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 Motivation Why f(R)?
 The Universe is not composed of a single component 

of matter alone; it consists of many fluids (radiation, 
“CDM”, etc) thermodynamically interacting with each 
other.

 Analyzing how the perturbations of the different 
components of the total cosmic fluid evolve in time 
can tell us how structures grow in the Universe.

 Extending the single-fluid formulation  in f(R)  to  one 
where the equation of state  is no longer constant but 
evolves with time,  i.e.,                .w = w(t)3



  Why modify Gravity?!

‣ Cosmic acceleration: missing energy?
‣ Possible explanations:

✴    ,the “cosmological constant”
✴“dark energy’’
✴  modification of GR

•    Braneworlds
•   Gauss-Bonnet gravities
✓   f(R) models...

✴ Other approaches in the pipeline
•Inhomogeneous cosmologies
•Cosmological backreaction...

Λ
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  f(R) theories of Gravity
 Einstein -Hilbert action:

 Einstein field equations:

                                  
 Generalized higher-order-gravity action:

 Generalized field equations
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 Can help us understand the evolution of structure in the Big 
Bang model 

 Uses gravitational theories to compute the gravitational 
forces causing small perturbations to grow and eventually 
seed the formation of galaxies, clusters, superclusters etc…

 Applicable largely to a homogeneous universe

 The theory is a good approximation on the large-
intermediate scales

 On smaller scales, more sophisticated techniques such as 
N-body simulations are widely in use 
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  Cosmological perturbation theory



                 Two approaches...

Metric Gauge Invariant 
Perturbation Theory

 Based on foliating a 
space-time with hyper-
surfaces (Lifshitz 
1946,Bardeen 1980 
Kodama & Sasaki,1984)

 Starts with a  
background, perturbs 
away

 Nonlocal
 Coordinate dependent
 Does not treat 

nonlinearities
 

 Based on threading a 
space-time with frames

 (Hawking 1966,Ehlers,Ellis   
1971,Ellis,Bruni,Dunsby 
1989,1991,1992…)

 Starts with theory, reduces 
down to  linearities in a 
particular background

 Local
 Covariant
 Nonlinearities treated

Covariant Gauge Invariant 
Perturbation Theory
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   1+3 covariant decomposition
 A fluid approach to spacetime with the time-like flow:

 Projections onto surfaces orthogonal to the flow :

• Covariant convective derivative on a scalar:
•Spatial covariant derivative:
•Kinematics of            geometry of fundamental 

worldlines
           

hab = gab + uaub

ua = dxa

dτ , uaua = −1
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∇aub = −uau̇b +
1
3
Θhab + σab + ωab

acceleration expansion shear vorticity



         Effective total EMTs
 The total energy-momentum tensor is given by

from which the thermodynamical quantities 

are decomposed.
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isotropic 
pressure

energy 
density

heat flux
anisotropic pressure



The energy-momentum tensor of the curvature “fluid” can be 
decomposed as follows:

u
a

ua
R = −∇aR

Ṙ

u
a ua

d

ua
r

So one can think of this 
as a curvature “fluid” 
moving relative to  

Taken to be the 
energy frame of 
the total  matter
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In the following, angle brackets applied to a vector denote the projection of this vector on the tangent 3-spaces

V�a� = ha
bVb . (15)

Instead when applied to a tensor they denote the projected, symmetric and trace free part of this object

W�ab� =
�
h(a

chb)
d − 1

3hcdhab

�
Wcd . (16)

Finally the spatial curl of a variable is

(curlX)ab = ηcd�a ∇̃cX
b�

d (17)

where �abc = udηabcd is the spatial volume.
The general propagation equations for these kinematic variables, for any spacetime corresponds to the so called

1+3 covariant equations [34] and are given in Appendix C.

C. Effective total energy-momentum tensors

The choice of the frame also allows us to obtain an irreducible decomposition of the stress energy momentum tensor.
In a general frame and for a general tensor Tab one obtains:

Tab = µuaub + phab + 2q(aub) + πab , (18)

where µ and p are the energy density and isotropic pressure, qa is the energy flux (qa = q�a�) and πab is the anisotropic
pressure (πab = π�ab�).

This decomposition can be applied to our effective energy momentum tensors. Relative to um
a we obtain

µtot = T tot
ab uaub = µ̃m + µR , ptot =

1
3
T tot

ab hab = p̃m + pR , (19)

qtot
a = −T tot

bc hb
auc = q̃ m

a + q R
a , πtot

ab = T tot
cd hc

<ahd
b> = π̃ m

ab + π R
ab , (20)

with

µ̃m =
µm

f � , p̃m =
pm

f � , q̃ m
a =

q m
a

f � , π̃ m
ab =

π m
ab

f � . (21)

Since we assume that standard matter is a perfect fluid, q m
a and π m

ab are zero, so that the last two quantities above
also vanish.

The effective thermodynamical quantities for the curvature “fluid” are

µR =
1
f �

�
1
2
(Rf � − f)−Θf ��Ṙ + f ��∇̃2R + f �� u̇b∇̃R

�
, (22)

pR =
1
f �

�
1
2
(f −Rf �) + f ��R̈ + 3f ���Ṙ2 +

2
3
Θf ��Ṙ− 2

3
f ��∇̃2R+

−2
3
f ���∇̃aR∇̃aR− 1

3
f �� u̇b∇̃R

�
, (23)

qR
a = − 1

f �

�
f ���Ṙ∇̃aR + f ��∇̃aṘ− 1

3
f ��∇̃aR

�
, (24)

πR
ab =

1
f �

�
f ��∇̃�a∇̃b�R + f ���∇̃�aR∇̃b�R + σabṘ

�
. (25)

The twice contracted Bianchi Identities lead to evolution equations for µm, µR, qR
a :

µ̇m = −Θ (µm + pm) , (26)

µ̇R + ∇̃aqR
a = −Θ (µR + pR)− 2 (u̇aqR

a )− (σabπR
b a) + µm f �� Ṙ

f �2 , (27)

q̇R
�a� + ∇̃apR + ∇̃bπR

ab = − 4
3 Θ qR

a − σa
b qR

b − (µR + pR) u̇a − u̇b πR
ab − ηbc

a ωb qR
c + µm f �� ∇̃aR

f �2 , (28)

No background 
contribution.



Linearisation

Exact equations valid 
in any spacetime.

Choose background 
spacetime: FLRW.

Variables that vanish 
in chosen background 
are 0(1) and GI.

Linearize by dropping 
all terms that are 0(2) 
and higher. 

Almost FLRW model.

Θ̇ + 1
3Θ2 + σabσ

ab − 2ωaωa − ∇̃au̇a + u̇au̇a + 1
2 (µtot + 3ptot) = 0

Θ̇ + 1
3Θ2 − ∇̃au̇a + 1

2 (µtot + 3ptot) = 0
11
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B. Linearized equations

In the previous section we derived the exact nonlinear equations that govern the exact gravitational dynamics of
fourth order gravity relative to observers comoving with standard matter. These equations are fully covariant and
hold for any spacetime. Consequently, we can linearize these equations around any chosen background, avoiding
the need for choosing coordinates and dealing directly with physically well defined quantities, rather than metric
components [43]. These features, which are desirable in the GR case, become essential for the correct understanding
of the evolution of perturbations in fourth order gravity as well as in other kinds of alternative gravity theories [35].

In what follows we will choose a Friedamnn-Lemâıtre-Robertson-Walker (FLRW) metric as our background. We
make this choice for a number of different reasons. First of all the possibility of writing a general fourth order
Lagrangian as a simple function of the Ricci scalar is surely possible for this metric. Secondly, because most of the
work in GR perturbation theory has been performed for this background it makes a comparison of behavior of GR
and fourth order gravity more straightforward.

The Friedmann background is characterized by the vanishing of all inhomogeneous and anisotropic quantities q
R
a ,π

R
ab

and defines the order of the quantities appearing in the 1+3 equations and the linearization procedure. In particular,
the quantities that are zero in the background are considered first-order of in the linearization scheme. In addition,
the Stuart & Walker lemma ensures that since these quantities vanish in the background, they are automatically
gauge-invariant [36].

The cosmological equations for the background read:

Θ2 = 3µ̃
m + 3µ

R − R̃

2
, (40)

Θ̇ + 1
3Θ2 + 1

2 (µ̃m + 3p̃
m) + 1

2 (µR + 3p
R) = 0 , (41)

µ̇
m + Θ (µm + p

m) = 0 , (42)

where µ
R and p

R are the zero order energy density and pressure of the curvature fluid, R̃ is the 3-Ricci scalar and
R̃ = 6K/S

2 with the spatial curvature index K = 0,±1.
Linearization of the exact propagation and constraint equations about this background then leads to the system:

Θ̇ + 1
3Θ2 − ∇̃a

Aa + 1
2 (µ̃m + 3p̃

m) = − 1
2 (µR + 3p

R) , (43)
ω̇a + 2Hωa + 1

2curlAa = 0 , (44)

σ̇ab + 2Hσab + Eab − ∇̃�aAb� = −q
R
a , (45)

Ėab + 3HEab − curlHab + 1
2 (µ̃m + p̃

m)σab

= − 1
2 (µR + p

R)σab − 1
2 π̇

R
�ab� − 1

2∇̃�aq
R
b� − 1

6Θπ
R
ab , (46)

Ḣab + 3HHab + curlEab = 1
2curlπR

ab , (47)

∇̃b
σab − curlωa − 2

3∇̃aΘ = −q
R
a , (48)

curlσab + ∇̃�aωb� −Hab = 0 , (49)

∇̃b
Eab − 1

3∇̃aµ̃
m = − 1

2∇̃
b
π

R
ab + 1

3∇̃aµ
R − 1

3Θq
R
a , (50)

∇̃b
Hab − (µ̃m + p̃

m)ωa = − 1
2curl qR

a + (µR + p
R)ωa , (51)

∇̃a
ωa = 0 , (52)

together with the linearized conservation equations

µ̇
m = −Θ (µm + p

m) , (53)
∇̃a

p
m = −(µm + p

m) u̇
a

, (54)

µ̇R + ∇̃a
q

R
a = −Θ (µR + p

R) + µ
m f

��
Ṙ

f �2 , (55)

q̇
R
�a� + ∇̃ap

R + ∇̃b
π

R
ab = − 4

3 Θ q
R
a − (µR + p

R) u̇a + µ
m f

�� ∇̃aR

f �2 , (56)

obtained from (26)–(29). Note that at first order the equation of the vorticity (52) is homogeneous i.e. the evolution of
the vorticity is decoupled. This will be important in the next section when we will derive the perturbations equations.
These equations provide the basis for a covariant and gauge-invariant description of perturbations of f(R) theories of
gravity.
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Ḣab + 3HHab + curlEab = 1
2curlπR

ab , (47)

∇̃b
σab − curlωa − 2

3∇̃aΘ = −q
R
a , (48)

curlσab + ∇̃�aωb� −Hab = 0 , (49)

∇̃b
Eab − 1

3∇̃aµ̃
m = − 1

2∇̃
b
π

R
ab + 1

3∇̃aµ
R − 1

3Θq
R
a , (50)

∇̃b
Hab − (µ̃m + p̃

m)ωa = − 1
2curl qR

a + (µR + p
R)ωa , (51)

∇̃a
ωa = 0 , (52)

together with the linearized conservation equations

µ̇
m = −Θ (µm + p

m) , (53)
∇̃a

p
m = −(µm + p

m) u̇
a

, (54)

µ̇R + ∇̃a
q

R
a = −Θ (µR + p

R) + µ
m f

��
Ṙ
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Propagation

Constraint

The linear gravitational equations

12
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Matter

Curvature

The linear conservation equations

3

If we limit ourselves it could be better ”If we focus on fourth order gravity models....” in place of ”If we limit
ourselves.....”? to fourth order and we use the Gauss Bonnet theorem [30] the action above ”above
action” isn’t it? can be written as

AG =
�

d4x
√
−g

�
Λ + c0R + c1R

2 + c2RµνRµν
�

. (6)

In situations where the metric has a high degree of symmetry, the term RµνRµν gives upon variation the
same contributions of the R2 term. In particular, in the case of homogeneous and isotropic spacetimes
a fourth order gravity action can be written as a function of the sole Ricci sclalar scalar and, as a
consequence, the most general action for fourth order gravity can be represented by Along with referee
suggestions I would write the whole previous paragraph ”In situations........represented by..” as ”Actually, in situations
where the metric has a high degree of symmetry, the term RµνRµν gives upon variation the same contributions of
the R2 term into the field equations. As matter of fact, in the case of homogeneous and isotropic spacetimes (i.e.
Friedmann-Robertson-Walker universes) a fourth order gravity action can be expressed as a function of the sole Ricci
scalar since more complicate actions will provide analogous evolution equations. Thus, the most general action for
fourth order gravity can be written as”

A =
�

d4x
√
−g [f(R) + Lm] , (7)

where Lm represents the matter contribution. Varying the action with respect to the metric gives the
generalization of the Einstein equations:

f �Gab = f �
�

Rab −
1
2

gabR

�
= Tm

ab +
1
2
gab (R−Rf �) +∇b∇af � − gab∇c∇cf � , (8)

where f = f(R), f � =
df(R)

dr
, and TM

µν =
2√
−g

δ(
√
−gLm)
δgµν

represents the stress energy tensor of standard matter.

These equations reduce to the standard Einstein field equations when f(R) = R. It is crucial for our purposes to be
able to write (8) in the form

Gab = T̃m
ab + TR

ab = T tot
ab , (9)

where T̃m
ab =

Tm
ab

f � and

TR
ab =

1
f �

�
1
2
gab (R−Rf �) +∇b∇af − gab∇c∇cf

�
, (10)

represent two effective “fluids”: the curvature “fluid” (associated with TR
ab) and the effective matter “fluid” (associated

with T̃m
ab). This step is important because it allows us to treat fourth order gravity as standard Einstein gravity in

the presence of two “effective” fluids. This means that once the effective thermodynamics of these fluids has been
studied, we can apply the covariant gauge invariant approach in the standard way.

The conservation properties of these effective fluids are given by the Bianchi identities T tot ;b
ab . When applied to the

total stress energy tensor, these identities reveal that if standard matter is conserved, the total fluid is also conserved
even though the curvature fluid may in general possess off–diagonal terms [12, 31, 32]. In other words, no matter how
complicated the effective stress energy tensor T tot

ab is, it will always be divergence free if Tm;b
ab = 0. When applied to

the single effective tensors, the Bianchi identities read

T̃M ;b
ab =

Tm;b
ab

f � − f ��

f �2 Tm
ab R;b , (11)

TR;b
ab =

f ��

f �2 T̃M
ab R;b , (12)

with the last expression being a consequence of total energy-momentum conservation. It follows that the individual
effective fluids are not conserved but exchange energy and momentum.

It is worth noting here that even if the energy-momentum tensor associated with the effective matter source is not
conserved, standard matter still follows the usual conservation equations Tm ;b

ab = 0. It is also important to stress that

The Bianchi identities: {
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  Inhomogeneity variables
‣Define co-moving, gauge-invariant inhomogeneity 

quantities 
•Matter inhomogeneities in the total fluid

•Curvature inhomogeneities

•Matter inhomogeneities in the component fluids

•Relative variables
14

Dm
a =

a

µm
∇̃aµm, Za = a∇̃aΘ

Ca = a∇̃aR̃, εa =
a

µm
(
∂pm

∂s
)∇̃as

Di
a =

a

µi
∇̃aµi, εi

a =
a

µi
(
∂pi

∂s
)∇̃as, V i

a = ui
a − ua

Ra = a∇̃aR, �a = a∇̃aṘ

Sij
a =

Di
a

1 + wi
− Dj

a

1 + wj
, εij

a =
wi

1 + wi
εi

a −
wj

1 + wj
εj

a, V ij
a = V i

a − V j
a



Extracting the scalar modes
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evolution equations for the above variables:

Ḋm
a = wΘDm

a − (1 + w)Za , (65)

Ża =

�
Ṙf ��

f � − 2Θ
3

�
Za +

�
3(w − 1)(3w + 2)

6(w + 1)
µ

f � +
2wΘ2 + 3w(µR + 3pR)

6(w + 1)

�
Dm

a +
Θf ��

f � �a

+

�
1
2
− f ��

f �
K

S2
− 1

2
f

f �
f ��

f � −
f ��

f �
µ

f � + ṘΘ
�

f ��

f �

�2

+ ṘΘ
f (3)

f �

�
Ra −

w

w + 1
∇̃2Dm

a −
f ��

f � ∇̃
2Ra , (66)

Ṙa = �a −
w

w + 1
Ṙ Dm

a , (67)

�̇a = −
�

Θ + 2Ṙ
f (3)

f ��

�
�a − ṘZa −

�
(3w − 1)

3
µ

f �� + 3
w

w + 1
(pR + µR)

f �

f �� +
w

3(w + 1)
Ṙ

�
Θ− 3Ṙ

f (3)

f ��

��
Dm

a

�
3

K

S2
−

�
1
3

f �

f �� +
f (4)

f � Ṙ2 + Θ
f (3)

f � Ṙ− 2
9
Θ2 +

1
3
(µR + 3pR) + R̈

f (3)

f �� −
1
6

f

f � +
1
2
(w + 1)

µ

f � −
1
3
ṘΘ

f ��

f �

��
Ra

+∇̃2Ra , (68)

together with the constraint

Ca

S2
+

�
4
3
Θ +

2Ṙf ��

f �

�
Za − 2

µ

f �D
m
a +

�
2ṘΘ

f (3)

f � −
f ��

f �

�
f − 2µ + 2ṘΘf �� + 2

K

S2

��
Ra +

2Θf ��

f � �a −
2f ��

f � ∇̃
2Ra = 0 .

(69)
The propagation equation for the variable C is

Ċa = K2



 36f ��Ra

S2
�
2Θf � + 3Ṙf ��

� − 36f �Dm
a

S2
�
2Θf � + 3Ṙf ��

�



 + K





6f �

S2
�
2Θf � + 3Ṙf ��

�Ca

+Dm
a

�
16ωΘ

3(ω + 1)
− 4f �Θ2 − 12f �µR

2Θf � + 3Ṙf ��

�
− 12f ��

2Θf � + 3Ṙf ��
∇̃2Ra +

�
12Θf ��

2Θf � + 3Ṙf ��
+ 2

f ��

f �

�
�a

+



−
2S2

�
Θf �� − 3Ṙf (3)

�

3f �

12ṘΘf �f (3) − 2f ��
�
3f − 2

�
Θ2 − 3µR

�
f � + 6ṘΘf ��

�

�
2Θf � + 3Ṙf ��

�
f �



Ra






+∇̃2



 4ωS2Θ
3(ω + 1)

Dm
a +

2S2f ��

f � �a −
2S2

�
Θf �� − 3Ṙf (3)

�

3f � Ra



 , (70)

this equation, which is redundant, will be used in Section VI to substitute (67) because of its specific form in the long
wavelength limit [37].

B. Scalar Variables

The variables we have defined above describe the general evolution of the density perturbations and the other
scalars on a FLRW background. The phenomenon of the clustering of matter is traditionally described, however,
considering only the scalar part of these variables. This can be easily done using the local decomposition [26]

S∇̃aXa = Xab =
1
3
habX + ΣX

ab + X[ab] where ΣX
ab = X(ab) −

1
3
habX . (71)

so that the operator ∇̃a applied to the (62) and (63) extracts the scalar part of the perturbation variables. In this
way we can define the scalar quantities

∆m = S∇̃aDm
a , Z = S∇̃aZa , C = S∇̃aCa , R = S∇̃aRa , � = S∇̃a�a ΦN = S∇̃aΦN

a . (72)
Spherical 
clumping
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∆m = a∇̃aDm
a

a∇̃aDm
b = Σm

ab + Wm
ab +

1
3
∆mhab

C = a∇̃aCa, Z = a∇̃aZa, ε = a∇̃aεa, R = a∇̃aRa, � = a∇̃a�a

∆i = a∇̃aDi
a, εi = a∇̃aεi

a, Vi = a∇̃aV i
a



  Perturbation equations

                                    Evolution 
equations of 

gradient 
variables 

Scalar 
equations

Harmonic 
decomposition

Second order 
equations
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  Harmonic decomposition

 Given a second order equation:

 Separation of variables:

Damping 
term

Restoring 
term

Source forcing 
term

17



  Total fluid equations
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  Component & relative equations
The density perturbations of the i-th component:

And the entropy and velocity perturbations:

19

S̈k
ij =

k2

a
V̇ij −

k2

3a
ΘVij

V̈ k
ij = (c2

z −
1
3
)ΘV̇ij +

�
ċ2
zΘ− (c2

z −
1
3
)
�

1
3
Θ2 +

1
2
(1 + 3w)

µm

f � +
1
2
(µR + 3pR)

��
Vij

−
c2
si − c2

sj

a(1 + w) ṁ +
c2
si − c2

sj

a(1 + w)
(
1
3

+ w − c2
s)Θm −

c2
z

a
Ṡij +

c2
zΘ− 3ċ2

z

3a
Sij .



The background equations

{Conservation

Some remarks on the dynamical systems approach to fourth order gravity 4

represent the stress energy tensor of an effective fluid sometimes referred to as the

“curvature fluid” and

T
M

µν =
1

f �(R)
T̃

M

µν (5)

represents an effective stress-energy tensor associated with standard matter.

The conservation properties of these effective fluids are given by the Bianchi

identities T
;ν

µν . When applied to the total stress energy tensor, these identities reveal

that if standard matter is conserved the total fluid is also conserved even though the

curvature fluid may in general possess off–diagonal terms [21, 26, 27]. In other words,

no matter how complicated the effective stress energy tensor T
TOT
µν is, it will always be

divergence free if T̃
M ;ν
µν = 0. When applied on the single effective tensors, the Bianchi

identities read

T
M ;ν
µν =

T̃
M ;ν
µν

f �(R)
− f

��
(R)

f �(R)2
T̃

M

µν R
;ν

, (6)

T
R;ν
µν =

f
��
(R)

f �(R)2
T̃

M

µν R
;ν

, (7)

the last expression being a consequence of total energy-momentum conservation. It

follows that the individual effective fluids are not conserved but exchange energy and

momentum. It is worth noting that even if the effective tensor associated with the

matter is not conserved, standard matter still follows the usual conservation equations

T̃
M ;ν
µν = 0.

Let us now consider the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds
2

= dt
2 − a

2
(t)

�
dr

2

1− kr2
+ r

2
(dθ

2
+ sin

2
θdφ

2
)

�
. (8)

For this metric the action the field equations (4) reduce to

H
2

+
k

a2
=

1

3f �

�
1

2
[f

�
R− f(R)]− 3Hḟ � + µm

�
,

2Ḣ + H
2

+
k

a2
= − 1

f �

�
1

2
[f

�
R− f(R)] + f̈ � − 3Hḟ � + pm

�
,

(9)

and

R = −6

�
2H

2
+ Ḣ +

k

a2

�
, (10)

where H ≡ ȧ/a, f
� ≡ df(R)

dR
and the “dot” is the derivative with respect to t. The

system (9) is closed by the only non trivial Bianchi identity for T̃
M
µν :

µ̇m + 3H(µm + pm) = 0 , (11)

which corresponds to the energy conservation equation for standard matter.

3. The dynamical system approach in fourth order gravity theories

Following early attempts (see for example [28]), the first extensive analysis of the

phase space of a fourth order gravity theory using the Dynamical Systems Approach

(DSA) as defined in [23] was given in [21]. Here the phase space of the power law model

f(R) = f0R
n

was investigated in great detail and exact solutions were found and their

stability determined. Following this, several authors have applied a similar approach

.......Any background solutions?

{Raychaudhuri 2Ḣ + H
2 +

K

a2
= − 1

f �

�
1
2

[f �
R− f(R)] + f̈

� − 3Hḟ
� + pm

�
,

{Friedmann H
2 +

K

a2
=

1
3f �

�
1
2

[f �
R− f(R)]− 3Hḟ

� + µm

�
,

R = −6(2H
2 + Ḣ +

K

a2
)
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     - gravityRn

... Not yet, but...

a = a0t
(1−n)(2n−1)

n−2C

G

1.36<n<1.5

a = a0t
2n

3(1+w)

21

•Carloni, Dunsby Capozziello, Troisi (CQG, 2005)
•Carloni, Dunsby, Troisi (PRD 77: 024024)



Background quantities

then the background quantities will be

If we choose point  G :                                                                           ,a = a0t
2n

3(1+w) , K = 0, µm = µ0t
−2n

22



 Applications to a Radiation/Dust-dominated Universe

 Background model:      -gravity
 Non-interacting  radiation-dust background 

mixture
 Flat (K=0 ) FLRW spacetime

 Conservation equations:

 Equation of state of the mixture:

 Speed of sound in the mixture:

{

23



Total equations
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∆m =
µd∆d + µr∆r

µm
, Sdr = ∆d −

3
4
∆r



 The short wavelength limit
 The radiation energy density taken to be 

almost homogeneous:

 Radiation affects the growth of density 
perturbations by speeding up cosmic 
expansion.

 “Meszaros effect”: constraints on 

25

∆r << ∆d

c2
sµm∆k

m + pmεk =
1
3
µr∆k

r ≈ 0

Sk
dr ≈ ∆k

d
{

n



 Radiation-dominated epoch
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Quasi-static approximation

27

n >
2
3

Analytic Numerical



 Dust-dominated epoch

 In this case
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Quasi-static analysis
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The general solution of the previous equation is

30

NumericalAnalytic



  The long wavelength limit

{

31



Radiation-dominated epoch
 In this regime

 The equation admits the solution:
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Dust-dominated epoch
 The governing equations:
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Conclusion
✓1+3 covariant theory of cosmological perturbations: a 

good tool kit for f(R)
✓ for       models in the short wavelength limits, exact 

solutions found in quasi-static limit for background 
solutions obtained from dynamical approach to FLRW  
models

✓Growing modes observed  for range of values of n 
considered

✓Meszaros effect holds; can be used to constrain n
✓The quasi-static approximation: reasonably good
✓ Long wavelength analysis of component adiabatic 

perturbations give the same result as those for single 
fluid perturbations, deep in their respective era.

‣    More work ahead!...34

Rn



Future work...

35

f(R)

Background 
dynamics Perturbations

CMBA:ISW?....

Field 
equations
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