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1. Multi matrix models

There are many reasons why multi-matrix models are of interest,
particularly their large ~ limit.

By matrix models, we mean integrals over matrices or the
quantum mechanics of matrix valued degrees of freedom

Some examples include

« Possible definition of M theory (BFSS)

« In the context of AdS/CFT duality, due to supersymmetry
and conformal invariance, correlators of supergravity and
72 BPS states reduce to calculation of free matrix model
overlaps or consideration of related matrix hamiltonians
(e.g., Lee et al., Corley et al, Berenstein). Examples of
other geometries discussed by e.g., R. de Mello Koch

e Similarly for stringy states, in the context of the BMN
limit
A plane-wave matrix theory (Kim, 2003) is related to the
N=4 SYM dilatation operator

* In earlier works, it has been argued that QCD can be
reduced to a finite number of matrices with quenched
momenta. Alternatively, they can be associated with QCD
zero modes on hyper-spheres.

Comments

* Very much work in progress

* Work moves away from the beautiful picture of YM gauge
invariant states and their possible supergravity
interpretation. More pedestrian, hopefully still interesting.



2 Matrix polar coordinates

We wish to consider the quantum mechanics of two N x N hermitean matrices
Xi and X5 with hamiltonian
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We introduce matrix valued polar coordinates

Xi+iXo=Z=RU , Z'=UR (2)

with R hermitean and U unitary. Since R is hermitean, it can be diagonalized
as R = VTrV, with r a diagonal matrix and V unitary, and we obtain

Z=VVU = VW, W=VU

Zr=uviry = whv (3)
We will refer to the parametrization in terms of (r,V,U) as parametrization
(I), and the parametrization in terms of (r, V, W) as parametrization (II). The
number of degrees of freedom is preserved, since these matrix coordinates are

defined up to V. — DV, W — DW with D a diagonal unitary matrix.

Introducing the anti-hermitean, Lie-algebra valued differential matrices

dX =VdAdUuUtvt | dS=dvVvi | dT = dWWw' (4)

we obtailn;

dZ = V'(dr+[r,dS]+rdX)VU = Vi(dr ++dT — dSr)W
dzt = UW(dr+ [r,dS] — dXr)V = Wi(dr +rdS — dTr)V  (5)

The metric is defined from the infinitesimal length squared

TrdZtdZ

Tr [(dr)® + [r,dS][r,dS] — r*(dX)* + [r, dS][r,dX]]
= Tr [(dr)? —r*(dS)? — 7*(dT)* + 2rdSrdT] (6)



Starting with parametrization (I), we note that the infinitesimal length squared
has a ‘local’(or "pointwise”) form in terms of the double index (z, 7), i.e

Tvdz'dz = Z dr? — Z(ﬁ —r;)%dS;dS;;
- 5 Z(T} {dSaJdX_n + dX;;dS;i} (7)

= —Z(r +r)dX;;dX;;

Recalling the antihermiticity of the differentials and writing ds? = ga pdz"dz?

with dz? = (d’ri;,dX.z-.i,dS.z-j(Kj),dX.ij(Kj),dS;‘j[Kj) dYU(Kﬂ). we obtain for
JA,B:
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It follows that

det g p = HTf (H %(”’3 . Tﬁ)z) = H ) (A%r) (8)
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where we have defined
1
Alr) = [T 302 — 202 ©
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The laplacian is obtained in the standard way, and it takes the form:
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For parametrization (II), we note that the second expression for the infinites-
imal length squared in equation (6) can be further diagonalized, for each i
and 7,by introducing:

Y+ — %(.ﬂ” 1 dS)  dY- = %(d’f _ds)

Then
TrdZ'dZ — Tr[dr? + %[r, Ay H[r, dV+] — %{r, dV-Hrdy-Y] (1)
Writing again ds® = TrdZ'dZ = ga pdx*dz®, we obtain

detgap = H 2r; (A%rg)’

and straightfowardly
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3 Invariant states

We are interested in the action of the above laplacians, or Hamiltonian, on
invariant states, i.e., states obtained by tracing strings of Z’s and Z7’s

Te(..2m 21" . Zrezi™ )

These states depend only on the eigenvalues r; of the radial matrix R and
on the unitary matrix

Q=VUVi=wvT

After some algebra one obtains the final form of the laplacian:
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where we have introduced the generators of left and right U(N') "rotations”:
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The states are subject to the constraint

@Qw

EP = EFP (14)



4 Radial fermionization

For the hamiltonian system, it is a well known result that the singlet sector
of a N x N single hermitean matrix hamiltonian with a potential depend-
ing only on its eigenvalues is equivalent to a system of N non-interacting
fermions. This is a result of the anti-symmetry under the exchange of any
two coordinates of the Van der Monde determinant

Azy) = [ (@ —2y)
i<j
Returning to two matrices (or a single complex matrix), We consider the

case of a potential that depends only on the eigenvalues of the radial matrix
U. An example would a potential of the form:

V (X1, Xa) = Trv(Z22%) = Tro(Z272)

with v(2z) a polynomial. Then, on "s-states” (independent of the "angular”
degrees of freedom @), and letting p; = 77,
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This kinetic energy operator acts on symmetric wavefunctions ®. Defining

T=AD | (15)

its action on ¥ takes the form:
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The second term clearly vanishes, and the last two vanish due to the identity
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which generalizes the identity applicable to the single hermitean case. It is
easily proven by choosing any three distinct eigenvalues.

Therefore, the eigenvalue equation for the energies of the system takes

the form,

(—22: %m% + 'b‘(,Oi)) U= (—% : %%nai + v’(n—)) U =FEv

(17)
This is the "s-state” Schroedinger equation for N non-interacting 2 + 1 di-
mensional non-relativistic fermions.

5 Density description

In this section we describe the key features of the density descripton of ra-
dially symmetric fermions int terms of the density of radial eigenvalues. We
use the collective field theory approach of Jevicki and Sakita.

The existence of such a descripton requires the identification of a suit-
able set of invariant operators which close under ”‘joining”” and " ‘splitting”’,
equivalent to the closure of underlying Schwinger-Dyson equations.

Remarkably, the following set can be identified as such:

1Al ikr dk —ikT ¢
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One has
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from which the "‘joining”” operator €2 takes the form
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For the "‘splitting”’ operator w
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After careful manipulation and regularization:
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In the density variable descripton, the Jacobian .J associated with the change
of variables to the invariant operators satisfies:
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Since [ dz'0Qy. /0B(2') = 0, if follows from (20) and (22) that
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The solution is

1 2 242 2
tnd = [ do [ dyp@e)nfe =yl 1= T]50F 3 = Aialr)
i<j
in precise agreement with the results of Section 2, e.g., (8). The prefactor in
(8) is simply the result of the change of variables = = r2.
How does the repulsion amongst the radial eigenvalues express itself as a

contribution to the potential? This is given by:



Ol = fnm dz 2®(z) (f: di%{’(g))z

Let us introduce a density of radial eigenvalues ¢(r) such that

h = OG‘iv"ir' r r) = oorf'-r r?
[ det@) @) = [ 2riae?) 6% = [ avot) 56

and extend the domain of definition of ¢(r) to the real line by requiring

o(—r) = o(r). Then

2
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Remarkably, as is the case in the collective field descripton of the singlet

sector of the single hermitean matrix !, a local cubic potential is generated
in the bosonized radially symmetric sector of the 2 + 1 fermions.

6 More complex matrices

As is well known, the case of larger number of matrices is of great importance
in the context of the AdS/CFT corespondence. Of particular importance is
the case of 3 complex matrices, which are associated with the 3 Higgs of the
bosonic sector of N=4 SYM.

Let us consider in general m complex matrices Z4, ,A=1,...,m. Then
> 42
A

In this case the cubic potential is the Thomas-Fermi density term of 1 dimensional
fermions
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is an Hermitean, positive deﬁnite maftrix. As in the previous subsections, we
will denote its eigenvalues by r2. The corresponding density variables are:

D), = Tre* T 52575 — Z et B(x) = f dk e kTP = Z 5(x —1?)

i 2 i
(24)
One has
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For Q. the result is identical to the that of the previous section:
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For w, one obtains
5>, i to i(k—K)ZYZ ;
Wk = oA —k dk'®,  Tr 2" Ze* + ik mN &,
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As deseribed in the previous section, this yields

S [:@ (@) (2 f dfqi(i) N J\*’(ﬂf; _ 1))] (28)

and hence the Jacobian satisfies

, 0 dy®(y) L N(m -1

61—8(1)(35) an—Q] pr— + -
A full treatment of the ensuing Jacobian is beyond the scope of this presen-
tation, but the first term on the right hand of side shows it to be multiplied
by the Van der Monde type determinant A%, ,, associated with the radial
inter-eigenvalue repulsion.
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7 Integral and non-supersymmetric strong cou-
pling

Suppose we now consider the Yang-Mills coupling potential

— g3y Tr[X1, Xo][ X1, Xo] = 263y (TrR' — TrR2U RUT)
= 2g7y (Trr* — Ter?Qr2Q")

The (path) integral is then proportional to

‘2 G 2 > F Y T i
fdfri_Hrl—AﬁjRef(uTETETLEQ%M >arh) ’"dDBZQ%MTrszRzR' —

2
. wle 2,92 4y det; ; €29y mrp2r?
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At weak coupling, it is the expression

det;; 20y 'rfr?
Al
that has a large N weak coupling expansion.
For strong coupling, it may be possible that the radial inter-eigenvalue
repulsion cancels out and a different mechanism is at work.



