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• Total rank of the four dimensional theory is

16 (                ) + 12 (                  ) = 28

• N=4 supersymmetry in D=4

• Duality group 

Heterotic on T6
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Charges and T-duality Invariants

• A charge vector is specified as 

• Transforms as a vector of the T-duality 
group  and a doublet of S-duality group.

• If the vectors Q and P are parallel, one 
can preserve eight susys (half-BPS) 
otherwise only four susys (quarter-BPS) 

Γ =

µ
Q
P

¶
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Spectrum of Half-BPS States

• Degeneracies given by Fourier 
coefficients of  a genus-one modular form

• Here                             is a well-known 
modular form of weight 12 of the group 
SL(2, Z) = Sp(1, Z). Genus one partition 
function of left-moving heterotic string. 

ψ12(τ) = η24(τ)

d(Q2) ∼ C dτ
e−iπIQ

2τ

ψ12(τ)
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Spectrum of quarter-BPS dyons

• Now the spectrum is expected to have a 
sensitive moduli dependence.

• There are many inequivalent duality orbits 
so we first need to classify them.

• Surprisingly, both these problems have 
been solved in the recent years and one 
now has a counting formula for all dyons 
at all points in the moduli space.
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Duality Orbits

• Define  an arithmetic duality invariant 

• All inequivalent duality orbits are labeled 
essentially by this single integer.                      

A. D., Gaiotto, Nampuri; Banerjee,Sen

I = gcd(Q ∧P)
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Chemical potentials

• Define  a matrix of T-duality invariants

• Define the matrix of chemical potentials

Ω =

µ
τ z
z ρ

¶
Λ =

µ
Q ·Q Q · P
Q · P P · P

¶
=

µ
2n l
l 2m

¶
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Spectrum of quarter-BPS dyons

• For I=1, degeneracies are given by the  
Fourier coefficients

• Here            is a well-known Siegel 
modular form of weight 10 of group Sp(2, 
Z) and is a genus two partition function of 
the left-moving heterotic string.

• .

Φ10

d(Λ;μ) ∼ C dΩ
e−iπ(Λ,Ω)
Φ10(Ω)
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Moduli dependence

• The contour depends  on moduli in a 
precise way. All dependence  on the 
moduli is captured by dependence of  
contours  on the moduli.

• Changing moduli deforms the contour. 
Degeneracy remains constant for smooth 
contour deformation but  jumps if one 
encounter a pole of the Fourier integral.  

μ
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Walls and Poles

• Moduli space divided into regions 
separated by walls of marginal stability 
where a quarter-BPS state decays into two 
half-BPS states.

• Walls correspond to poles the Fourier 
integral at the zeros of the Siegel form.

• Jumps in degeneracy upon crossing a wall 
precisely equals the residue of the Fourier 
integral at the poles. Nontrivial check.
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General duality orbits

• Dyons with nontrivial values of the 
arithmetic duality invariant I can be mapped 
to  charge vectors of the form 

• Define for s which divides I

Λs =

µ
Q ·Q/s2 Q · P/s
Q · P/s P · P

¶
Γ =

µ
IQ0
P

¶
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Degeneracy of all dyons

• Passes many nontrivial checks for small 
and large values of charges.

Banerjee,Sen,Srivastava; 
A.D,Gomez,Murthy

dI(Λ,μ) =
X
s|I
d(Λs,μ)
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Comparison with Entropy
• Comparison of S=  log (d) is impressive 

for this and many other compactifications 
with N=4 supersymmetry—CHL orbifolds.

• Both macroscopic and microscopic 
entropy can be obtained by the minimum 
value of the same function F of two 
variables a and σ
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Entropy function

• The entropy function is given by

• For our case N=1 and n=10.

F = π
2 [
a2+σ2

σ P 2 + 1
σQ

2 − 2 aσQ · P + 128πφ(a, σ) + . . .]

φ(a,σ) = − 1
64π2 {(n+ 2) log σ + log |f (n)(a+ iσ)|2}
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Conclusions

• We have seen that for many models one 
can compute exactly the quantum 
microscopic degeneracies of black holes. 

• Sub-leading corrections in the asymptotic 
expansion for large charges match 
beautifully with Wald entropy to that order.

• Such exact information can help deepen 
our understanding of  nonpeturbative 
quantum structure of gravity.
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Work in progress

• It seems possible to define a full quantum 
macroscopic partition function given our 
knowledge on the microscopic side. One 
can view this as an instance of precision 
holography of AdS2/CFT1.

• This can shed light on a number of subtle 
questions about the nonperturbative string 
partition function in AdS backgrounds.
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