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Introduction
(Quantum) Gravitational Energy Conditions



Gravitational Energy Conditions: Classical and Quantum

> Expect energy density to be positive in General Relativity.
» Null energy condition is T.,k?k? > 0.
» All energy conditions of GR violated by quantum effects.

> Averaged null energy condition, [ dA(T,s)k?k" > 0, proven.
1605.08072, 1610.05308



Quantum Null Energy Condition

» For CFT,, QNEC is
" 6 12
Qi:27T<Tii>— (S +ES ) 20,

where S is the entanglement entropy (EE) for any interval, and prime
denotes variations of EE w.r.t. null deformations of one of the end-points
of the interval. 1506.02669

» Can be rephrased in terms of relative entropy,

5(clp) = —Trp(log o — log p),

as

i 025(lp)
y'=y OV(y)oV(y') = 7
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Quenches in CFT,

» Dynamics of isolated quantum systems subject to intense research.

» Quenches in 1 + 1-dimensions an exciting arena to study thermalisation,
theoretically, numerically, and experimentally. 1603.02889, 1008.3477, 1603.04409

» Evolution of EE after quenches is of particular interest. 1305.7244

» CFT, amenable to analytic calculations.
Holographic dual AdSs gravity similarly tractable.



Quantum Thermodynamics

» Generalization of thermodynamics to interacting finite-dimensional
quantum systems using measures of accessible quantum information.
1806.06107

» Widely applicable, from quantum engines to chemical reactions.

» Generalized Clausius inequalities: 1005.4495

d*(pr, p5%)
ASi = S(p-|p3?) > 2m .

» AS;,. /7 is also bounded from above. Related to Bekenstein bound.
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Banados Geometries

» States with @4 = 0 termed quantum equilibrium states. 1901.04499
» Dual AdS; described by Banados geometries: with Ly = Ly (x%),

ds® = 2drdt — (r> — 2(Ly + L_))dt? + 2(Ly — L_)dt dx + r?dx>.
» Boundary energy-momentum tensor has components
c
tiy) = —Ly(xT).
(trg) = o Le(x™)
» [, = p3 are BTZ geometries, with

2 pgp— c
Th=--""" s =Z(uy+p).
W= g (1 + 1)



Generalizing Banados Geometries

» Consider the metric
ds® = 2drdt — (r* — 2m(t, x)))dt> + 2j(t, x)dt dx + r’dx,
supported by the bulk energy-momentum tensor

PJ 7. = F
r2 + r3’ BTy

T = il +
e
» Einstein equations satisfied if

Oym — 0yj = 87 (Gq, 0¢j — Oxm = 8w Gp.



Banados-Vaidya Geometries

» Choose
o(t) j i
q:&r—G(Lf — L+ Lf -1,
5 I i
p:%(Lf—L —Lf 417,
to get

m=0(—t)(Ly + L") +6(t) (L} + L"),
J=0(=t) (L, — L") +0(e) (L, —L").
» Boundary energy-momentum is now

< (m=)).

(tes) = 247

» Dual to CFT; states with homogeneous or inhomogeneous quench.
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Uniformizing Banados Geometries

» All Banados geometries are locally AdS3: R = —6.
» Can be uniformized to the Poincare patch metric, L+ =0,

X+ X" _
R= 27— x=2xrox s XX )
IXTIX 2 r— 5% — hx
1 Xt 4+ X7 =2/ X+ X~
_ 4 x-
T_2<X X .
22X+ 2X—7

where Sch(X*(xF),x*) = —2L,.
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Calculating EE in CFT,

» Equivalent to computation of geodesic lengths in the AdS3 bulk.

> All AdS3 geometries with a dual CFT;, can be uniformized
to a Poincare patch.

» Geodesic lengths in Poincare patch of AdS are given by

£ =log(¢+ &2 —-1)

where
2R+ 22+ XHXY

¢ 22,17,




Geodesics in Poincare AdSs

» In coordinates (z, t, x) Poincare AdSs has geodesics

h
z(a):mig, for A > e,
VA2 -
h
z(o’):—%, for e > A

> Here, ¢ = p,0;, A = p,0;, and p? is the tangent vector.
» Can solve for the other components, and express in terms of
the two endpoints.



Glueing Banados Geometries

boundary R=00

Glue(t=0)

II

4,

t=t, R=®

II1




Determining Intersection Points

Pick two spacelike separated points at the boundary.

Shoot geodesics from the boundary to some points on the shock.

>

>

» Form the unique geodesic beyond the shock.

» Enforce appropriate jump conditions at the shock.
4

Necessary to use the uniformization map for each of the three segments.



Calculating EE and QNEC in BTZ-Vaidya

> Calculate lengths of the three segments.
> Sum to get EE.
» To calculate QNEC, determine intersection points with deformed points.

» Take derivatives along the deformation.
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Representative geodesic in AdS3-Vaidya
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Precis

> Choose the interval with endpoints (t,0) and (t, /), and look at
transitions between arbitrary BTZ geometries.

» For transitions between non-rotating BTZ, can track the complete
evolution.

» Can handle all transitions analytically at small times and arbitrary /.

» Need numerics in general to determine the intersection points.



EE for Vacuum to Non-Rotating BTZ
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Stages of the Evolution

» Quadratic growth at small times after the quench, AS ~ Dt?,
for 0 < t < 1. 1302.0853, 1305.7244

» Quasi-linear growth at intermediate times, AS = vst.
> EE always saturates at t = //2.

» Approach to saturation characterized by an exponent 3/2, i.e.,

/ 3/2



Representative Explicit Expressions

» For transition from vacuum to non-rotating BTZ,
D = 2,u2, ve = 4 = 2Spy.

» For linear growth regime, we obtain for large /,
2t
AS =25pyt +2log [ 1 — T + 4log?2.

» For transitions between arbitrary BTZ geometries, for arbitrary /,

D= pis+pls— i —p2s
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Bounds on Quenches t =0

» For large /, instantaneously after the shock

Q=< Buis—p2s—3u3i+p2;) >0,

N e N

Q= (3plr—uir—3p2,+43;) 20,
> For it = 0, these imply pyr < V3u_r < V3puis.
» For vacuum to non-rotating BTZ at large /, we can analytically show that

Qi(t) =0.
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Key Features

» QNEC non-violation requires that both x4 should increase.
» This is necessary but not sufficient.

» Given initial entropy and the initial and final temperatures, QNEC
bounds the allowed final entropy from both above and below.

» Also places bounds on the rates of growth of entanglement.
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Summary

» Investigated QNEC in quenched CFT, states.

» Working out the evolution of entanglement entropy in a large class of
BTZ-Vaidya geometries.

> QNEC places tight upper and lower bounds on irreversible entropy
production, and bounds the rates of growth of entanglement.

» Provide proof of concept that 1+1-dimensional many body systems can
be used as quantum memories in 2202.00022.



Remarks on Scope of Validity

» Holography requires the CFT to have large central charge
and a sparse spectrum.

» Timescale of the quench should be faster than any other scale involved.

» Temperature scales involved should be smaller than the microscopic
energy scale below which the CFT provides a good description.

» Since strongest QNEC bounds arise as | — 0o, we expect
the microscopic details to be irrelevant.



Outlook

Inhomogeneous to inhomogeneous transitions.
Continuous quenches.

Higher dimensions.

Verification in numerical simulations.

Lattice version of QNEC.

Non-relativistic version of QNEC?
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