$1+3$ COVARIANT PERTURBATIONS
IN MULTIFLUID f(R)-GRAVITY

| Amare Abebe |
| :---: |
| University of Cape Town <br> Department of Mathematics and Applied <br> Mathematics <br> Gravity and Cosmology Group <br> Work done with Prof. Peter Dunsby <br> \& Mohamed Abdelwahab |$\underbrace{30 \text { Nov } 2009}$

Motivation
1.f(R)
2.The Universe is not composed of a single component of matter alone;it consists of many fluids(radiation, dust, 'CDM', etc) thermodynamically interacting with each other

## Outline

- Motivation
- Basics: $f(R)+$ Cosmological perturbations
- 1+3 Covariant formalism
- Perturbation Equations
- Applications to a Radiation/Dust-dominated Universe in $\mathrm{R}^{\mathrm{n}}$-gravity
- Quasi-static approximations
- Conclusion


## Motivation

- The Universe is not composed of a single component of matter alone; it consists of many fluids (radiation, "CDM", etc) thermodynamically interacting with each other.
- Analyzing how the perturbations of the different components of the total cosmic fluid evolve in time can tell us how structures grow in the Universe.
- Extending the single-fluid formulation in $f(R)$ to one where the equation of state is no longer constant but evolves with time, i.e., $w=w(t)$.


## Why modify Gravity?!

- Cosmic acceleration: missing energy?
- Possible explanations:
* $\Lambda$,the "cosmological constant"
*"dark energy"
* modification of GR
- Braneworlds
- Gauss-Bonnet gravities
$\checkmark f(R)$ models...
* Other approaches in the pipeline
- Inhomogeneous cosmologies
-Cosmological backreaction...


## $f(R)$ theories of Gravity

- Einstein-Hilbert action: $\mathcal{A}=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+\mathcal{L}_{m}\right]$
- Einstein field equations: $G_{a b}=\kappa T_{a b}$
-Generalized higher-order-gravity action:

$$
\mathcal{A}_{f(R)}=\int d^{4} x \sqrt{-g}\left[f(R)+\mathcal{L}_{m}\right]
$$

Generalized field equations
$f^{\prime} G_{a b}=f^{\prime}\left(R_{a b}-\frac{1}{2} g_{a b} R\right)=T_{a b}^{m}+\frac{1}{2} g_{a b}\left(R-R f^{\prime}\right)+\nabla_{b} \nabla_{a} f^{\prime}-g_{a b} \nabla_{c} \nabla^{c} f^{\prime}$,


## Cosmological perturbation theory

- Can help us understand the evolution of structure in the Big Bang model
- Uses gravitational theories to compute the gravitational forces causing small perturbations to grow and eventually seed the formation of galaxies, clusters, superclusters etc...
- Applicable largely to a homogeneous universe
- The theory is a good approximation on the largeintermediate scales
- On smaller scales, more sophisticated techniques such as N -body simulations are widely in use


## Two approaches...

Metric Gauge Invariant Covariant Gauge Invariant Perturbation Theory

Perturbation Theory

- Based on foliating a space-time with hyper-
- Based on threading a space-time with frames surfaces (Lifshitz 1946,Bardeen 1980 (Hawking 1966,Ehlers, Ellis Kodama \& Sasaki,1984)
- Starts with a background, perturbs away
- Nonlocal
- Coordinate dependent
- Does not treat nonlinearities
- Starts with theory, reduces down to linearities in a particular background
- Local
- Covariant
- Nonlinearities treated


## $1+3$ covariant decomposition

A fluid approach to spacetime with the time-like flow:

$$
u^{a}=\frac{d x^{a}}{d \tau}, \quad u^{a} u_{a}=-1
$$

Projections onto surfaces orthogonal to the flow :

$$
h_{a b}=g_{a b}+u_{a} u_{b}
$$

- Covariant convective derivative on a scalar: $\dot{f}=u^{a} \nabla_{a} f$
- Spatial covariant derivative: $\tilde{\nabla}_{a} f=h_{a}^{b} \nabla_{b} f$
- Kinematics of $u^{a} \Rightarrow$ geometry of fundamental worldlines

$$
\nabla_{a} u_{b}=-u_{a} \dot{u}_{b}+\frac{1}{3} \Theta h_{a b}+\stackrel{\sigma}{\sigma}_{a b}+\omega_{a b}
$$

## Effective total EMTs

- The total energy-momentum tensor is given by

$$
T_{a b}=\tilde{T}_{a b}^{m}+T_{a b}^{R}=\mu u_{a} u_{b}+p h_{a b}+q_{a} u_{b}+q_{b} u_{a}+\pi_{a b}
$$

from which the thermodynamical quantities

$$
\mu=\tilde{\mu}^{m}+\mu^{R}, \quad p=\tilde{p}^{m}+p^{R}, \quad q_{a}=\tilde{q}_{a}^{m}+q_{a}^{R}, \quad \pi_{a b}=\tilde{\pi}_{a b}^{m}+\pi_{a b}^{R}
$$

$$
\text { where } \tilde{\zeta}^{m}=\frac{\zeta^{m}}{f^{\prime}} \text { for } \zeta=\left\{\mu, p, q_{a}, \pi_{a b}\right\}
$$

are decomposed.


The energy-momentum tensor of the curvature "fluid" can be decomposed as follows:



## The linear gravitational equations

The linear conservation equations
The Bianchi identities: $\int \tilde{T}_{a b}^{M ; b}=\frac{T_{a b}^{m ; b}}{f^{\prime}}-\frac{f^{\prime \prime}}{f^{\prime 2}} T_{a b}^{m} R^{; b}$, $T_{a b}^{R ; b}=\frac{f^{\prime \prime}}{f^{\prime 2}} \tilde{T}_{a b}^{M} R^{; b}$
$\quad$ Matter $\left\{\begin{array}{l}\dot{\mu}^{m}=-\Theta\left(\mu^{m}+p^{m}\right), \\ \tilde{\nabla}^{a} p^{m}=-\left(\mu^{m}+p^{m}\right) \dot{u}^{a},\end{array}\right.$
$\dot{\mu}^{R}+\tilde{\nabla}^{a} q_{a}^{R}=-\Theta\left(\mu^{R}+p^{R}\right)+\mu^{m} \frac{f^{\prime \prime} \dot{R}}{f^{\prime 2}}$,
$\dot{q}_{\langle a\rangle}^{R}+\tilde{\nabla}_{a} p^{R}+\tilde{\nabla}^{b} \pi_{a b}^{R}=-\frac{4}{3} \Theta q_{a}^{R}-\left(\mu^{R}+p^{R}\right) \dot{u}_{a}+\mu^{m} \frac{f^{\prime \prime} \tilde{\nabla}_{a} R}{f^{\prime 2}}$,

## Inhomogeneíty varíables

Define co-moving, gauge-invariant inhomogeneity quantities

- Matter inhomogeneities in the total fluid

$$
\begin{aligned}
\mathcal{D}_{a}^{m} & =\frac{a}{\mu_{m}} \tilde{\nabla}_{a} \mu_{m}, & Z_{a} & =a \tilde{\nabla}_{a} \Theta \\
C_{a} & =a \tilde{\nabla}_{a} \tilde{R}, & \varepsilon_{a} & =\frac{a}{\mu_{m}}\left(\frac{\partial p_{m}}{\partial s}\right) \tilde{\nabla}_{a} s
\end{aligned}
$$

- Curvature inhomogeneities

$$
\mathcal{R}_{a}=a \tilde{\nabla}_{a} R, \quad \Re_{a}=a \tilde{\nabla}_{a} \dot{R}
$$

- Matter inhomogeneities in the component fluids

$$
\mathcal{D}_{a}^{i}=\frac{a}{\mu_{i}} \tilde{\nabla}_{a} \mu_{i}, \quad \varepsilon_{a}^{i}=\frac{a}{\mu_{i}}\left(\frac{\partial p_{i}}{\partial s}\right) \tilde{\nabla}_{a} s, \quad V_{a}^{i}=u_{a}^{i}-u_{a}
$$

- Relative variables
$\square$

Extracting the scalar modes

$$
a \tilde{\nabla}_{a} \mathcal{D}_{b}^{m}=\Sigma_{a b}^{m}+W_{a b}^{m}+\frac{1}{3} \Delta_{m} h_{a b}
$$



$$
\Delta_{m}=a \tilde{\nabla}^{a} \mathcal{D}_{a}^{m}
$$

$$
\begin{aligned}
& C=a \tilde{\nabla}^{a} C_{a}, \quad Z=a \tilde{\nabla}^{a} Z_{a}, \quad \varepsilon=a \tilde{\nabla}^{a} \varepsilon_{a}, \quad \mathcal{R}=a \tilde{\nabla}^{a} \mathcal{R}_{a}, \quad \Re=a \tilde{\nabla}^{a} \Re_{a} \\
& \Delta_{i}=a \tilde{\nabla}^{a} \mathcal{D}_{a}^{i}, \quad \varepsilon_{i}=a \tilde{\nabla}^{a} \varepsilon_{a}^{i}, \quad V_{i}=a \tilde{\nabla}^{a} V_{a}^{i}
\end{aligned}
$$

15


## Harmonic decomposition

- Given a second order equation:

- Separation of variables: $\quad X(x, t)=X(x) X(t)$

$$
X=\sum_{k} X^{k}(t) Q^{k}(x)
$$

where
$\tilde{\nabla}^{2} Q=-\frac{k^{2}}{a^{2}} Q$ such that $k=\frac{2 \pi a}{\lambda}, \quad \dot{Q}_{x}=0$

## Total fluid equations

$\ddot{\Delta}_{m}^{k}+\left\lceil\left(c_{s}^{2}+\frac{2}{3}-2 w\right) \Theta-\dot{R} \frac{f^{\prime \prime}}{f^{\prime}}\right\rceil \dot{\Delta}_{m}^{k}+\left\lceil\left(\frac{3}{2} w^{2}+5 c_{s}^{2}-4 w-1\right) \frac{\mu_{m}}{f^{\prime}}+\frac{1}{2}\left(3 w-5 c_{s}^{2}\right) \frac{f}{f^{\prime}}\right.$ $\left.+\left(c_{s}^{2}-w\right)\left(2 R-4 \dot{R} \Theta \frac{f^{\prime \prime}}{f^{\prime}}-\frac{12 K}{a^{2}}\right)+c_{s}^{2} \frac{k^{2}}{a^{2}}\right] \Delta_{m}^{k}+\left[2 \frac{\mu_{m}}{f^{\prime}}+\frac{R}{2}-\frac{f}{f^{\prime}}-\dot{R} \Theta \frac{f^{\prime \prime}}{f^{\prime}}-\frac{3 K}{a^{2}}+\frac{k^{2}}{a^{2}}\right] w \varepsilon^{k}$
$=\frac{1+w}{2}\left[-1-\frac{2 k^{2}}{a^{2}} \frac{f^{\prime \prime}}{f^{\prime}}+\left(f-2 \mu_{m}+2 \dot{R} \Theta f^{\prime \prime}\right) \frac{f^{\prime \prime}}{f^{\prime 2}}-2 \dot{R} \Theta\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}-2 \dot{R} \Theta \frac{f^{\prime \prime \prime}}{f^{\prime}}\right] \mathcal{R}^{k}-(1+w) \Theta \frac{f^{\prime \prime}}{f^{\prime}} \dot{\mathcal{R}}^{k}$
$\ddot{\mathcal{R}}^{k}+\left(2 \dot{R} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+\Theta\right) \dot{\mathcal{R}}^{k}+\left[\frac{k^{2}}{a^{2}}+\ddot{R} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+\dot{R}^{2} \frac{f^{(4)}}{f^{\prime \prime}}+\dot{R} \Theta \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+\frac{1}{3} \frac{f^{\prime}}{f^{\prime \prime}}-\frac{R}{3}\right] \mathcal{R}^{k}+\frac{c_{s}^{2}-1}{1+w} \dot{R} \dot{\Delta}_{m}^{k}$
$+\left[\frac{\left(3 c_{s}^{2}-1\right) \mu_{m}}{3 f^{\prime \prime}}+\frac{w+c_{s}^{2}}{1+w} \dot{R} \Theta+\frac{c_{s}^{2}}{1+w}\left(2 \ddot{R}+2 \dot{R}^{2} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}\right)+\frac{\dot{R}}{1+w}\left(\dot{c}_{s}^{2}+c_{s}^{2}\left(c_{s}^{2}-w\right) \Theta\right)\right] \Delta_{m}^{k}$
$+\frac{w}{1+w} \dot{R} \dot{\varepsilon}^{k}+\left[\frac{w \mu_{m}}{f^{\prime \prime}}+\frac{2 w-c_{s}^{2}}{1+w} \dot{R} \Theta+\frac{w}{1+w}\left(2 \ddot{R}+2 \dot{R}^{2} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}\right)\right] \varepsilon^{k}=0$

## Component \& relative equations

The density perturbations of the $\mathbf{i}$-th component:

$$
\begin{aligned}
& \ddot{\Delta}_{i}^{k}+\left(\frac{2}{3}-w_{i}\right) \Theta \dot{\Delta}_{i}^{k}-\frac{1+w_{i}}{1+w}\left(\dot{R} \frac{f^{\prime \prime}}{f^{\prime}}+\left(c_{s}^{2}-c_{s i}^{2}\right) \Theta\right) \dot{\Delta}^{k}+c_{s i}^{2} \frac{k^{2}}{a^{2}} \Delta_{i}^{k} \\
& -\frac{1+w_{i}}{1+w}\left[(1+w) \frac{\mu_{m}}{f^{\prime}}-\left(2 \frac{\mu_{m}}{f^{\prime}}-\frac{f}{f^{\prime}}-2 \Theta \dot{R} \frac{f^{\prime \prime}}{f^{\prime}}\right) c_{s}^{2}+c_{s}^{2} \Theta\right. \\
& \left.\left.+\left(c_{s}^{2}-c_{s i}^{2}\right)\left(c_{s}^{2}-w\right) \Theta^{2}-\left(c_{s}^{2}+w\right) \dot{R} \Theta \frac{f^{\prime \prime}}{f^{\prime}}\right] \Delta^{k}-\frac{1+w_{i}}{1+w \Theta \dot{\varepsilon}^{k}}\right) \\
& -\frac{1+w_{i}}{1+w}\left[\left(w-c_{s}^{2}-c_{s i}^{2} w\right) \Theta^{2}-w\left(2 \frac{\mu_{m}}{f^{\prime}}-\frac{f}{f^{\prime}}-\dot{R} \Theta \frac{f^{\prime \prime}}{f^{\prime}}\right)\right] \varepsilon^{k} \\
& +\left(1+w_{i}\right) \Theta \frac{f^{\prime \prime}}{f^{\prime}} \dot{\mathcal{R}}^{k}+\left(1+w_{i}\right)\left[\frac{1}{2}+\frac{k^{2}}{a^{2}} \frac{f^{\prime \prime}}{f^{\prime}}-\frac{1}{2} \frac{f f^{\prime \prime}}{f^{\prime 2}}+\frac{f^{\prime \prime} \mu_{m}}{f^{\prime 2}}-\dot{R} \Theta\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}+\dot{R} \Theta \frac{f^{\prime \prime \prime}}{f^{\prime}}\right] \mathcal{R}^{k}=0
\end{aligned}
$$

And the entropy and velocity perturbations:

$$
\begin{aligned}
\ddot{S}_{i j}^{k}= & \frac{k^{2}}{a} \dot{V}_{i j}-\frac{k^{2}}{3 a} \Theta V_{i j} \\
\ddot{V}_{i j}^{k}= & \left(c_{z}^{2}-\frac{1}{3}\right) \Theta \dot{V}_{i j}+\left[\dot{c}_{z}^{2} \Theta-\left(c_{z}^{2}-\frac{1}{3}\right)\left(\frac{1}{3} \Theta^{2}+\frac{1}{2}(1+3 w) \frac{\mu_{m}}{f^{\prime}}+\frac{1}{2}\left(\mu_{R}+3 p_{R}\right)\right)\right] V_{i j} \\
& \quad-\frac{c_{s i}^{2}-c_{s j}^{2} .}{a(1+w)}{ }^{m}+\frac{c_{s i}^{2}-c_{s j}^{2}}{a(1+w)}\left(\frac{1}{3}+w-c_{s}^{2}\right) \Theta_{m}-\frac{c_{z}^{2}}{a} \dot{S}_{i j}+\frac{c_{z}^{2} \Theta-3 \dot{c}_{z}^{2}}{3 a} S_{i j} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { The background equations } \\
& \text { Friedmann }\left\{H^{2}+\frac{K}{a^{2}}=\frac{1}{3 f^{\prime}}\left\{\frac{1}{2}\left[f^{\prime} R-f(R)\right]-3 H \dot{f}^{\prime}+\mu_{m}\right\},\right. \\
& \text { Raychaudhuri }\left\{2 \dot{H}+H^{2}+\frac{K}{a^{2}}=-\frac{1}{f^{\prime}}\left\{\frac{1}{2}\left[f^{\prime} R-f(R)\right]+\ddot{f}^{\prime}-3 H \dot{f}^{\prime}+p_{m}\right\},\right. \\
& \text { Conservation }\left\{\dot{\mu}_{m}+3 H\left(\mu_{m}+p_{m}\right)=0\right. \\
& \qquad R=-6\left(2 H^{2}+\dot{H}+\frac{K}{a^{2}}\right) \\
& \text { 20 }
\end{aligned}
$$

## $R^{n}$ - gravity

. Not yet, but...


- Carloni, Dunsby Capozziello, Troisi (CQG, 2005)
-Carloni, Dunsby, Troisi (PRD 77: 024024)


## Background quantities

If we choose point G : $a=a_{0} t^{\frac{2 n}{3(1+w)}}, \quad K=0, \quad \mu_{m}=\mu_{0} t^{-2 n}$,
then the background quantities will be

$$
\begin{aligned}
\Theta & =\frac{2 n}{(1+w) t} \\
R & =\frac{4 n[4 n-3(1+w)]}{3(1+w)^{2} t^{2}} \\
\mu_{R} & =\frac{2(n-1)[2 n(3 w+5)-3(1+w)]}{3(1+w)^{2} t^{2}} \\
p_{R} & =\frac{2(n-1)\left[n\left(6 w^{2}+8 w-2\right)-3 w(1+w)\right]}{3(1+w)^{2} t^{2}} \\
\mu_{m} & =\left(\frac{3}{4}\right)^{1-n} n \chi\left(\frac{n(4 n-3(1+w))}{(1+w)^{2} t^{2}}\right)^{n-1} \frac{4 n^{2}-2(n-1)[2 n(3 w+5)-3(1+w)]}{3(1+w)^{2} t^{2}}
\end{aligned}
$$

## Applications to a Radiation/Dust-dominated Universe

- Background model: $R^{n}$-gravity
- Non-interacting radiation-dust background mixture
- Flat ( $\mathrm{K}=0$ ) FLRW spacetime
- Conservation equations: $\left\{\begin{array}{l}\dot{\mu}_{d}+\Theta \mu_{d}=0 \\ \dot{\mu}_{r}+\frac{4}{3} \Theta \mu_{r}=0\end{array}\right.$
- Equation of state of the mixture: $w=\frac{1}{3} \frac{\mu_{r}}{\mu_{d}+\mu_{r}}$
- Speed of sound in the mixture: $c_{s}^{2}=\frac{4 \mu_{r}}{3\left(3 \mu_{d}+4 \mu_{r}\right)}$


## Total equations

$$
\begin{aligned}
& \ddot{\Delta}_{m}^{k}+\left[\left(c_{s}^{2}+\frac{2}{3}-2 w\right) \Theta-\dot{R} \frac{f^{\prime \prime}}{f^{\prime}}\right] \dot{\Delta}_{m}^{k}+\left[\left(\frac{3}{2} w^{2}+5 c_{s}^{2}-4 w-1\right) \frac{\mu_{m}}{f^{\prime}}+\frac{1}{2}\left(3 w-5 c_{s}^{2}\right) \frac{f}{f^{\prime}}\right. \\
& \left.+\left(c_{s}^{2}-w\right)\left(2 R-4 \dot{R} \Theta \frac{f^{\prime \prime}}{f^{\prime}}-\frac{12 K}{a^{2}}\right)+c_{s}^{2} \frac{k^{2}}{a^{2}}\right] \Delta_{m}^{k}-4 w c_{z}^{2}\left[2 \frac{\mu_{m}}{f^{\prime}}+\frac{R}{2}-\frac{f}{f^{\prime}}-\dot{R} \Theta \frac{f^{\prime \prime}}{f^{\prime}}-\frac{3 K}{a^{2}}+\frac{k^{2}}{a^{2}}\right] S_{d r}^{k} \\
& =\frac{1+w}{2}\left[-1-\frac{2 k^{2}}{a^{2}} \frac{f^{\prime \prime}}{f^{\prime}}+\left(f-2 \mu_{m}+2 \dot{R} \Theta f^{\prime \prime}\right) \frac{f^{\prime \prime}}{f^{\prime 2}}-2 \dot{R} \Theta\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}-2 \dot{R} \Theta \frac{f^{\prime \prime \prime}}{f^{\prime}}\right] \mathcal{R}^{k}-(1+w) \Theta \frac{f^{\prime \prime}}{f^{\prime}} \dot{\mathcal{R}}^{k} \\
& \ddot{\mathcal{R}}^{k}+\left(2 \dot{R} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+\Theta\right) \dot{\mathcal{R}}^{k}+\left[\frac{k^{2}}{a^{2}}+\ddot{R} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+\dot{R}^{2} \frac{f^{(4)}}{f^{\prime \prime}}+\dot{R} \Theta \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+\frac{1}{3} \frac{f^{\prime}}{f^{\prime \prime}}-\frac{R}{3}\right] \mathcal{R}^{k}+\frac{c_{s}^{2}-1}{1+w} \dot{R} \dot{\Delta}_{m}^{k} \\
& \quad+\left[\frac{\left(3 c_{s}^{2}-1\right) \mu_{m}}{3 f^{\prime \prime}}+\frac{w+c_{s}^{2}}{1+w} \dot{R} \Theta+\frac{c_{s}^{2}}{1+w}\left(2 \ddot{R}+2 \dot{R}^{2} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}\right)+\frac{\dot{R}}{1+w}\left(\dot{c}_{s}^{2}+c_{s}^{2}\left(c_{s}^{2}-w\right) \Theta\right)\right] \Delta_{m}^{k} \\
& -\frac{4 w}{1+w} c_{z}^{2} \dot{R} \dot{S}_{d r}^{k}-4 w c_{z}^{2}\left[\frac{\mu_{m}}{f^{\prime \prime}}+\frac{2}{1+w}\left(\ddot{R}+\dot{R} \Theta+\dot{R}^{2} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}\right)\right] S_{d r}^{k}=0 \\
& \ddot{S}_{d r}^{k}+\left(c_{s}^{2}+\frac{1}{3}\right) \Theta \dot{S}_{d r}^{k}+\frac{k^{2}}{a^{2}} c_{z}^{2} S_{d r}^{k}-\frac{k^{2}}{a^{2}}\left(c_{z}^{2}+\frac{3}{4} c_{s}^{2}\right) \Delta_{m}^{k}=0
\end{aligned}
$$

$$
\Delta_{m}=\frac{\mu_{d} \Delta_{d}+\mu_{r} \Delta_{r}}{\mu_{m}}, \quad S_{d r}=\Delta_{d}-\frac{3}{4} \Delta_{r}
$$

## The short wavelength limit

- The radiation energy density taken to be almost homogeneous:

- Radiation affects the growth of density perturbations by speeding up cosmic expansion.
- "Meszaros effect": constraints on $n$


## Radiation-dominated epoch

$$
\begin{aligned}
& \ddot{\Delta}_{d}^{k}+2 H \dot{\Delta}_{d}^{k}+3 H \frac{f^{\prime \prime}}{f^{\prime}} \dot{\mathcal{R}}^{k}+\left[\frac{1}{2}+\frac{k^{2}}{a^{2}} \frac{f^{\prime \prime}}{f^{\prime}}-\frac{1}{2} \frac{f f^{\prime \prime}}{f^{\prime 2}}+\frac{f^{\prime \prime} \mu_{r}}{f^{\prime 2}}-3 H \dot{R}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}+3 H \dot{R} \frac{f^{\prime \prime \prime}}{f^{\prime}}\right] \mathcal{R}^{k}=0 \\
& \ddot{\mathcal{R}}^{k}+\left(2 \dot{R} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+3 H\right) \dot{\mathcal{R}}^{k}+\left(\frac{k^{2}}{a^{2}}+\ddot{R} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+\dot{R}^{2} \frac{f^{(4)}}{f^{\prime \prime}}+3 H \dot{R} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+\frac{f^{\prime}}{3 f^{\prime \prime}}-\frac{R}{3}\right) \mathcal{R}^{k}=0
\end{aligned}
$$

In GR these equations reduce to

$$
\left.\begin{array}{l}
\ddot{\Delta}_{d}^{k}+2 H \dot{\Delta}_{d}^{k}+\frac{1}{2} \mathcal{R}^{k}=0 \\
\mathcal{R}^{k}=0
\end{array}\right\} \quad \ddot{\Delta}_{d}^{k}+\frac{1}{t} \dot{\Delta}_{d}^{k}=0
$$



## Dust-dominated epoch

- In this case

$$
\begin{aligned}
& \ddot{\Delta}_{d}^{k}+\left(2 H-\dot{R} \frac{f^{\prime \prime}}{f^{\prime}}\right) \dot{\Delta}_{d}^{k}-\frac{\mu_{d}}{f^{\prime}} \Delta_{d}^{k}+3 H \frac{f^{\prime \prime}}{f^{\prime}} \dot{\mathcal{R}}^{k} \\
& +\left[\frac{1}{2}+\frac{k^{2}}{a^{2}} \frac{f^{\prime \prime}}{f^{\prime}}-\frac{1}{2} \frac{f f^{\prime \prime}}{f^{\prime 2}}+\frac{f^{\prime \prime} \mu_{d}}{f^{\prime 2}}-3 H \dot{R}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}+3 H \dot{R} \frac{f^{\prime \prime \prime}}{f^{\prime}}\right] \mathcal{R}^{k}=0 \\
& \ddot{\mathcal{R}}^{k}+\left(2 \dot{R} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+3 H\right) \dot{\mathcal{R}}^{k}-\dot{R} \dot{\Delta}_{d}^{k}-\frac{\mu_{d}}{3 f^{\prime \prime}} \Delta_{d}^{k} \\
& +\left(\frac{k^{2}}{a^{2}}+\ddot{R} \frac{f^{\prime \prime \prime}}{f^{\prime \prime}}+\dot{R}^{2} \frac{f^{(4)}}{f^{\prime \prime}}+3 H \dot{R} \frac{f^{f^{\prime \prime}}}{f^{\prime \prime}}+\frac{f^{\prime}}{3 f^{\prime \prime}}-\frac{R}{3}\right) \mathcal{R}^{k}=0
\end{aligned}
$$

The GR equations:


## Quasí-static analysis

For $n \neq 1$ the equations take the form

$$
\begin{aligned}
& \ddot{\Delta}_{d}^{k}+\left(\frac{10 n-6}{3 t}\right) \dot{\Delta}_{d}^{k}+\left(\frac{2\left(8 n^{2}-13 n+3\right)}{3 t^{2}}\right) \Delta_{d}^{k}+\frac{3(n-1)}{2(4 n-3)} t \dot{\mathcal{R}}^{k} \\
& +\left[\frac{n(n-1)}{3(4 n-3)}\left(\frac{\lambda_{H}}{\lambda}\right)_{e q}^{2} t^{2-\frac{4 n}{3}}+\frac{27 n^{2}-8 n^{3}-18 n}{2 n(4 n-3)}\right] \mathcal{R}^{k}=0 \\
& \ddot{\mathcal{R}}^{k}+\left[\frac{8 n([n(8 n-13)+3](4 n-3))}{27(n-1) t^{4}}\right] \Delta_{d}^{k}+\frac{8 n(4 n-3)}{3 t^{3}} \dot{\Delta}_{d}^{k}+\frac{8-2 n}{t} \dot{\mathcal{R}}^{k} \\
& +\left[\frac{4 n^{2}}{9}\left(\frac{\lambda_{H}}{\lambda}\right)_{e q}^{2} t^{-\frac{4 n}{3}}-\frac{2[n(8 n+5)-69]+54}{9(n-1) t^{2}}\right] \mathcal{R}^{k}=0 \\
& \ddot{\Delta}_{d}^{k}+\frac{4 n}{3 t} \dot{\Delta}_{d}^{k}+\left[\frac{4\left(8 n^{2}-13 n+3\right)}{9 t^{2}}\right] \Delta_{d}^{k}=0
\end{aligned}
$$

The general solution of the previous equation is

$$
\Delta_{d}^{k}(t)=C_{1} t^{-\frac{2 n}{3}+\frac{1}{2}+\frac{\sqrt{-112 n^{2}+184 n-39}}{6}}+C_{2} t^{-\frac{2 n}{3}+\frac{1}{2}-\frac{\sqrt{-112 n^{2}+184 n-39}}{6}}
$$

Analytic



## The long wavelength limit

$\left\{\begin{array}{l}\lambda=\frac{2 \pi a}{k} \gg \lambda_{H} \Rightarrow \frac{k^{2}}{a^{2}} \rightarrow 0 \text { Drop all Laplacian terms } \\ \dot{C}=0 .\end{array}\right.$
Adiabatic perturbations : $S_{i j}=0=\dot{S}_{d r}+a \tilde{\nabla}^{2} V_{d r}=0$

$$
\dot{\Delta}_{m}=\left[\frac{1+w-2 n}{1+w}-\frac{6(n-1) n}{n+3(n-1) w-3}\right] \frac{\Delta_{m}}{t}-\frac{3(1+w)^{2}}{4 a_{0}^{2}[n+3(n-1) w-3][4 n-3(1+w)]} t^{1-\frac{4 n}{3(1+w)}} C_{0}
$$

$$
-\frac{9(n-1)(1+w)^{3} t^{2}}{4[n+3(n-1) w-3][4 n-3(1+w)]} t^{2} \Re+\left[\frac{3(n-1)(1+w)^{2}[n(6 w+8)-15(1+w)]}{4[n+3(n-1) w-3][4 n-3(1+w)]}\right] t \mathcal{R}
$$

$$
\dot{\mathcal{R}}=\Re+\frac{8 n c_{s}^{2}[4 n-3(1+w)]}{3(1+w)^{3}} \frac{\Delta_{m}}{t^{3}}
$$

$$
\dot{\Re}=-2\left[\frac{(n-4)+2(n-2) w}{(1+w) t}-\frac{3 n(n-1)}{n+3 w(n-1)-3}\right] \Re+\frac{2 n(4 n-3 w-3)}{(1+w)[n+3(n-1) w-3]} \frac{C_{0}}{a_{0}^{2}} t^{-\frac{4 n}{3(1+w)}-2}
$$

$$
-2\left[\frac{9 n(n-2)(n-1)}{n+3(n-1) w-3}+2 n^{2}-7 n-\frac{3 n^{2}(9 n-26)+57 n}{9(1+w)(n-1)}-\frac{8 n^{2}(n-2)}{9(1+w)^{2}(n-1)}+6\right] \frac{\mathcal{R}}{t^{2}}
$$

$$
+\frac{16 n[4 n-3(1+w)][4 n+3(n-1) w-3]\left[(9 w(1+w)+8) n^{2}-(3 w(9 w+8)+13) n+3(1+w)(1+6 w)\right]}{27(n-1)(1+w)^{4}[n+3(n-1) w-3]} \frac{\Delta_{m}}{t^{4}}
$$

$$
27(n-1)(1+w)^{4}[n+3(n-1) w-3 \mid
$$

## Radiation-dominated epoch

- In this regime

$$
\begin{aligned}
& \ddot{\Delta}^{k}+\frac{n(9 n-14)+4}{2(n-2) t} \dot{\Delta}^{k}+\frac{n(n(n(19 n-54)+58)-32)+8}{2(n-2)^{2} t^{2}} \Delta^{k} \\
& +\frac{2(n(3 n-4)+2)}{3(n-2)^{2}} t \dot{\mathcal{R}}^{k}-\frac{(n(15 n-22)+14)}{3(n-2)} \mathcal{R}^{k}+\frac{4\left(n^{2}-1\right)}{3(n-2)^{2} a_{0}^{2}} t^{-n} C_{0}=0 \\
& \ddot{\mathcal{R}}^{k}-\frac{n(11 n-32)+32}{2(n-2) t} \dot{\mathcal{R}}^{k}+\frac{3(n(5 n-9)+8)}{2 t^{2}} \mathcal{R}^{k}-\frac{3 n(n(n-3)+2)}{2(n-2) t^{3}} \dot{\Delta}^{k} \\
& -\frac{3 n(n-1)(n(19 n-28)+4)}{4(n-2) t^{4}} \Delta^{k}-\frac{3 n(n-1)}{(n-2) a_{0}^{2}} t^{-(n+2)} C_{0}=0
\end{aligned}
$$

Decoupled third- order system
$\dddot{\Delta}^{k}-\frac{n-5}{t} \ddot{\Delta}^{k}+\frac{(n(24-19 n)+8)}{4 t^{2}} \dot{\Delta}^{k}+\frac{(n-2)(n(5 n-8)+2)}{2 t^{3}} \Delta^{k}-\frac{12-7 n}{3 a_{0}^{2}} t^{-(n+1)} C_{0}=0$

- The equation admits the solution:
$\Delta^{k}(t)=\frac{2(24-14 n)}{9\left(7 n^{3}-18 n^{2}+16\right)} t^{2-n} C_{0}+C_{1} t^{\frac{n}{2}-1}+C_{2} t^{-\frac{1}{2}+\frac{n}{4}+\frac{\sqrt{3\left(81 n^{2}-44 n+12\right)}}{4}}$
32
$+C_{3} t^{-\frac{1}{2}+\frac{n}{4}-\frac{\sqrt{3\left(81 n^{2}-44 n+12\right)}}{4}}$


## Dust-domínated epoch

- The governing equations:
$\ddot{\Delta}^{k}+\frac{n(8 n-13)+3}{(n-3) t} \dot{\Delta}^{k}+\frac{(n(8 n-13)+3)(n(16 n-15)+9)}{3(n-3)^{2} t^{2}} \Delta^{k}+\frac{3(n-1)(n(16 n-15)+9)}{4(n-3)^{2}(4 n-3)} t \dot{\mathcal{R}}^{k}$
$-\frac{n[(n(16 n(8 n-31)+711)-540]+189}{4(n-3)^{2}(4 n-3)} \mathcal{R}^{k}-\frac{\left.n\left(27+54 n-56 n^{2}\right)-27\right)}{4(n-3)^{2}(4 n-3) a_{0}^{2}} t^{-\frac{4 n}{3}} C_{0}=0$
$\ddot{\mathcal{R}}^{k}-\frac{4(n-1)(n(2 n-5)+6)}{(n(n-4)+3) t} \dot{\mathcal{R}}^{k}+\frac{4[n(n(2 n(16 n-65)+213)-198)+81]}{9(n(n-4)+3) t^{2}} \mathcal{R}^{k}$
$-\frac{16 n(3-4 n)^{2}(n(8 n-13)+3)}{27((n-4) n+3) t^{4}} \Delta^{k}-\frac{2 n(n(4 n-7)+3)}{(n(n-4)+3) a_{0}^{2}} t^{-(n+2)} C_{0}=0$
$\dddot{\Delta}^{k}+\frac{5}{t} \ddot{\Delta}^{k}-\frac{2[n(4 n(8 n-19)+33)+9]}{9(n-1) t^{2}} \dot{\Delta}^{k}-\frac{2(4 n-3)(n(8 n-13)+3)}{9(n-1) t^{3}} \Delta^{k}$
$-\frac{(n(12 n-31)+18)}{6(n-1) a_{0}^{2}} t^{-(n+1)} C_{0}=0$,
$\Delta^{k}(t)=\frac{9\left[12 n^{2}-31 n+18\right]}{8\left(48 n^{4}-184 n^{3}+159 n^{2}+63 n-81\right)} t^{2-\frac{4 n}{3}} C_{0}+C_{1} t^{-1}+C_{2} t^{-\frac{3 n-3+\sqrt{(n-1)\left(256 n^{3}-688 n^{2}+417 n-81\right)}}{\delta(n-1)}}$
33
$+C_{3} t^{-\frac{3 n-3-\sqrt{(n-1)\left(256 n^{3}-608 s^{2}+417 n-81\right)}}{(0 n-1)}}$


## Conclusion

$1+3$ covariant theory of cosmological perturbations: a good tool kit for $f(R)$
for $R^{n}$ models in the short wavelength limits, exact solutions found in quasi-static limit for background solutions obtained from dynamical approach to FLRW models
Growing modes observed for range of values of $n$ considered
Meszaros effect holds; can be used to constrain $n$ The quasi-static approximation: reasonably good Long wavelength analysis of component adiabatic perturbations give the same result as those for single fluid perturbations, deep in their respective era.
(34 More work ahead!...

Future work...


THANK YOU FOR YOUR TIME!

