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Horizon entropy

Bekenstein-Hawking entropy provides a low-energy window into the
realm of quantum gravity

Universal formula: applies to black hole horizons, cosmological
horizons, acceleration horizons, and entanglement wedges.



“Entropy = area” for any volume of space

* (Claim: gravitational entropy is not only associated to the area of
black hole or de Sitter horizon, but to the area of any boundary

separating a region of space.

Bousso (1999), Banks-Fischler (2001), Jacobson-Parentani (2003), Bianchi-Myers (2014), ...

time

space

How to justify this?



Gravitational path integral

Gibbons and Hawking (1977) derived the entropy of black hole
and de Sitter horizons from a Euclidean saddle approximation of
the quantum gravity partition function.

Can the entropy of any volume of space be derived

from a quantum gravity partition function?

See also Banks-Draper-Farkas (2020)
and our statistical interpretation (Jacobson-MV 2022)



Gravitational path integral

Gibbons and Hawking (1977) derived the entropy of black hole
and de Sitter horizons from a Euclidean saddle approximation of
the quantum gravity partition function.

Can the entropy of any volume of space be derived

from a quantum gravity partition function?

Yes! Using the method of constrained instantons
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Euclidean gravity path integral
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One can evaluate the action for a gravitational field on a section of the complexified spacetime which avoids
the singularities. In this manner we obtain finite, purely imaginary values for the actions of the Kerr-Newman
solutions and de Sitter space. One interpretation of these values is that they give the probabilities for finding
such metrics in the vacuum state. Another interpretation is that they give the contribution of that metric to
the partition function for a grand canonical ensemble at a certain temperature, angular momentum, and
charge. We use this approach to evaluate the entropy of these metrics and find that it is always equal to one
quarter the area of the event horizon in fundamental units. This agrees with previous derivations by
completely different methods. In the case of a stationary system such as a star with no event horizon, the
gravitational field has no entropy.

GH represented the canonical partition function in gravity as a
Euclidean path integral over metrics



Gibbons-Hawking partition function

* |f the action is very large compared to Planck’s constant,
the path integral can be estimated as:

aN exp ( Saddle/h)

» From the canonical partition Z = Tre P

thermodynamic quantities for the system

InZ =—pF

one usually gets

d
——1HZ <H>5

dp
<1 —5;;) InzZ==5
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Entropy from the partition function

* |f the saddle geometry is a Euclidean black hole spacetime, then

Ip/h=BF =AM — 8

horizon area

d

* |f the saddle geometry is Euclidean de Sitter space
(a round sphere whose radius is the dS curvature scale L), then

- M = 0 (since the saddle has no boundary)

A(L)
- ' — — ] —
the entropy is  Sds E/h e

NB: the action is independent of 3
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Sphere partition function

* What is the meaning of the sphere partition function?
What is the thermodynamic ensemble?

Jacobson-Banihashemi (2022)

* Resolution: introduce an artificial “York™ boundary, where H is
defined, and examine the limit in which it disappears

l’c r

topology: D? x SP~? SP
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Dimension of the Hilbert space

Canonical partition function with a York boundary

1

Hpy = ——— ¢ dP2x\/ok
BY =G 1 /o

7 = Tre PHBY

In the vanishing boundary limit the Brown-York Hamiltonian
vanishes Hgy = 0, and the path integral is over all metric on
the sphere SD. Jacobson-Banihashemi (2022)

S Z%Trleest

= dimension of Hilbert space
of states surrounded by a horizon,
.e. states of a ball
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de Sitter black holes

 What about black holes in de Sitter space”? How do we take
them into account in the Euclidean gravitational path integral”

* Let us focus on Schwarzschild-de Sitter space.

r=,9*

r=0,9- r=

* SdS has both a black hole and a cosmological horizon, which
have different temperatures. Only for the largest dS black hole
(Nariai) are the temperatures the same.

13



de Sitter black holes

* The sum of the black hole entropy and cosmological horizon entropy
is always lower than the de Sitter entropy, i.e. pure dS has maximum

entropy.

Ssas = Sp +5c < Sas

* ThlS SuggeStS: o.;) 0.2 0.4 06 08 ‘1ﬁoM/MN

1. Euclidean de Sitter black holes are subdominant in the
gravitational path integral.

2. Empty dS corresponds to a maximally mixed state, Banks-Fisschler (2001)
and the presence of a black hole constitutes a constraint on the state,

reducing the entropy. Banks-Fiol-Morisse (2006)
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Euclidean SAS geometries

* Possible obstacle: The Euclidean continuation of SAS is singular
at (at least one of) the horizons, hence the Einstein equations
are not satisfied there.

(i) Euclidean de Sitter (ii) Euclidean Nariai

o€

(iii) Euclidean SdS

9L &,



Constrained path integral

Draper-Farkas (2022), Morvan, Van der Schaar, MV (2022)

Even though Euclidean SdS black holes are not regular
gravitational instantons, they can be interpreted as stationary
points of a constrained path integral at fixed A

/ Dge~'#l9 / DADGS(Clg] — A)e £l

Affleck (1981), Cotler-densen (2021)
Introduce a Lagrange multiplier to impose the constraint

— / DADgD e 1El9ITAClII=A) / DAZ|A]

Perform stationary-point approximation at fixed A4

equations of motion

Z[A] ~ e~ 1EA ST5lg] + A6Clg] = 0, Clg] = A
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Constrained path integral

e Now let’s take the constraint to be the sum of the horizon areas
(at a fixed horizon radius)
Clg] = {7{ +]{ ] A7z
Hy H.

* The partition function at fixed A is then

71 [puvness (s [ eiatn-an - 2 ([ +f a2 2ayma)

* The saddle point equations are

A=A, + A. R = DQZ_)QA | 47?)\% (6(r=1p) +0(r =1¢))

* Euclidean SdS is a saddle (= constrained instanton):

if)\zl&ﬁ:\/g > R:Rbulk"_Rcon
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Euclidean action of SdS black hole

Off-shell Euclidean action

1
d” — 2A

For Euclidean SdS the Ricci scalar is constant everywhere,
except at the conical singularities at the horizons 7 =74 . .

R = Rbulk + Rcon

Ip =

The on-shell actions for both these terms are finite

VA Euclidean spacetime volume

IE bulk =
Bl ™ (D — 9)4nG V= [y dizy/g = B0

T B Ab AC '5 Ab/{b | AC/{C
Been ™ 4G 46 T T \(8nG T 8nG T8
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Euclidean action of SdS black hole

The total on-shell Euclidean action is

Ablib | AC B OA Ab AC
srG ~ 81G (D —2)4nG

\ -

Smarr formula for SdS = 0

4G 4G

I = Igbuk + IE.con = 5 (

Thus,

Ay + A,
4G

Ig sas =

NB the result is independent of the inverse temperature
NB this holds for any value of the mass M

Constrained partition function: / [.A] ~ e_I glAl — e<Ab+Ac)/ 4G
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Partition function for a volume of space

Should not “area = entropy” apply to any volume of space (topological ball)?
To specity a “region of space”, one must somehow fix its size.

We fix the spatial volume, by adding a constraint in the path integral
that all spatial slices have volume V

Z[V] — TI‘H 1 = dimension of Hilbert space of geometries
with spatial volume V
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Euclidean sphere geometry

 What are the topologies that we integrate over in the path integral?

 (Consider a spatial topological (D-1)-ball whose boundary has
topology S© 2.

* The Euclidean manifold generated by rotating the ball through a
complete circle about the ball boundary is a topological D-sphere

e.qg. D=2 version:

;E;l)

Euclidean "horizon”




Constrained sphere partition function

Method of constrained instantons
Affleck (1981), Stanford (2020), Cotler-densen (2021)

1

Z|V, A = /DADQ exp [167#1(; /dD:C\/E(R —2A) + % /dqb A(9) (/lea:ﬁ— V)]

. Foliate S by (D-1)-balls at constant ¢ with induced metric Yab = gab — N>.a®
N = (gab(b,a(b,b)_l/Q

 The saddle point equations are the Einstein equations sourced by an effective
perfect fluid with vanishing energy density,

. A
Gap + Agap = 8TGT,,  with Top = ~ b = Pyap
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Static, spherically symmetric saddle

e Saddle with minimum action presumably is the most symmetric one:
ds® = N2(r)d¢? + h(r)dr? + r2dQ%_,

 N(r)is determined by the Tolman-Oppenheimer-Volkoff-equation,
with boundary conditions:

1) N = 0 atr =Ry, the “horizon”

2) N’ = —\/E at r = Ry, to prevent conical singularity

» A = 0 solution:
Ry = [(D = 1)V/Qp_o]"/ P~V

1
IR?

ds? (R?, — r%)2do? + dr? + r2dQ%_,
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Euclidean action

Euclidean constrained instanton has topology SD, Is conformally flat, and
has a 1/(r-Ryv) curvature singularity at the horizon

BUT the on-shell Euclidean action is finite:

1 Ay

forA:O: Isaddle: 167TG/dD:B\/§R:—E

Hence, in the zero-loop saddle-point approximation:

Z[V] ~ exp(Ay /4hG)

This shows that finite volumes of space have a BH “entropy” (log dim H).
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A #0 case

For nonzero /\ a similar saddle exists, where spatial ball is embedded In

HP 1 for A<0 o SP 1forA>0
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A #0 case

For nonzero /\ a similar saddle exists, where spatial ball is embedded In
HP L for A<0 o SP7lforA>0

BUT for A > O there are significant differences:

 If Vislarger than the dS spatial hemisphere, entropy decreases as V increases.

 Thereis no saddle it Vis larger than the full spatial dS sphere.




A #0 case

For nonzero /\ a similar saddle exists, where spatial ball is embedded In
HP L for A<0 o SP7lforA>0

BUT for A > O there are significant differences:

 If Vislarger than the dS spatial hemisphere, entropy decreases as V increases.
 Thereis no saddle it Vis larger than the full spatial dS sphere.

 The integral over all Vis indeed dominated by the de Sitter saddle:

Vas
7 — / AV exp(Ay /4hG)
0
~ exp(Aqs/4hG)

recovers Gibbons-Hawking entropy!




Regulation of the saddle singularity

* Bekenstein-Hawking result for action seems reasonable, but a curvature singularity exists
at the horizon.

* Despite the singularity, the result could be reliable provided the corrections are small.

29



Regulation of the saddle singularity

Bekenstein-Hawking result for action seems reasonable, but a curvature singularity exists
at the horizon.

Despite the singularity, the result could be reliable provided the corrections are small,
EITHER because

1. Curvature corrections might regularise the saddle without significantly changing the
entropy, while remaining consistent with EFT

A 5 42 A Suppose curvature scalar
SWalngT(1+€ R+€R —|—€ DR+) saturates at p:fs
P
1
A (4 €2+€4+€4 R~ 3y
2\ " 0,Ry " 2R " BRy v

30



Regulation of the saddle singularity

Bekenstein-Hawking result for action seems reasonable, but a curvature singularity exists
at the horizon.

Despite the singularity, the result could be reliable provided the corrections are small,
EITHER because

1. Curvature corrections might regularise the saddle without significantly changing the
entropy, while remaining consistent with EFT

A 5 Ao o Suppose curvature scalar
SWald ~ 2 1+EFR+ R+ LCURA ) saturates at p = £
1
T R
T2 \" TRy " 2R T BRy v

OR
2. non-EFT UV completion exists but does not significantly change the entropy, because
It is only relevant in a small region surrounding the horizon.

IN/dD:L’\fR / R ——pdp ~ €/Ry < 1 P
1%
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Conclusions

Partition function of a volume of space = dimension of the quantum gravity
Hilbert space of a topological ball with fixed proper volume.

To leading order in the coupling the Hilbert space dimension is given by the
semiclassical entropy corresponding to the boundary of the saddle ball

ZV] =dimH = exp(Ay /4hG)

This reflects the holographic nature of nonperturbative quantum gravity in a
generic finite volume of space.
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Future directions

* Higher curvature corrections deserve further work: do they regularise the
curvature singularity at the horizon?

e (Constrained partition function might give a nonperturbative rationale for

Jacobson’s maximal vacuum entanglement hypothesis,
l.e. that entanglement entropy in small balls at fixed volume is maximized in the semiclassical,
gravitationally dressed vacuum state.

e Different constraints? E.g. fixing spacetime volume gives a smooth saddle.
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