfied if

∂tm − ∂x j = 8πGq, ∂t j − ∂xm = 8πGp.



Banados-Vaidya Geometries

▶ Choose

q =
δ(t)

8πG

(
Lf+ − Li+ + Lf− − Li−

)
,

p =
δ(t)

8πG

(
Lf+ − Li+ − Lf− + Li−

)
,

to get

m = θ(−t)
(
Li+ + Li−

)
+ θ(t)

(
Lf+ + Lf−

)
,

j = θ(−t)
(
Li+ − Li−

)
+ θ(t)

(
Lf+ − Lf−

)
.

▶ Boundary energy-momentum is now

⟨t±±⟩ =
c

24π
(m ± j).

▶ Dual to CFT2 states with homogeneous or inhomogeneous quench.
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Uniformizing Banados Geometries

▶ All Banados geometries are locally AdS3: R = −6.

▶ Can be uniformized to the Poincare patch metric, L± = 0,

R =
r − X+′′

2X+′ − X−′′

2X−′√
X+′X−′

, X =
1

2

(
X+ − X− +

X+′ − X−′

r − X+′′

2X+′ − X−′′

2X−′

)
,

T =
1

2

(
X+ + X− +

X+′ + X−′ − 2
√
X+′X−′

r − X+′′

2X+′ − X−′′

2X−′

)
.

where Sch(X±(x±), x±) = −2L±.
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Calculating EE in CFT2

▶ Equivalent to computation of geodesic lengths in the AdS3 bulk.

▶ All AdS3 geometries with a dual CFT2 can be uniformized
to a Poincare patch.

▶ Geodesic lengths in Poincare patch of AdS are given by

ℓ = log(ξ +
√
ξ2 − 1)

where

ξ =
Z 2
1 + Z 2

2 + ηµνX
µX ν

2Z1Z2
.



Geodesics in Poincare AdS3

▶ In coordinates (z , t, x) Poincare AdS3 has geodesics

z(σ) =
sechσ√
λ2 − ϵ2

, for λ > ϵ,

z(σ) = − cschσ√
ϵ2 − λ2

, for ϵ > λ.

▶ Here, ϵ = pa∂
a
t , λ = pa∂

a
y , and pa is the tangent vector.

▶ Can solve for the other components, and express in terms of
the two endpoints.



Glueing Banados Geometries



Determining Intersection Points

▶ Pick two spacelike separated points at the boundary.

▶ Shoot geodesics from the boundary to some points on the shock.

▶ Form the unique geodesic beyond the shock.

▶ Enforce appropriate jump conditions at the shock.

▶ Necessary to use the uniformization map for each of the three segments.



Calculating EE and QNEC in BTZ-Vaidya

▶ Calculate lengths of the three segments.

▶ Sum to get EE.

▶ To calculate QNEC, determine intersection points with deformed points.

▶ Take derivatives along the deformation.
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Representative geodesic in AdS3-Vaidya
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Precis

▶ Choose the interval with endpoints (t, 0) and (t, l), and look at
transitions between arbitrary BTZ geometries.

▶ For transitions between non-rotating BTZ, can track the complete
evolution.

▶ Can handle all transitions analytically at small times and arbitrary l .

▶ Need numerics in general to determine the intersection points.



EE for Vacuum to Non-Rotating BTZ
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Stages of the Evolution

▶ Quadratic growth at small times after the quench, ∆S ∼ Dt2,
for 0 ≤ t ≪ 1. 1302.0853, 1305.7244

▶ Quasi-linear growth at intermediate times, ∆S = vst.

▶ EE always saturates at t = l/2.

▶ Approach to saturation characterized by an exponent 3/2, i.e.,

∆S ∝ −
(
l

2
− t

)3/2

.



Representative Explicit Expressions

▶ For transition from vacuum to non-rotating BTZ,

D = 2µ2, vs = 4µ = 2SBH .

▶ For linear growth regime, we obtain for large l ,

∆S = 2SBHt + 2 log

(
1− 2t

l

)
+ 4 log 2.

▶ For transitions between arbitrary BTZ geometries, for arbitrary l ,

D = µ2
+f + µ2

−f − µ2
+i − µ2

−i .
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Bounds on Quenches t = 0

▶ For large l , instantaneously after the shock

Q+ =
1

4

(
3µ2

+f − µ2
−f − 3µ2

+i + µ2
−i

)
≥ 0 ,

Q− =
1

4

(
3µ2

−f − µ2
+f − 3µ2

−i + µ2
+i

)
≥ 0 .

▶ For µ±i = 0, these imply µ+f ≤
√
3µ−f ≤

√
3µ+f .

▶ For vacuum to non-rotating BTZ at large l , we can analytically show that
Q±(t) = 0.



Example of (Dis)Allowed Parameter Space

μ
+
f

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.75

0.80

0.85

0.90

0.95

1.00

μ-f



Example of (Dis)Allowed Parameter Space
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Key Features

▶ QNEC non-violation requires that both µ± should increase.

▶ This is necessary but not sufficient.

▶ Given initial entropy and the initial and final temperatures, QNEC
bounds the allowed final entropy from both above and below.

▶ Also places bounds on the rates of growth of entanglement.
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Summary

▶ Investigated QNEC in quenched CFT2 states.

▶ Working out the evolution of entanglement entropy in a large class of
BTZ-Vaidya geometries.

▶ QNEC places tight upper and lower bounds on irreversible entropy
production, and bounds the rates of growth of entanglement.

▶ Provide proof of concept that 1+1-dimensional many body systems can
be used as quantum memories in 2202.00022.



Remarks on Scope of Validity

▶ Holography requires the CFT to have large central charge
and a sparse spectrum.

▶ Timescale of the quench should be faster than any other scale involved.

▶ Temperature scales involved should be smaller than the microscopic
energy scale below which the CFT provides a good description.

▶ Since strongest QNEC bounds arise as l → ∞, we expect
the microscopic details to be irrelevant.



Outlook

▶ Inhomogeneous to inhomogeneous transitions.

▶ Continuous quenches.

▶ Higher dimensions.

▶ Verification in numerical simulations.

▶ Lattice version of QNEC.

▶ Non-relativistic version of QNEC?
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