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Dimensional Reduction of Yang-Mills

Consider SU(N) Yang-Mills compactified on a 3-torus.

The Yang-Mills action for R× R3 → R× T3 :

SYM =
1

4g2

∫
dtd3xtrFµνF

µν −−−−→
VT3→0

VT3

4g2

∫
trFµν(t)F

µν(t)

Dimensional reduction on T3 gives a matrix model:
The spatial gauge fields become N × N matrices Aa → Xa and
only A0 = A remains as a gauge field.
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Reduced Hamiltonian

Lagrangian

L =

∫
T3

d3x
1

2
tr(E⃗ 2−B⃗2) =

VT3

4g2
tr(

1

2
[Dt ,Xa]

2+
1

4
[Xa,Xb][X

a,X b])

Hamiltonian

H =

∫
T3

d3x
1

2
tr(E⃗ 2+B⃗2) =

VT3

4g2
tr(

1

2
[Dt ,Xa]

2−1

4
[Xa,Xb][X

a,X b])

This is now a quantum mechanical system of matrices. The
gauge invariance is
Xa → U−1XaU, A → U−1AU + iU−1∂tU.
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Quantization in a Thermal Bath

The gauge field, A, is non-dynamical—the Lagrangian has
no ∂tA dependence.

A is a Lagrange multiplier for a constraint—the Gauss law
constraint.

The constraint requires that the only physical degrees of
freedom are gauge invariant observables.

Canonical Quantization

Z = TrInv(e
−βH)

The physical degrees of freedom are the invariants of the matrices
Xa and Πa = E a, Note [Xa,Xb] ̸= 0.
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Path Integral Quantization

Since this is a quantum mechanical system we can follow the usual
Feynman route to a path integral treatment and perform a Wick
rotation to Euclidean (imaginary) time.

Path Integral Quantization in a Thermal Bath

Z =

∫
[dX ][dA]e−N

∫ β
0 dτ Tr( 1

2
(DτX a)2− 1

4
[X a,X b]2)

One can the evaluate observables with the path integral by
standard techniques.
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Hamiltonian Quantization

The residual gauge field A is not dynamical and appears only in

DτX
a = ∂τX

a − i [A,X a].

It leads to a constraint on the dynamics.

Gauss law constraint

The Lagrange multiplier field, A, multiplies the Gauss law
constraint and forces SU(N) invariant physical states.

From the action we can obtain the Hamiltonian and once we have
the Hamiltonian H we can equally consider thermal ensembles
whose partition function is given by

Z = TrInv(e
−βH) =

∑
E

Ω(E)e−βE .

Inv means SU(N) singlets and Ω(E) the energy degeneracy.
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Reduction to a Gauge Gaussian Model

In leading order in a 1/d expansion the model becomes

A Gauge Gaussian Model

SGG [X ,A] =
1

2

∫ β

0
dτ Tr

{
(DτX

a)2 +m2X aX a
}

with m ≃ d1/3 (V. Filev and D.O’C. arXiv:1506.01366).
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Identifying and Counting Invariants

Consider counting the number of invariants of a system of N × N
matrices, i.e. for g ∈ U(N) invariant under conjugation:

Xi → gXig
−1

X ∈ Mat(N) has N2 degrees of freedom

But there are only N invariants—the N eigenvalues of X .

Eigenvalues are roots or the characteristic polynomial

PN(λ) = Det[X − λ1N ]
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Hamilton-Cayley

The Hamilton-Cayley Theorem

Every finite rank square matrix, X , over a commutative ring
satisfies its own characteristic equation

PN(X ) = 0

where PN(λ) is the characteristic polynomial of X .

PN(X ) recursively

PN(X ) = PN−1(X )X − 1

N
tr(PN−1(X )X ).

with P1(X ) = X − tr(X ).

tr(PN(X )) = 0 gives det(X ) in terms of traces.

Similarly tr(XN+1) becomes products of traces of lower powers.
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2× 2 matrices and 3× 3 traceless matrices

For X , a generic 2× 2 matrix,

P2(x) = P1(X )X − 1

N
tr(P1(X )X )12 P1(X ) = X − tr(X )

=⇒ P2(X ) = X 2 − X tr(X )− 1

2

(
tr(X 2)− tr2(X )

)
12

tr(X 3)− 3

2
tr(X )tr(X 2) +

1

2
tr3(X ) = 0 .

For Y a generic traceless 3× 3 traceless matrix

P3(Y ) = Y 3 − 1

2
tr(Y 2)Y − 1

3
tr(Y 3)

=⇒ tr(Y 4)− 1

2
(tr(Y 2))

2
= 0 .

More generally for an N × N matrix tr(XN+1) is expressible in
terms of products of lower traces.
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All matrix invariants are expressible in terms of the generating set
{tr(X k)} with k ≤ N.

The algebra of GLN invariants

The algebra of invariants of a single generic matrix X is generated
by the N traces tr(X k), k = 1, . . . ,N.

The invariants of X are, of course, the eigenvalues.
The number of invariants for a given power of the matrix is
captured by a generating function (Hilbert-Poincaré series)

ZN(t) =
∞∑
n

dimn(N)tn =
∞∑
n=0

pN(n)t
n

where dimn is the number of invariants formed from n X ’s.
dimn(N) = pN(n) = # partitions of n into N or less parts.

ZN(t) =
N∏

m=1

1

1− tm
= 1+ t +2t2 +3t3 +5t4 +7t5 +11t6 + · · · .
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Fock Space Realisation

For a single matrix the low lying states are:

|0⟩,
tr(a†)|0⟩,
tr2(a†)|0⟩, tr((a†)

2
)|0⟩,

tr3(a†)|0⟩, tr(a†)tr((a†)
2
)|0⟩, tr((a†)

3
)|0⟩,

tr4(a†)|0⟩, tr2(a†)tr((a†)
2
)|0⟩, tr((a†)2)tr((a†)

2
)|0⟩, tr(a†)tr((a†)

3
)|0⟩, tr((a†)

4
)|0⟩,

· · · · · · · · · · · · · · ·

The partition function (Hilbert Poincaré series).

ZN(t) = TrInv(e
−β(tr(a†a)) = TrInv(t

N̂) =
N∏

m=1

1

1− tm
..

Where t = e−β, and Inv refers to U(N)—gauge invariant states.

Z∞(t) =
1

ϕ(t)
ϕ(t) =

∞∏
n=1

(1− tn) is the Euler function.
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Two or more Matrices

What happens if we consider a pair of matrices X and Y ?

For more than one matrix the invariants are no longer eigenvalues.

What can we say about the invariants of this system?
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The invariants of 2× 2 matrices

Two matrices X and Y

Z2(t1, t2) =
1

(1− t1)(1− t2)(1− t21 )(1− t1t2)(1− t22 )

The invariants are built from tr(X ), tr(X 2), tr(Y ), tr(Y 2) and
tr(X .Y ).

Three matrices X ,Y and Z

Z2(t1, t2, t3) =
1 + t1t2t3∏3

a=1(1− ta)
∏3

b≤c=1(1− tbtc)

The term t1t2t3 indicates that we need tr(X .Y .Z ) but not higher
powers—it satisfies a quadratic relation. It captures a Z2 invariant.
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Schur Polynomials

The low lying states and Schur Polynomials

ZN(ρt1, ρt2, ρt3) = 1 + s(1,0,0)ρ+ 2s(2,0,0)ρ
2

+(2s(3,0,0) + s(2,1,0) + s(1,1,1))ρ
3 + · · ·

where
s(1,0,0) = t1 + t2 + t3, s(2,0,0) = t21 + t1t2 + t22 + t2t3 + t23 + t3t1
s(3,0,0) = t31 + t21 t2 + · · · , s(2,1,0) = t21 t

2 + t2t
2
1 + · · ·

s(1,1,1) = t1t2t3

Traceless matrices∏3
a=1(1− ta)ZN(ρt1, ρt2, ρt3) = 1 + s(2,0,0)ρ

2 + s(1,1,1)ρ
3 + · · ·
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The Molien-Weyl formula from Path Integrals

Lattice Gauge Gaussian Model

S [X ,A] =
1

2

∫ β

0
dτ Tr

{
(DτX )2 +m2X 2

}
Dτ = ∂τ + i [A, ·] .

DτX
lat−→ gn,n+1Xn+1gn+1,n − Xn

a
, gn,n+1 = Pei

∫ (n+1)a
na dτ A(τ) ,

with P a path ordered product, gn+1,n = g−1
n,n+1.

SΛ,g =
Λ−1∑
n=0

tr

{
1

a
(X 2

n − Xngn,n+1Xn+1gn+1,n) +
a

2
X 2
n

}
,

ZN,Λ =

∫
U(N)Λ

∫
RN2Λ

Λ∏
k=1

µ(gk,k+1)
dN2

Xk

(2πa)N2 e
−SΛ,g
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Collecting the gauge fields on the final link

Change of variables

X ′
1 = X ′

1, X ′
2 = g1,2X2g2,1, · · · so that X1g1,2X2g2,1 becomes X ′

1X
′
2

SΛ,g = −1

a
tr

{
Λ−1∑
n=1

X ′
nX

′
n+1 + X ′

Λg X ′
1g

−1

}
+
1

a

Λ−1∑
n=1

tr

{
(1 +

a2β2m2

2
)X ′2

n

}

g = g1,2 . . . gΛ,1 =
Λ∏

k=1

gk,k+1
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The action

SΛ,g =
Λ∑

n,n′=1

1

2
trXn′a(∆Λ,g +m21)n′,nXn

The matrix (a2∆Λ,g + β2m2

Λ2 1)n′,n is a ΛN2 dimensional tri-diagonal
matrix with g ⊗ g−1 in the right upper corner and its inverse in the

lower corner. The diagonal elements are all (2 + β2m2

Λ2 )1 and the
off diagonals are −1.

The partition function

ZN,Λ =

∫
µ(g)Det−1/2(a2∆Λ,g +

β2m2

Λ2
1))

=

∫
µ(g)

z
N2Λ
2

−
det[1− zΛ−g ⊗ g−1]

.

where z− = 1 + µ2

2 −
√
µ2(1 + µ2

4 ), with µ = mβ
Λ .
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The continuum limit Λ → ∞

lim
Λ→∞

zΛ− → e−βm

lim
Λ→∞

ZN,Λ = ZN =

∫
µ(g)

e−
βmN2

2

det[1− e−βmg ⊗ g−1]
.

We can replace the continuum gauge group with a discrete gauge
group and all steps go through

Finite Group

ZN =
1

|G |
∑
g∈G

e−
βmN2

2

det[1− e−βmg ⊗ g−1]
.

Without the zero-point energy contributions these are the
Molien-Weyl formulae.
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The gauged d-matrix U(N) gaussian model

The resulting normal ordered partition function with ta = e−βma , is

ZN(t1, · · · , td) =
1

N!

∮ N∏
i=1

dzi
2πi

∆(z)∆(z−1)
d∏

a=1

N∏
i=1

N∏
j=1

1

1− taziz
−1
j

where
∆(z) =

∏
1≤i<j≤N

(zi − zj)

The case of d = 2, with t1 = t2 = t has received much attention
due to its relevance to the counting of 1

4 -BPS states in N = 4
supersymmetric Yang-Mills.
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writing zi = eiθi

ZN(t) =
1
N!

∫ π
−π

dθ1···dθN
(2π)N

e−SN(θ)

SN(θ) =
d

2

N∑
i ,j=1

ln |1− tei(θi−θj )|2

−1

2

N∑
i ̸=j=1

ln |1− ei(θi−θj )|2

The last sum is from the Vandermonde due to diagonalisation of g .
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A large N analysis

Low temperature, β → ∞ =⇒ t ≪ 1

Expanding the t dependent logarithms one finds

SN(θ) = −N2
∞∑
n=1

dtn

n
|un|2 −

1

2

N∑
i ̸=j=1

ln |1− ei(θi−θj )|2 .

where un = 1
N

∑N
i=1 e

inθi .

An instability

From

SN(θ, d) ≃ N2
∞∑
n=1

1− dtn

n
|un|2 ,

we see that the coefficient of |u1|2 changes sign at dt = 1
(TH = m

ln d ). A transition occurs!
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For small t one can find the exact expression in the limit of infinite
N

Z∞ =
∞∏
n=1

1

1− dtn

see F. Dolan arXiv:0704.1038 . This expression counts low energy
states and is exact up to tN and terms grow as dn.
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The Polyakov Loop

Internal energy

E =
1

mN2
t
d

dt
lnZ =

dt

m
⟨|P2

1 |⟩+
∞∑
n=2

dtn

m
⟨|Pn|2⟩

The Polyakov loop as Order Parameter

⟨P1⟩ = 0 the confined phase

⟨P1⟩ ≠ 0 the deconfined phase

A proxy for the Polyakov loop at large N

⟨|P1|⟩ ≃
√
⟨|P2

1 |⟩ ≃
√

mE

td
.
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The a1 model in detail

Z (a1) =

∫
[dg ]ea1tr(g)tr(g

−1)

Expanding directly in a1 gives

Z (a1) =
∞∑
k=0

1

k!

∑
R

[dR(Sk)]
2ak1

where dR(Sk) is the dimension of the representation R of the
permutation group Sk .

dn1,··· ,nN (Sk) = (n1 + · · · nN)!
∏N−1

i=1

∏N
j=i+1(ni − i − (nj − j))∏N
i=1(ni + N − i)!

We have
1

k!

∑
R

[dR(Sk)]
2 = 1 k ≤ N

and decreases slowly above N (at least initially).
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Coefficients of a1 model

The N dependence of the a1 model

The coefficients

ck(N) =
1

k!

∑
R

[dR(Sk)]
2

10 20 30 40

k

0.2

0.4

0.6

0.8

1.0

c_k(N)

Coefficients of a1 model N=5 and 8
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Solving the a1 model for a1 > 1

For large N we wish to solve

SN(θ) =
d

2

N∑
i ,j=1

ln |1− tei(θi−θj )|2

−1

2

N∑
i ̸=j=1

ln |1− ei(θi−θj )|2 .

for θn → θ(n) with dn
dθ = ρ(θ) and

S(ρ)

N2
=

d

2

∫
ρ(α)

∫
ρ(β) ln |1− tei(α−β)|2dαdβ

−1

2
P

∫
ρ(α)ρ(β) ln |1− ei(α−β)|2dαdβ .
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The large N a1 model is solvable

Sa1
N2

= −a1|u1|2 −
1

2
P

∫
ρ(α)ρ(β) ln |1− ei(α−β)|dαdβ .

Has the solution

ρ(θ) =


1
2π for a1 < 1

1

π sin2(
θ0
2
)

√
sin2( θ02 )− sin2( θ2) cos(

θ
2) for a1 > 1

(1)

and θ0 is specified by

s2 ≡ sin2(
θ0
2
) = 1−

√
1− 1

a1
. (2)
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The large N free energy as

− 1

N2
lnZ = βF =

{
0 a1 < 1

1
2 − 1

2s2
− 1

2 ln s
2 a1 > 1

≃ 1−a1
4 − 1

3(a1 − 1)3/2+ a1 > 1

Adding one-loop corrections from the gauge field or from other
fields including fermions only changes a1

Note the charactiristic leading 1
4 and exponent 3

2 .
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The Gauge Gaussian Case

Taking a1 = de−β and expanding in the vicinity of the Hagadorn
temperature we find with βH = ln d

− 1

N2
lnZ = βF =

{
0 β > βH
β−βH

4 − 1
3(βH − β)3/2 + · · · β < βH

The energy

E =
∂(βF )

∂β
=

{
0 β > βH
1
4 + 1

2

√
βH − β + · · · β < βH .

The transition occurs is E = 1
4 or n = N2

4 .
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The Phase Transition

The transition is NOT simply 1st order (it is 3/2 order).

The transition has a divergent specific heat on either side of the
transition. The stronger divergence appears to be on the low
temperature side, but this is coming from subdominant
contributions as the limit is approached.

0.0 0.5 1.0 1.5 2.0
T

0.1

0.2

0.3

0.4

0.5

0.6

E

Energy with N=∞, D=2

0.5 1.0 1.5 2.0
T

1

2

3

4

Cv

Cv with N=∞, D=2
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Entropy from the Free Energy

Thermodynamics
TdS = dE

dS

dE
= β(E )

E =
1

4
+
1

2

√
ln d − β+ · · · =⇒ β(E ) = ln d−4(E− 1

4
)2+ · · ·

Inverting the expression for E (β) and integrating gives and
matching at E = 1

4 gives

S(E ) = E ln d − 4

3
(E − 1

4
)3 + · · ·
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Matching across the transition

The transition occurs at E = 1
4 .

At low temperatures

Z∞(t) =
∞∏
n=1

1

1− dtn
=

∞∑
n=1

dntn = eN
2 ln(d)E

using En = n
N2

Entropy at the transition

S(
1

4
) =

ln d

4

So at the transition

nc =
N2

4

The transition is one from where trace relations can be
ignored to where they become significant.
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Implications for Matrix Traces

The number of states grows with energy as
dimn(N, d) ∼ dn = eN

2 ln(d)E (with E = n
N2 ) below the

transition.

dimn(N, d) ∼ eN
2{ln(d)E− 4

3
(E− 1

4
)3+··· } above.

The low n and large n entropy match at E = 1
4 .
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Trace relations switch on at n = N2

4

Rephrasing:

Some Lessons for confining/deconfining transitions

The phase transition is in the density of states—the entropy!

In both the confined and deconfined phases all the observables
are gauge invariant singlets.

In the matrix model at large N it is trace relations that
“switch on” at the transition and this occurs for traces of
length n = N2

4 .
This is true for bosons or fermions or a mixture of these
and of the number of matrices.

There is an overlap of some of these results with D. Berenstein and
Kai Yan arXiv:2307.06122.
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Summary:

dimn(N, d) =

{
cdn 0 ≪ n ≤ N2

4

cdne−
4N2

3
( n
N2−

1
4
)3··· n ≥ N2

4 .

For large N trace relations are ignorable up to matrix words of
length N2

4 .

Trace relations are vital when words of longer than N2

4
are excited.

The entropy, S(n, d) = 1
N2 lndimn(N, d) has universal

large N transition at n = N2

4
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Thanks for Your Attention!

Large but Finite N gauged matrix models and Discrete Gauge Groups.


