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A particle, a string and a membrane
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For a particle moving in the metric

c2dτ2 = gµνdx
µdxν

the action functional is

Sparticle = −mc2
∫

dτ = −m

∫ √
gµν

dXµ

dt

dX ν

dt
dt

A particle moving in flat Minkowski spacetime

c2dτ2 = c2dt2 − dx⃗2 = c2(1− v⃗2

c2
)dt2

For small (non-relativistic) velocities this gives

Sparticle = −mc2
∫ √

1− v⃗2

c2
dt− = −mc2

∫
dt +

∫
mv⃗2

2
dt
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In a Schwartschild background

c2dτ2 = (1− rs
r
)c2dt2 − dr2

1− rs
r

− r2dΩ2 rs =
2GM

c2

Sparticle = −mc2
∫ √

1− rs
r
− ṙ2

c2(1− rs
r )

− r2ω⃗2

c2
dt

when c → ∞

Sparticle ≃ −mc2
∫

dt +

∫
{mṙ2

2
+mr2ω⃗2 +

GmM

r
+ · · · }dt
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Coupling to an electromagnetic field

Scharged−particle = −m

∫
dτ + q

∫
Aµdx

µ

Scharged−particle = −m

∫
dt

√
gµν

dXµ

dt

dX ν

dt
+ q

∫
Aµ

dXµ

dt
dt

again for a particle moving in flat Minkowski spacetime this
becomes

Scharged−particle = −m

∫ √
1− v⃗2dt +

∫
(−qϕ+ qv⃗ · A⃗)dt
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The general Nambu Goto action

Nambu-Goto action

SNG = −T

∫
dσ0d

pσ
√
|detG |

Gαβ = ∂αX
M∂βX

NgMN α, β = 0, 1, . . . , p

The point particle

Sparticle = −m

∫
dσ0

√
|G00|

A string has two coordinates σ0 and σ

SNG−string = − 1

2πα′

∫
dσ0dσ

√
|detG |, α, β = 0, 1

A membrane has σ0,σ1 and σ2

SNG−membrane = −T

∫
dσ0d

2σ
√
|detG | α, β = 0, 1, 2
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The equations of motion

The discussion closely follows J. Hoppe (PhD thesis 1982)

δSNG = T

∫
dσ0d

Mσ∂α(
√

|G |Gαβ∂βX
MηNM)δXN

− 1√
|G |

∂α(
√
|G |Gαβ∂βX

M) = 0

With time t = σ0

Gαβ =

(
Ẋ 0Ẋ 0 − ˙⃗

X · ˙⃗
X Ẋ 0∂jX

0 − ˙⃗
X · ∂j X⃗

∂iX
0Ẋ 0 − ∂i X⃗ · ˙⃗

X ∂iX
0∂jX

0 − ∂i X⃗ · ∂j X⃗

)
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Lightcone coordinates

X± =
X 0 ± XD

√
2

dτ2 = 2dX+dX− − dX⃗ · dX⃗

(
2Ẋ+Ẋ− − ˙⃗

X⊥ · ˙⃗
X⊥ Ẋ+∂jX

− + ∂jX
+Ẋ− − ˙⃗

X⊥ · ∂j X⃗⊥

∂iX
+Ẋ− + Ẋ+∂iX

− − ∂i X⃗⊥ · ˙⃗
X⊥ ∂iX

+∂jX
− + ∂iX

+∂jX
− − ∂i X⃗⊥ · ∂j X⃗⊥

)

Choose time to be t = X+

So that ˙X+ = 1 and ∂iX
+ = 0, X⃗⊥ is a D − 1 vector and

Gαβ =

(
2Ẋ− − ˙⃗

X⊥ · ˙⃗
X⊥ ∂jX

− − ˙⃗
X⊥ · ∂j X⃗⊥

∂iX
− − ∂i X⃗⊥ · ˙⃗

X⊥ −∂i X⃗⊥ · ∂j X⃗⊥

)
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The Lagrangian

Assuming gij = ∂i X⃗⊥ · ∂j X⃗⊥ is not degenerate so that it is
invertible then

LNG = −
∫

d2σ
√
|G | = −

∫
d2σ

√
g
√
Γ

where Γ = G00 − G0ig
ijGj0

Γ = 2Ẋ− − ˙⃗
X⊥ · ˙⃗

X⊥ − uig
ijuj

with ui =
˙⃗
X⊥ · ∂i X⃗⊥ − ∂iX

−
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The Canonical Momenta and a Constraint

The Lagrangian density

L =
√
g
√
Γ

The canonical momentum density

P⃗ =
∂L

∂
˙⃗
X⊥

=

√
g

Γ
(
˙⃗
X⊥ − ∂i X⃗⊥g

ijuj)

P+ =
∂L
∂Ẋ−

=

√
g

Γ

This is a consequence of diffeomorphism invariance

Note using ui =
˙⃗
X⊥ · ∂i X⃗⊥ − ∂iX

− that:

(∂i X⃗ ) · P⃗ + ∂iX
−P+ ≡ 0
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The Hamiltonian Density

H =
˙⃗
X⊥P⃗ + Ẋ−P+ − L =

√
g

Γ
(Ẋ− − ∂iX

−ui )

Eliminating in Ẋ−, ∂iX
− and

˙⃗
X⊥ to express the Hamiltonian in

cannonical form and after some algebra one finds

the Hamiltonian and constraint

H =
P2 + g

2P+
and

D−1∑
a=1

{Ẋ a,X a} = 0.

g = det{∂i X⃗⊥∂j X⃗⊥} = ϵij∂kl(∂i X⃗⊥ · ∂k X⃗⊥)(∂j X⃗⊥ · ∂l X⃗⊥)

Reorganising and defining
{f , g} = ρϵij∂i f ∂jg =⇒ g = 1

2ρ2
∑D−1

a=1

∑D−1
b=1 {X a,X b}{X a,X b}

From Membranes to Matrix Models



The Hamiltonian and simplified Lagrangian

H =

∫
d2σ

1

2P+

(
P⃗2 +

1

2ρ2

D−1∑
a=1

D−1∑
b=1

{X a,X b}{X a,X b}

)

with the constraint
D−1∑
a=1

{Ẋ a,X a} = 0

These can be repackaged as the reduced Lagrangian

L =

∫
d2σ

(
1

2

D−1∑
a=1

(DtX
a)2 − 1

4

D−1∑
a=1

D−1∑
b=1

{X a,X b}{X a,X b}

)

where DtX
a = ∂tX

a + ω,X a and ω is a gauge field for
diffeomorphisms.
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Comments

The Lorentz invariance of the system is now hidden in the
equations. To demonstrating the Lorentz invariance of the
system one has to study the equations for X− which have been
eliminated.
The direct quantization of the system has never been achieved! It
is argued that it is probably not a renormalizable system.
The role played by t and the membrane coordinates σ1 and σ2 is
very different. If we treat the potential as a perturbation we only
have ∂t .
The system is a gauge theory with gauge group area
preserving diffeomorphisms
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Quantization via non-commutative regularization

The membrane has a 2-dimensional surface which we are thinking
of as a phase space. If we regulate it by replacing the Poisson
brackets with commutators so that

f (σ) → F functions go to matrices

{X a,X b} → i [X a,Pb] Poisson brackets go to commutators∫
d2f σ → Tr(F ) integration goes to trace of matrices

The Hamiltonian becomes

H = Tr(
1

2
PaPa − 1

2
[X a,X b])

and the constraint that physical states are U(N) invariant.
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The regularizatioon is replacing functions by N × N matrices
f → F, and

∫
Σ f → TrF then quantizing by Ẋ a = 1

i
∂

∂X a

The Hamiltonian becomes

H = −1

2
∇2 − 1

4

d∑
i ,j=1

Tr[X i ,X j ]2

and describes a “fuzzy” relativistic membrane in d + 1 space and
one time dimensions.
H appears to realize a proposed requirement of quantum gravity of
Doplicher, Fredenhagen and Roberts,1995 arXiv:hep-th/0303037
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Fuzzy Regularization

One can study matrix regularized field theories more generally. E.g.
a scalar field on the fuzzy sphere.

S(ϕ) =

∫
S2

{1
2
(∂aϕ)

2 + V (ϕ)}

regulated becomes

S(Φ) = Tr

(
1

2
ΦL2

aΦ+ V (Φ)

)
The geometry is encoded in the Laplacian ∆ = L2

a. The theory
with V (Φ) = gΦ4 has received much attention. However it suffers
from ultravoilet/infra red mixing. The model has not just two
phases but a 3rd non-uniform phase.
Note: For the membrane the classical topology and geometry are
lost in the fuzzy regularized theory.

From Membranes to Matrix Models



Path Integral formulation

The Euclidean finite temperature action for the model is

Sb =
1

g2

∫ β

0
dt tr

{
1

2
(DtX

i )2 − 1

4
[X i ,X j ]2

}
.

where DtX
i = ∂tX

i + [A,X i ] and β, the period of the S1, is the
inverse temperature.

Sb is also the zero volume limit of Yang-Mills on the torus T d .

Higher dimensional membranes have a classical potential in terms
of Nambu Brackets whose fuzzy version becomes

Sb =
1

g2

∫ β

0
dt tr

{
1

2
(DtX

i )2 − 1

p!
[X i1 ,X i2 , . . . ,X ip ]2

}
.
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Path Integral Formulation

For a discussion of the two matrix case see Mathaba, Mulokwe,
Rodrigues, arXiv:2306.00935

Partition Function

Z =

∫
[dX ][dA]e−N

∫ β
0 dt Tr( 1

2
(DtX i )2)−N

4
λabcd

∫ β
0 dt X i

aX
i
b X

j
cX

j
d .

The commutator square term can be written as:

Tr[X i ,X j ]2 = Tr
(
[ta, tc ][tb, td ]

)
X i
aX

i
b X

j
cX

j
d = λabcdX i

aX
i
b X

j
cX

j
d ,

(1)
where ta are SU(N) generators.

Z =
∫
[dX ][dA][dk]e

−N
2

∫ β
0 dt {Tr(DtX i )2+kabX i

aX
i
b}+N

4
µabcd

β∫
0

dt kabkcd

.
The saddle point approximation for kab gives kab = d2/3δab. A
detailed 1/d analysis of the membrane model shows there are in
fact two phase transitions for large enough d .
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The effective dynamics of the Bosonic membrane is given by the
action

Seff ≈ N

∞∫
−∞

dt Tr

(
1

2
(DtX

i )2 − 1

2
m2(X i )2

)
.

One can derive this using a large 1/d expansion which to leading
order in large d gives the Euclidean finite temperature action

Sb = N

β∫
0

dt Tr

(
1

2
(DtX

i )2 +
d2/3

2
(X i )2

)

This model can of course be solved analytically.
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Observations

The eigenvalues of the matrices X i have a Wigner semi-circle
distribution.

At zero temperature the gauge field A can be gauged away,
while at high temperature A becomes an additional matrix in
a pure matrix model.

The entry of A as an additional matrix in the dynamics should
signal a phase transition. This should be a Gross-Witten type
transition. It occurs at

Tc =
m

ln d

The transition can be observed as centre symmetry breaking
in the Polyakov loop.

All of these phenomena should be present in the membrane model.
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The gauged Gaussian model has a phase transition:

The energy for N = 32 and a = 0.05.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
2.0

2.5

3.0

3.5

4.0

T

EêN
2

The gauge field is responsible for the phase transition. At low
temperatures the eigenvalues of A are uniformly distributed but at
high temperatures it becomes another matrix whose eigenvalues
have a Wigner distribution.
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Polyakov loop
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Dashed curves are the high temperature series expansions to 2nd
order.
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Plots of the scaled energy E/N2 and ⟨R2⟩ = 1
Nβ

∫ β
0 dt⟨Tr(X i )2⟩ as

functions of the temperature. The dashed curves correspond to the
high temperature expansion. One can see that near T ≈ 0.9 the
plots suggest the existence of a second order phase transition. The
energy and temperature in the plots are in units of λ1/3.
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The eigenvalue distribution of the holonomy

-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

q

r@qD

Plots of the distribution of the holonomy P for temperatures
T = 0.900 (the gapped phase) and T = .9006 (the ungapped
phase). The plots are for size N = 16 and lattice spacing a ≈ 0.05.
The dashed curves correspond to fits to the gapped and ungapped
distributions.
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Correlation function

0 2 4 6 8 10
0

2

4

6

t

XTrH
X 0
X t
L\

The correlator
〈
Tr
(
X 1(0)X 1(t)

)〉
for N = 30, β = 10 and lattice

spacing a = 0.25. Fitting to A (e−m t + e−m(β−t))
=⇒ m = E1 − E0 ≈ (1.90± .01)λ1/3
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Comments

The zero volume limit of Yang-Mills exhibits two phase
transitions, very close in temperature.

The bosonic relativistic membrane has a mass gap and at low
temperatures is very well described by a system of oscillators.

In contrast to the bosonic string the relativistic bosonic membrane
has only massive excitations!
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The BFSS model

S
SMembrane

=
∫ √

−G −
∫
C + Fermionic terms

The susy version only exists in 4, 5, 7 and 11 spacetime dimensions.

BFFS Model — The supersymmetric membrane à la Hoppe

H = Tr(12

9∑
a=1

PaPa − 1

4

9∑
a,b=1

[X a,X b][X a,X b] +
1

2
ΘTγa[X a,Θ])

It also describes a system of N interacting D0 branes.
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Finite Temperature Model

The partition function and Energy of the model at finite
temperature is

Z = Tr
Phys

(e−βH) and E =
Tr

Phys
(He−βH)

Z
= ⟨H⟩
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The 16 fermionic matrices Θα = ΘαAt
A are quantised as

{ΘαA,ΘβB} = 2δαβδAB

The ΘαA are 28(N
2−1) and the Fermionic Hilbert space is

HF = H256 ⊗ · · · ⊗ H256

with H256 = 44⊕ 84⊕ 128 suggestive of
the graviton (44), anti-symmetric tensor (84) and gravitino (128)
of 11− d SUGRA.

For an attempt to find the ground state see: J. Hoppe et al
arXiv:0809.5270
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Lagrangian formulation

.
The BFSS matrix model is also the dimensional reduction of ten
dimensional supersymmetric Yang-Mills theory down to one
dimension:

SM =
1

g2

∫
dt Tr

{
1

2
(D0X

i )2 +
1

4
[X i ,X j ]2

− i

2
ΨTC10 Γ

0D0Ψ+
1

2
ΨTC10 Γ

i [X i ,Ψ]

}
,

where Ψ is a thirty two component Majorana–Weyl spinor, Γµ are
ten dimensional gamma matrices and C10 is the charge conjugation
matrix satisfying C10Γ

µC−1
10 = −ΓµT .
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The gravity dual and its geometry

Gauge/gravity duality predicts that the strong coupling regime of
the theory is described by IIA supergravity, which lifts to
11-dimensional supergravity.

The bosonic action for eleven-dimensional supergravity is given by

S11D =
1

2κ211

∫
[
√
−gR − 1

2
F4 ∧ ∗F4 −

1

6
A3 ∧ F4 ∧ F4]

where 2κ211 = 16πG 11
N =

(2πlp)9

2π .
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The relevant solution to eleven dimensional supergravity for the
dual geometry to the BFSS model corresponds to N coincident D0
branes in the IIA theory. It is given by

ds2 = −H−1dt2 + dr2 + r2dΩ2
8 + H(dx10 − Cdt)2

with A3 = 0
The one-form is given by C = H−1 − 1 and H = 1 + α0N

r7
where

α0 = (2π)214πgs l
7
s .
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A thermal bath and black hole geometry

ds211 = −H−1Fdt2 + F−1dr2 + r2dΩ2
8 + H(dx10 − Cdt)2

Set U = r/α′ and we are interested in α′ → ∞
H(U) = 240π5λ

U7 and the black hole time dilation factor

F (U) = 1− U7
0

U7 with U0 = 240π5α′5λ. The temperature

T

λ1/3
=

1

4πλ1/3
H−1/2F ′(U0) =

7

24151/2π7/2
(
U0

λ1/3
)
5/2

.

From black hole entropy we obtain the prediction for the Energy

S =
A

4GN
∼
(

T

λ1/3

)9/2

=⇒ E

λN2
∼
(

T

λ1/3

)14/5
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Checks of the predictions

We found excellent agreement with this prediction V. Filev and
D.O’C. arXiv:1506.01366 and 1512.02536.
The best current results (Berkowitz, Rinaldi, Hanada, Ishiki,
Shimasaki and Vranas arXiv 1606.04951) give

1

N2

E

λ1/3
= 7.41

(
T

λ1/3

) 14
5 − (10.0± 0.4)

(
T

λ1/3

) 23
5

+ (5.8± 0.5)T
29
5 + . . .

−5.77T
2
5+(3.5±2.0)T

11
5

N2 + . . .
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The BMN or PWMM

The supermembrane on the maximally supersymmetric plane wave
spacetime

ds2 = −2dx+dx−+dxadxa+dx idx i−dx+dx+((
µ

6
)2(x i )2+(

µ

3
)2(xa)2)

with
dC = µdx1 ∧ dx2 ∧ dX 3 ∧ dx+

so that F123+ = µ. This leads to the additional contribution to the
Hamiltonian

∆Hµ =
N

2
Tr
(
(
µ

6
)2(X a)2 + (

µ

3
)2(X i )2

+
2µ

3
iϵijkX

iX jX k +
µ

4
ΘTγ123Θ

)
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The BMN model

The BMN action

SBMN =

∫ β

0
dτ Tr

{
1

2
(DτX

i )2 +
1

2
(
µ

6
)2(X a)2 +

1

2
(
µ

3
)2(X i )2

+ΨTDτΨ+
µ

4
ΨT iγ123Ψ

−1

4
[X i ,X j ]2 +

2µ

3
iϵijkX

iX jX k +
1

2
ΨTΓi [X i ,Ψ]

}
,

The X i enter the potential as Tr(i [X i ,X j ] + µ
3 ϵ

ijkX k)2.
New non-trivial solutions X a = 0, X i = −µ

3 J
i , with J i su(2)

generators.
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∆Sµ = − 1

2g2

∫ β

0
dτTr

(
(
µ

6
)2(X a)2 + (

µ

3
)2(X i )2

+
2µ

3
iϵijkX

iX jX k +
µ

4
ΨTγ123Ψ

)
The Bosonic model has been studied in
N.S. Dhindsa, A. Joseph, A. Samlodia, and D. Schaich,
arXiv:2308.02538”,
N.S. Dhindsa, R.G. Jha, A. Joseph, A. Samlodia, and D. Schaich,
arXiv:2201.08791
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Large mass expansion

For large µ the model becomes the supersymmetric Gaussian model

Finite temperature Euclidean Action

SBMN =
1

2g2

∫ β

0
dτ Tr

{
(DτX

i )2 + (
µ

6
)2(X a)2 + (

µ

3
)2(X i )2

ΨTDτΨ+
µ

4
ΨTγ123Ψ

}
This model has a phase transition at Tc = µ

12 ln 3
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Perturbative expansion in large µ.

Three loop result of Hadizadeh, Ramadanovic, Semenoff and
Young [hep-th/0409318]

Tc =
µ

12 ln 3

{
1 +

26 × 5

34
λ

µ3
− (

23× 19927

22 × 37
+

1765769 ln 3

24 × 38
)
λ2

µ6
+ · · ·

}
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Perturbative expansion in large µ.

Three loop result of Hadizadeh, Ramadanovic, Semenoff and
Young [hep-th/0409318]

Tc =
µ

12 ln 3

{
1 +

26 × 5

34
λ

µ3
− (

23× 19927

22 × 37
+

1765769 ln 3

24 × 38
)
λ2

µ6
+ · · ·

}
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0.8

T

Large μ-predicted-phase diagram

Passes through zero at µ = 5.65.
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Gravity prediction at small µ

Costa, Greenspan, Penedones and Santos, [arXiv:1411.5541]

lim
λ
µ2

→∞

TSUGRA
c

µ
= 0.105905(57) .

The prediction is for low temperatures and small µ the transition
temperature approaches zero linearly in µ.

1 2 3 4 5
μ

0.1

0.2

0.3

0.4

0.5

T

Small μ-gravity-prediction-phase diagram

2 4 6 8 10
μ

0.2

0.4

0.6

0.8

T

Small and large μ-prediction-phase diagram
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Padé approximant prediction of Tc

Tc =
µ

12 ln 3

{
1 + r1

λ

µ3
+ r2

λ2

µ6
+ · · ·

}
with r1 =

26×5
3 and r2 = −(23×19927

22×3
+ 1765769 ln 3

24×32
)

Using a Padé Approximant: 1 + r1g + r2g
2 + · · · → 1 + 1+r1g

1− r2
r1
g

=⇒ TPadé
c =

µ

12 ln 3

{
1 +

r1
λ
µ3

1− r2
r1

λ
µ3

}
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Now we can take the small µ limit

lim
λ
µ2

→∞

TPadé
c

µ
≃ 1

12 ln 3
(1− r21

r2
) = 0.0925579

lim
λ
µ2

→∞

TSUGRA
c

µ
= 0.105905(57) .
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Padé resummed-phase diagram
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A non-perturbative phase diagram from the Polyalov
Loop.

2 4 6 8 10
μ

0.2

0.4

0.6

0.8

T

Polyakov Loop-phase diagram
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Myers observable-phase diagram
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Green Myers transition
Blue Polyakov loop transition
Purple Padé prediction for the transition
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4-parameter Lattice discretisation

The bosonic lattice Laplacian

∆Bose = ∆+ rba
2∆2 , where ∆ =

2− eaDτ − e−aDτ

a2
.

Lattice Dirac operator

DLat = Ka116 − i
µ

4
γ567 +Σ123Kw , where Σ123 = iγ123 .

Ka = (1−r)
eaDτ − e−aDτ

2a
+r

e2aDτ − e−2aDτ

4a
lattice derivative

Kw = r1f a∆+ r2f a
3∆2 the Wilson term
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Lattice Dispersion relations
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Observables
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Eigenvalue density of A for μ=6.0, T=0.465, N=8, Λ=24
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Small µ
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Non-monotonic Polyakov loop
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Where do we go from here

Use BProbe to visualise the fuzzy sphere phase.

Study the bosonic BMN model—its phase diagram,
theoretical predictions.

Implications of SU(4|2) symmetry.

M2-branes.

Probe BMN with D4-branes—already coded.

N = 1∗ model — at coding stage.

N = 2 models.

Black dual geometries?

M5-brane matrix models?

Quantise (numerically) the diffeomorphism invariant model on
the sphere.
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The Berkooz Douglas Model

Adding fundamental degrees of freedom to the BFSS model yields
the Berkooz–Douglas matrix model

L=LBFSS + tr
(
D0Φ̄

ρD0Φρ + iχ†D0χ
)
+ Lint ,

where:

Lint=tr

(
Φ̄α[X̄ βα̇,Xαα̇]Φβ +

1

2
Φ̄αΦβΦ̄

βΦα − Φ̄αΦαΦ̄
βΦβ

)
+tr

(√
2 i εαβ χ̄λαΦβ −

√
2 i εαβ Φ̄

αλ̄βχ
)

−
Nf∑
i=1

(
(Φ̄ρ)i (X a −ma

i 1)(X
a −ma

i 1)(Φρ)i + χ̄iγa(X a −ma
i 1)χi

)
a = 1, . . . , 5 are transverse to the D4-brane, ma

i are the positions
of the D4-branes, λρ and θα̇ are BFSS and χ the fundamental
fermions.
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The D4-brane as a probe of the geometry.

The dual adds Nf D4 probe branes. In the probe approximation
Nf ≪ Nc , their dynamics is governed by the Dirac-Born-Infeld
action:

SDBI = − Nf

(2π)4 α′5/2 gs

∫
d4ξ e−Φ

√
−det||Gαβ + (2πα′)Fαβ|| ,

where Gαβ is the induced metric and Fαβ is the U(1) gauge field of
the D4-brane. For us Fαβ = 0.

dΩ2
8 = dθ2 + cos2 θ dΩ2

3 + sin2 θ dΩ2
4

and taking a D4-brane embedding extended along: t, u, Ω3 with a
non-trivial profile θ(u).
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Embeddings

2 4 6 8 10u
é cosHqL
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ué sinHqL

ũ sin θ = m +
c̃

ũ2
+ . . . .
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The condensate and the dual prediction

0.5 1.0 1.5 2.0 m
é

0.05
0.10
0.15
0.20
0.25
0.30

-2 cé
T = 0.8 l1ê3

V. Filev and D. O’C. arXiv 1512.02536.

The data overlaps surprisingly well with the gravity prediction in
the region where the D4 brane ends in the black hole.
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The Backreacted Problem

For the backreacted problem we need a solution to 11-dim sugra
(Filev and D. O’C. arXiv:2203.02472) in an M5-brane background
of the form

ds211=−K1(u, v) dt
2 + K3(u, v)(dx11 + A0(u, v) dt)

2

+K2(u, v)(du
2 + u2dΩ2

3) +

+K4(u, v)(dv
2 + v2dΩ2

4) , (2)

F(4) = F ′(v) v4 sin3 ψ sin α̃ cos α̃ dψ ∧ dα̃ ∧ d β̃ ∧ d γ̃ , (3)

dΩ2
3 = dα2 + sin2 α dβ2 + cos2 α dγ2 , (4)

dΩ2
4 = dψ2 + sin2 ψ dΩ̃2

3 , dΩ̃2
3 = dα̃2 + sin2 α̃ d β̃2 + cos2 α̃ d γ̃2 .∫

F(4) =
8

3
π2 v4 F ′(v) = −Q5 the M5-brane charge.

gives

F (v) = 1 +
Q5

8π2v3
≡ 1 +

v35
v3

= 1 +
Nf

Nc

4π3α′3λ

v3
,

From Membranes to Matrix Models



The solution preserving supersymmetry is given by:

ds211=

(
1 +

v35
v3

)−1/3 (
−H(u, v)−1 dt2+

+H(u, v)
(
dx11 + (H(u, v)−1 − 1) dt

)2
+

du2 + u2 dΩ2
3

)
+

(
1 +

v35
v3

)2/3 (
dv2 + v2 dΩ2

4

)
.

Note: Supersymmetry does not restrict the shape of the function
H(u, v). The equation of motion for H can be obtained either by
using the Einstein equations or by requiring that the angular
momentum along x11 is conserved.
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Equation for H(u, v)

The non-trivial equation requiring a solution is:

∂2vH(u, v)+
4

v
∂vH(u, v)+

(
1 +

v35
v3

)(
∂2uH(u, v) +

3

u
∂uH(u, v)

)
= 0
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Perturbation in v5 recovers the probe limit.

In the v → ∞ limit of equation (equivalent to the v5 → 0 limit)
SO(9) symmetry is recovered and

H0(u, v) = 1 +
r70

(u2 + v2)7/2
,

The parameter r70 is proportional to the number of D0–branes, Nc :

r70 = Nc 60π
3 gs α

′7/2 .

1 +
v35
v3

= 1 +
Nf

Nc

4π3λ

(v/α′3)
.

Perturbation in v5 recovers the probe approximation.
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Instability of overlap intersection

There is an instability in the system when the D0-branes lie in the
D4-branes. We move them off into a shell

D0

2Nf 1
3

4
Nf - 1

Nf - 2

D4
D4

D4D4 D4

D4
D4

D4 D4D4D4

u

v0

v0

D0-branes at the origin surrounded by uniform density of
D4-branes separated in the R5 transverse to the D4–branes and a
distance v = v0 from the D0-branes.
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Just as in electrostatics, the solution interior to the shell is the
same as that in the absence of the D4s, however the interior
expression is modified from

H(u, v) = 1 +
r70
r7

to H(u, v) = 1 +
γ3r70
r7

where γ2 = 1 + Nf
Nc

λ
2m3

q
and r2 = u2 + γ2v2 is the interior radial

coordinate. The dependence on Nf /Nc is because the parameter r0
is measured at infinity in u at fixed v .
The backreacted exterior solution takes the fom

H(u, v) = 1 +
r70

(u2 + v2)
7
2

[
1 +

v35
v30

Hc

(
u

v0
,
v

v0
,
v5
v0

)]
.

It is similar to the leading perturbative solution Hc ∼ 1. The
principal effect of increasing v5/v0 is that the geometry outside of
the shell approaches that of the D4-branes geometry in the
absence of D0-branes.
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We need a black hole solution

Work in progress

For useful comparisons with numerical simulations we need an
11-dim gravitational M5-brane solution in the presence of a black
hole. This seems accessible only via numerics.
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