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Heterotic on T®

* Total rank of the four dimensional theory Is
16( ES X ES) + 12 ( g,umaB,um) = 28

 N=4 supersymmetry in D=4

e Duality group
SO(22,6;7Z) x SL(2;7)
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Charges and T-duality Invariants

e A charge vector Is specified as
_( @
"= (%)
e Transforms as a vector of the T-duality
group and a doublet of S-duality group.

 If the vectors Q and P are parallel, one
can preserve eight susys (half-BPS)
otherwise only four susys (quarter-BPS)
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Spectrum of Half-BPS States

 Degeneracies given by Fourier
coefficients of a genus-one modular form
—’iﬂ‘IQQT

2 e
d(Q%) ~ o dr P12 (T)

e Here 112(7) =n**(r) is a well-known
modular form of weight 12 of the group
SL(2, Z2) = Sp(1, Z). Genus one partition
function of left-moving heterotic string.
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Spectrum of quarter-BPS dyons

 Now the spectrum is expected to have a
sensitive moduli dependence.

 There are many inequivalent duality orbits
so we first need to classify them.

o Surprisingly, both these problems have
been solved In the recent years and one
now has a counting formula for all dyons
at all points in the moduli space.
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Duality Orbits

 Define an arithmetic duality invariant

I =gcd(QANAP)

 All inequivalent duality orbits are labeled
essentially by this single integer.

A. D., Gaiotto, Nampuri; Banerjee,Sen
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Chemical potentials

 Define a matrix of T-duality invariants
A — Q- Q-P\ ([ 2n |
~\oQ-Pp PP ) 1 2m

e Define the matrix of chemical potentials

o-(1 )
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Spectrum of quarter-BPS dyons

¢ For I=1, degeneracies are given by the
Fourier coefficients

— i (A,Q2)

d(A; p) ~ Sgc s e<I>1O(Q)

e Here ®,¢ Isa well-known Siegel
modular form of weight 10 of group Sp(2,
Z) and Is a genus two partition function of
the left-moving heterotic string.

Atish Dabholkar Quantum Black Holes 10



Moduli dependence

e The contour depends on moduli In a
precise way. All dependence on the

moduli [t Is captured by dependence of
contours on the moduli.

e Changing moduli deforms the contour.
Degeneracy remains constant for smooth
contour deformation but jumps if one
encounter a pole of the Fourier integral.

Atish Dabholkar Quantum Black Holes

11



Walls and Poles

 Moduli space divided into regions
separated by walls of marginal stability
where a quarter-BPS state decays into two
half-BPS states.

 Walls correspond to poles the Fourier
integral at the zeros of the Siegel form.

e Jumps In degeneracy upon crossing a wall
precisely equals the residue of the Fourier
integral at the poles. Nontrivial check.
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General duality orbits

Dyons with nontrivial values of the
arithmetic duality invariant | can be mapped

to charge vectors of the form T = ( Igo )

e Define for s which divides |

S G N AR
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Degeneracy of all dyons

dI(Av :u) — Z d(A57 ,u)
s|I

 Passes many nontrivial checks for small
and large values of charges.

Banerjee,Sen,Srivastava;
A.D,Gomez,Murthy
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Comparison with Entropy

 Comparison of S= log (d) Is Impressive
for this and many other compactifications

with N=4 supersymmetry—CHL orbifolds.

 Both macroscopic and microscopic
entropy can be obtained by the minimum
value of the same function F of two

variables a and o
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Entropy function
* The entropy function is given by
F=1I[¢tp24102_22Q. P4 128n¢(a,0)+...]

d(a,0) = —t={(n+2)logo +log |f"™) (a +i0)|?}

f(r) = ()" 2 (N
* For our case N=1 and n=10.
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Conclusions

* \We have seen that for many models one
can compute exactly the quantum
microscopic degeneracies of black holes.

e Sub-leading corrections in the asymptotic
expansion for large charges match
beautifully with Wald entropy to that order.

e Such exact information can help deepen
our understanding of nonpeturbative
guantum structure of gravity.
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Work In progress

It seems possible to define a full quantum
macroscopic partition function given our
knowledge on the microscopic side. One
can view this as an instance of precision
holography of AdS2/CFT1.

e This can shed light on a number of subtle
guestions about the nonperturbative string
partition function in AdS backgrounds.
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