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1. Introduction

One of the important successes of string theory is that one can obtain a statistical

understanding of the thermodynamic entropy of certain supersymmetric black holes in

terms microscopic counting. The entropy of black holes supplies us with very useful

quantitative information about the fundamental degrees of freedom of quantum gravity.

In this lectures we describe some recent progress in our understanding of the quan-

tum structure of black holes. We begin with a brief review of black holes,their entropy,

and relevant aspects of string theory and then discuss a few illustrative examples.

2. Black Holes

To understand the relevant parameters and the geometry of black holes, let us first

consider the Einstein-Maxwell theory described by the action

1

16πG

∫
R
√

gd4x− 1

16π

∫
F 2√gd4x, (2.1)

where G is Newton’s constant, Fµν is the electro-magnetic field strength, R is the Ricci

scalar of the metric gµν . In our conventions, the indices µ, ν take values 0, 1, 2, 3 and

the metric has signature (−, +, +, +).

2.1 Schwarzschild Metric

Consider the Schwarzschild metric which is a spherically symmetric, static solution

of the vacuum Einstein equations Rµν − 1
2
gµν = 0 that follow from (2.1) when no

electromagnetic fields are not excited. This metric is expected to describe the spacetime

outside a gravitationally collapsed non-spinning star with zero charge. The solution for

the line element is given by

ds2 ≡ gµνdxµdxν = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2,

where t is the time, r is the radial coordinate, and Ω is the solid angle on a 2-sphere.

This metric appears to be singular at r = 2GM because some of its components vanish

or diverge, g00 → ∞ and grr → ∞. As is well known, this is not a real singularity.

This is because the gravitational tidal forces are finite or in other words, components of

Riemann tensor are finite in orthonormal coordinates. To better understand the nature

of this apparent singularity, let us examine the geometry more closely near r = 2GM .

The surface r = 2GM is called the ‘event horizon’ of the Schwarzschild solution. Much

of the interesting physics having to do with the quantum properties of black holes comes

from the region near the event horizon.
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To focus on the near horizon geometry in the region (r − 2GM) ¿ 2GM , let us

define (r− 2GM) = ξ , so that when r → 2GM we have ξ → 0. The metric then takes

the form

ds2 = − ξ

2GM
dt2 +

2GM

ξ
(dξ)2 + (2GM)2dΩ2, (2.2)

up to corrections that are of order ( 1
2GM

). Introducing a new coordinate ρ,

ρ2 = (8GM)ξ so that dξ2 2GM

ξ
= dρ2,

the metric takes the form

ds2 = − ρ2

16G2M2
dt2 + dρ2 + (2GM)2dΩ2. (2.3)

From the form of the metric it is clear that ρ measures the geodesic radial distance.

Note that the geometry factorizes. One factor is a 2-sphere of radius 2GM and the

other is the (ρ, t) space

ds2
2 = − ρ2

16G2M2
dt2 + dρ2. (2.4)

We now show that this 1 + 1 dimensional spacetime is just a flat Minkowski space

written in funny coordinates called the Rindler coordinates.

2.2 Rindler Coordinates

To understand Rindler coordinates and their relation to the near horizon geometry of

the black hole, let us start with 1 + 1 Minkowski space with the usual flat Minkowski

metric,

ds2 = −dT 2 + dX2. (2.5)

In light-cone coordinates,

U = (T + X) V = (T −X), (2.6)

the line element takes the form

ds2 = −dU dV. (2.7)

Now we make a coordinate change

U =
1

κ
eaκu, V − 1

κ
e−κu, (2.8)

to introduce the Rindler coordinates (u, v). In these coordinates the line element takes

the form

ds2 = −dU dV = −eκ(u−v)du dv. (2.9)

– 3 –



Using further coordinate changes

u = (t + x), v = (t− x), ρ =
1

κ
eκx, (2.10)

we can write the line element as

ds2 = e2κx(−dt2 + dx2) = −ρ2κ2dt2 + dρ2. (2.11)

Comparing (2.4) with this Rindler metric, we see that the (ρ, t) factor of the Schwarzschild

solution near r ∼ 2GM looks precisely like Rindler spacetime with metric

ds2 − ρ2κ2 dt2 + dρ2 (2.12)

with the identification

κ =
1

4GM
.

This parameter κ is called the surface gravity of the black hole. For the Schwarzschild

solution, one can think of it heuristically as the Newtonian acceleration GM/r2
H at

the horizon radius rH = 2GM . Both these parameters–the surface gravity κ and the

horizon radius rH play an important role in the thermodynamics of black hole.

This analysis demonstrates that the Schwarzschild spacetime near r = 2GM is not

singular at all. After all it looks exactly like flat Minkowski space times a sphere of

radius 2GM . So the curvatures are inverse powers of the radius of curvature 2GM and

hence are small for large 2GM .

2.3 Kruskal Extension

One important fact to note about the Rindler metric is that the coordinates u, v do

not cover all of Minkowski space because even when the vary over the full range

−∞ ≤ u ≤ ∞, −∞ ≤ v ≤ ∞

the Minkowski coordinate vary only over the quadrant

0 ≤ U ≤ ∞, −∞ < V ≤ 0. (2.13)

If we had written the flat metric in these ‘bad’, ‘Rindler-like’ coordinates, we would

find a fake singularity at ρ = 0 where the metric appears to become singular. But we

can discover the ‘good’, Minkowski-like coordinates U and V and extend them to run

from −∞ to ∞ to see the entire spacetime.

Since the Schwarzschild solution in the usual (r, t) Schwarzschild coordinates near

r = 2GM looks exactly like Minkowski space in Rindler coordinates, it suggests that
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we must extend it in properly chosen ‘good’ coordinates. As we have seen, the ‘good’

coordinates near r = 2GM are related to the Schwarzschild coordinates in exactly the

same way as the Minkowski coordinates are related the Rindler coordinates.

In fact one can choose ‘good’ coordinates over the entire Schwarzschild spacetime.

These ‘good’ coordinates are called the Kruskal coordinates. To obtain the Kruskal

coordinates, first introduce the ‘tortoise coordinate’

r∗ = r + 2GM log

(
r − 2GM

2GM

)
. (2.14)

In the (r∗, t) coordinates, the metric is conformally flat, i.e., flat up to rescaling

ds2 = (1− 2GM

r
)(−dt2 + dr∗2). (2.15)

Near the horizon the coordinate r∗ is similar to the coordinate x in (2.11) and

hence u = t + r∗ and v = t − r∗ are like the Rindler (u, v) coordinates. This suggests

that we define U, V coordinates as in (2.8) with κ = 1/4GM . In these coordinates the

metric takes the form

ds2 = −e−(u−v)κdU dV = −2GM

r
e−r/2GMdU dV (2.16)

We now see that the Schwarzschild coordinates cover only a part of spacetime because

they cover only a part of the range of the Kruskal coordinates. To see the entire

spacetime, we must extend the Kruskal coordinates to run from −∞ to ∞. This

extension of the Schwarzschild solution is known as the Kruskal extension.

Note that now the metric is perfectly regular at r = 2GM which is the surface

UV = 0 and there is no singularity there. There is, however, a real singularity at r = 0

which cannot be removed by a coordinate change because physical tidal forces become

infinite. Spacetime stops at r = 0 and at present we do not know how to describe

physics near this region.

2.4 Event Horizon

We have seen that r = 2GM is not a real singularity but a mere coordinate singularity

which can be removed by a proper choice of coordinates. Thus, locally there is nothing

special about the surface r = 2GM . However, globally, in terms of the causal structure

of spacetime, it is a special surface and is called the ‘event horizon’. An event horizon

is a boundary of region in spacetime from behind which no causal signals can reach the

observers sitting far away at infinity.
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To see the causal structure of the event horizon, note that in the metric (2.11) near

the horizon, the constant radius surfaces are determined by

ρ2 =
1

κ2
e2κx =

1

κ2
eκue−κv = −UV = constant (2.17)

These surfaces are thus hyperbolas. The Schwarzschild metric is such that at r À 2GM

and observer who wants to remain at a fixed radial distance r = constant is almost

like an inertial, freely falling observers in flat space. Her trajectory is time-like and is

a straight line going upwards on a spacetime diagram. Near r = 2GM , on the other

hand, the constant r lines are hyperbolas which are the trajectories of observers in

uniform acceleration.

To understand the trajectories of observers at radius r > 2GM , note that to stay

at a fixed radial distance r from a black hole, the observer must boost the rockets to

overcome gravity. Far away, the required acceleration is negligible and the observers

are almost freely falling. But near r = 2GM the acceleration is substantial and the

observers are not freely falling. In fact at r = 2GM , these trajectories are light like.

This means that a fiducial observer who wishes to stay at r = 2GM has to move at the

speed of light with respect to the freely falling observer. This can be achieved only with

infinitely large acceleration. This unphysical acceleration is the origin of the coordinate

singularity of the Schwarzschild coordinate system.

In summary, the surface defined by r = contant is timelike for r > 2GM , spacelike

for r < 2GM , and light-like or null at r = 2GM .

In Kruskal coordinates, at r = 2GM , we have UV = 0 which can be satisfied in

two ways. Either V = 0, which defines the ‘future event horizon’, or U = 0, which

defines the ‘past event horizon’. The future event horizon is a one-way surface that

signals can be sent into but cannot come out of. The region bounded by the event

horizon is then a black hole. It is literally a hole in spacetime which is black because no

light can come out of it. Heuristically, a black hole is black because even light cannot

escape its strong gravitation pull. Our analysis of the metric makes this notion more

precise. Once an observer falls inside the black hole she can never come out because to

do so she will have to travel faster than the speed of light.

As we have noted already r = 0 is a real singularity that is inside the event horizon.

Since it is a spacelike surface, once a observer falls insider the event horizon, she is sure

to meet the singularity at r = 0 sometime in future no matter how much she boosts

the rockets.

The summarize, an event horizon is a stationary, null surface. For instance, in

our example of the Schwarzschild black hole, it is stationary because it is defined as a

hypersurface r = 2GM which does not change with time. More precisely, the time-like
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Killing vector ∂
∂t

leaves it invariant. It is at the same time null because grr vanishes at

r = 2GM . This surface that is simultaneously stationary and null, causally separates

the inside and the outside of a black hole.

2.5 Black Hole Parameters

From our discussion of the Schwarzschild black hole we are ready to abstract some

important general concepts that are useful in describing the physics of more general

black holes.

To begin with, a black hole is an asymptotically flat spacetime that contains a

region which is not in the backward lightcone of future timelike infinity. The boundary

of such a region is a stationary null surface call the event horizon. The fixed t slice of

the event horizon is a two sphere.

There are a number of important parameters of the black hole. We have introduced

these in the context of Schwarzschild black holes. For a general black holes their actual

values are different but for all black holes, these parameters govern the thermodynamics

of black holes.

1. The radius of the event horizon rH is the radius of the two sphere. For a

Schwarzschild black hole, we have rH = 2GM .

2. The area of the event horizon AH is given by 4πr2
H . For a Schwarzschild black

hole, we have AH = 16πG2M2.

3. The surface gravity is the parameter κ that we encountered earlier. As we have

seen, for a Schwarzschild black hole, κ = 1/4GM .

3. Black Hole Entropy

3.1 Laws of Black Hole Mechanics

One of the remarkable properties of black holes is that one can derive a set of laws

of black hole mechanics which bear a very close resemblance to the laws of thermody-

namics. This is quite surprising because a priori there is no reason to expect that the

spacetime geometry of black holes has anything to do with thermal physics.

(0) Zeroth Law: In thermal physics, the zeroth law states that the temperature T

of body at thermal equilibrium is constant throughout the body. Otherwise heat

will flow from hot spots to the cold spots. Correspondingly for black holes one can

show that surface gravity κ is constant on the event horizon. This is obvious for

spherically symmetric horizons but is true also more generally for non-spherical

horizons of spinning black holes.
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(1) First Law: Energy is conserved, dE = Tds+µdQ+ΩdJ , where E is the energy, Q

is the charge with chemical potential µ and J is the spin with chemical potential

Ω. Correspondingly for black holes, one has dM = κ
8πG

dA + µdQ + ΩdJ . For a

Schwarzschild black hole we have µ = Ω = 0 because there is no charge or spin.

(2) Second Law: In a physical process the total entropy S never decreases, ∆S ≥ 0.

Correspondingly for black holes one can prove the area theorem that the net

area never decreases, ∆A ≥ 0. For example, two Schwarzschild black holes with

masses M1 and M2 can coalesce to form a bigger black hole of mass M . This is

consistent with the area theorem since the area is proportional to the square of

the mass and (M1 +M2)
2 ≥ M2

1 +M2
2 . The opposite process where a bigger black

hole fragments is however disallowed by this law.

This formal analogy is actually much more than an analogy. Bekenstein and Hawking

discovered that there is a deep connection between black hole geometry, thermodynam-

ics and quantum mechanics.

3.2 Hawking temperature

Bekenstein asked a simple-minded but incisive question. If nothing can come out of

a black hole, then a black hole will violate the second law of thermodynamics. If we

throw a bucket of hot water into a black hole then the net entropy of the world outside

would seem to decrease. Do we have to give up the second law of thermodynamics in

the presence of black holes?

Note that the energy of the bucket is also lost to the outside world but that does

not violate the first law of thermodynamics because the black hole carries mass or

equivalently energy. So when the bucket falls in, the mass of the black hole goes up

accordingly to conserve energy. This suggests that one can save the second law of

thermodynamics if somehow the black hole also has entropy. Following this reasoning

and noting the formal analogy between the area of the black hole and entropy discussed

in the previous section, Bekenstein proposed that a black hole must have entropy

proportional to its area.

This way of saving the second law is however in contradiction with the classical

properties of a black hole because if a black hole has energy E and entropy S, then it

must also have temperature T given by

1

T
=

∂S

∂E
.
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For example, for a Schwarzschild black hole, the area and the entropy scales as S ∼ M2.

Therefore, one would expect inverse temperature that scales as M

1

T
=

∂S

∂M
∼ ∂M2

∂M
∼ M. (3.1)

Now, if the black hole has temperature then like any hot body, it must radiate. For

a classical black hole, by its very nature, this is impossible. Hawking showed that

after including quantum effects, however, it is possible for a black hole to radiate. In

a quantum theory, particle-antiparticle are constantly being created and annihilated

even in vacuum. Near the horizon, an antiparticle can fall in once in a while and the

particle can escapes to infinity. In fact, Hawking’s calculation showed that the spectrum

emitted by the black hole is precisely thermal with temperature T = ~κ
2π

= ~
8πGM

.

With this precise relation between the temperature and surface gravity the laws of

black hole mechanics discussed in the earlier section become identical to the laws of

thermodynamics. Using the formula for the Hawking temperature and the first law of

thermodynamics

dM = TdS =
κ~

8πG~
dA,

one can then deduce the precise relation between entropy and the area of the black

hole:

S =
Ac3

4G~
.

3.3 Euclidean Derivation of Hawking Temperature

Before discussing the entropy of a black hole, let us derive the Hawking temperature in

a somewhat heuristic way using a Euclidean continuation of the near horizon geometry.

In quantum mechanics, for a system with Hamiltonian H, the thermal partition function

is

Z = Tre−βĤ , (3.2)

where β is the inverse temperature. This is related to the time evolution operator

e−itH/~ by a Euclidean analytic continuation t = −iτ if we identify τ = β~. Let us

consider a single scalar degree of freedom Φ, then one can write the trace as

Tre−τĤ/~ =

∫
dφ < φ|e−τEĤ/~|φ >

and use the usual path integral representation for the propagator to find

Tre−τĤ/~ =

∫
dφ

∫
DΦe−SE [Φ].
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Here SE[Φ] is the Euclidean action over periodic field configurations that satisfy the

boundary condition

Φ(β~) = Φ(0) = φ.

This gives the relation between the periodicity in Euclidean time and the inverse tem-

perature,

β~ = τ or T =
~
τ
. (3.3)

Let us now look at the Euclidean Schwarzschild metric by substituting t = −itE. Near

the horizon the line element (2.11) looks like

ds2 = ρ2κ2dt2E + dρ2.

If we now write κtE = θ, then this metric is just the flat two-dimensional Euclidean

metric written in polar coordinates provided the angular variable θ has the correct

periodicity 0 < θ < 2π. If the periodicity is different, then the geometry would have

a conical singularity at ρ = 0. This implies that Euclidean time tE has periodicity

τ = 2π
κ

. Note that far away from the black hole at asymptotic infinity the Euclidean

metric is flat and goes as ds2 = dτ 2
E + dr2. With periodically identified Euclidean time,

tE ∼ tE + τ , it looks like a cylinder. Near the horizon at ρ = 0 it is nonsingular and

looks like flat space in polar coordinates for this correct periodicity. The full Euclidean

geometry thus looks like a cigar. The tip of the cigar is at ρ = 0 and the geometry is

asymptotically cylindrical far away from the tip.

Using the relation between Euclidean periodicity and temperature, we then con-

clude that Hawking temperature of the black hole is

T =
~κ
2π

. (3.4)

3.4 Bekenstein-Hawking Entropy

Even though we have “derived” the temperature and the entropy in the context of

Schwarzschild black hole, this beautiful relation between area and entropy is true quite

generally essentially because the near horizon geometry is always Rindler-like. For all

black holes with charge, spin and in number of dimensions, the Hawking temperature

and the entropy are given in terms of the surface gravity and horizon area by the

formulae

TH =
~κ
2π

, S =
A

4G~
.

This is a remarkable relation between the thermodynamic properties of a black hole on

one hand and its geometric properties on the other.
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The fundamental significance of entropy stems from the fact that even though it

is a quantity defined in terms of gross thermodynamic properties it contains nontrivial

info about the microscopic structure of the theory through Boltzmann relation

S = k log Ω,

where Ω is the total number of microstates of the system of for a given energy, and k

is Boltzmann constant. Entropy is not a kinematic quantity like energy or momentum

but rather contains information about the total number microscopic degrees of freedom

of the system. Because of this relation, can learn a great deal about the microscopic

properties of a system from its thermodynamics properties.

The Bekenstein-Hawking entropy behaves in every other respect like the ordinary

thermodynamic entropy. It is therefore natural to ask what microstates might account

for it. Since the entropy formula is given by this beautiful, general form

S =
Ac3

4G~
,

that involves all three fundamental dimensionful constants of nature, it is a valuable

piece of information about the degrees of freedom of a quantum theory of gravity.

String theory is a consistent quantum theory of gravity and should offer a statistical

interpretation of black hole entropy. Indeed, this is a highly nontrivial consistency check

of the formalism of string theory. At the moment, we still do not understand the entropy

of a big Schwarzschild black hole in terms of its microstates. But for a large class of

special supersymmetric black holes, it is possible to obtain a statistical account of the

entropy with impressive numerical agreement.

4. Supersymmetric Black Holes

4.1 Reissner-Nordström Metric

The most general static, spherically symmetric, charged solution of the Einstein-Maxwell

theory (2.1) gives the Reissner-Nordström (RN) black hole. In what follows we choose

units so that G = ~ = 1. The line element is given by

ds2 = −
(

1− 2M

r
+

Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

dr2 + r2dΩ2, (4.1)

and the electromagnetic field strength by

Ftr = Q/r2.
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The parameter Q is the charge of the black hole and M the mass as for the Schwarzschild

black hole.

Now, the event horizon for this solution is located at where grr = 0, or

1− 2M

r
+

Q2

r2
= 0.

Since this is a quadratic equation in r,

r2 − 2QMr + Q2 = 0,

it has two solutions.

r± = M ±
√

M2 −Q2.

Thus, r+ defines the outer horizon of the black hole and r− defines the inner horizon

of the black hole. The area of the black hole is 4πr2
+.

Following the steps similar to what we did for the Schwarzschild black hole, we can

analyze the near horizon geometry to find the surface gravity and hence the tempera-

ture:

T =
κ~
2π

=

√
M2 −Q2

4πM(M +
√

M2 −Q2)−Q2
(4.2)

S = πr2
+ = π(M +

√
M2 −Q2)2. (4.3)

These formulae reduce to those for the Schwarzschild black hole in the limit Q = 0.

4.2 Extremal Black Holes

For a physically sensible definition of temperature and entropy in (4.2) the mass must

satisfy the bound M2 ≥ Q2. Something special happens when this bound is saturated

and M = |Q|. In this case r+ = r− = |Q| and the two horizons coincide. We choose Q

to be positive. The solution (4.1) then takes the form,

ds2 = −(1−Q/r)2dt2 +
dr2

(1−Q/r)2
+ r2dΩ2, (4.4)

with a horizon at r = Q. In this extremal limit (4.2), we see that the temperature of

the black hole goes to zero and it stops radiating but nevertheless its entropy has a

finite limit given by S → πQ2. When the temperature goes to zero, thermodynamics

does not really make sense but we can use this limiting entropy as the definition of the

zero temperature entropy.
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For extremal black holes it more convenient to use isotropic coordinates in which

the line element takes the form

ds2 = H−2(~x)dt2 + H2(~x)d~x2

where d~x2 is the flat Euclidean line element δijdxidxj and H(~x) is a harmonic function

of the flat Laplacian

δij ∂

∂xi

∂

∂xj
.

The Reissner-Nordström solution is obtained by choosing

H(~x) =

(
1 +

Q

r

)
,

and the field strength is given by F0i = ∂iH(~x).

One can in fact write a multi-centered Reissner-Nordström solution by choosing a

more general harmonic function

H = 1 +
N∑

i=1

Qi

|~x− ~xi| . (4.5)

The total mass M equals the total charge Q and is given additively

Q =
∑

Qi. (4.6)

The solution is static because the electrostatic repulsion between different centers bal-

ances gravitational attraction among them.

Note that the coordinate r in the isotropic coordinates should not be confused

with the coordinate r in the spherical coordinates. In the isotropic coordinates the

line-element is

ds2 = −
(

1 +
Q

r

)2

dt2 + (1 +
Q

r
)−2(dr2 + r2dΩ2),

and the horizon occurs at r = 0. Contrast this with the metric in the spherical coordi-

nates (4.4) that has the horizon at r = M . The near horizon geometry is quite different

from that of the Schwarzschild black hole. The line element is

ds2 = − r2

Q2
dt2 +

Q2

r2
(dr2 + r2dΩ2)

= (− r2

Q2
dt2 +

Q2

r2
dr2) + (Q2dΩ2).
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The geometry thus factorizes as for the Schwarzschild solution. One factor the 2-sphere

S2 of radius Q but the other (r, t) factor is now not Rindler any more but is a two-

dimensional Anti-de Sitter or AdS2. The geodesic radial distance in AdS2 is log r. As a

result the geometry looks like an infinite throat near r = 0 and the radius of the mouth

of the throat has radius Q.

Extremal RN black holes are interesting because they are stable against Hawking

radiation and nevertheless have a large entropy. We now try to see if the entropy can

be explained by counting of microstates. In doing so, supersymmetry proves to be a

very useful tool.

4.3 Supersymmetry Algebra

Some of the special properties of external black holes can be understood better by

embedding them in N = 2 supergravity.

The supersymmetry algebra contains in addition to the usual Poincaré generators

the supercharges Qi
α where α = 1, 2 is the usual Weyl spinor index of 4d Lorentz

symmetry. Because we have N = 2 symmetry we have an internal index i = 1, 2

so the the supercharges transform in a doublet of an SU(2), the R-symmetry of the

superalgebra. The relevant anticommutators for our purpose are

{Qi
α, Q̄β̇j} = 2Pµσ

µ

αβ̇
δi
j (4.7)

{Qi
α, Qj

β} = Zεαβεij {Q̄α̇j, Q̄β̇j} = Z̄εα̇β̇εij. (4.8)

where σµ are (2 × 2) matrices with σ0 = −1 and σi, i = 1, 2, 3 are the usual Pauli

matrices. Here Pµ is the momentum operator and Q are the supersymmetry generators

and the complex number Z is the central charge of the supersymmetry algebra. We

have altogether eight real supercharges since we have N = 2 supersymmetry. In general

for N extended supersymmetry in four dimensions, there are 4N real supercharges.

Let us first look at the representations of this algebra when the central charge is

zero. In this case the massive and massless representation are qualitatively different.

1. Massive Representation, M > 0, P µ = (M, 0, 0, 0)

In this case, (4.7) becomes {Qi
α, Q̄β̇j} = 2Mδαβ̇δi

j and all other anti-commutators

vanish. Up to overall scaling, these are the commutation relations for four

fermionic oscillators. Each oscillator has a two-state representation, filled or

empty, and hence the total dimension of the representation is 24 = 16 which is

CPT self-conjugate.

2. Massless Representation M = 0, P µ = (E, 0, 0, E)

In this case (4.7) becomes {Q1
α, Q̄β̇1} = 2Eδαβ̇ and all other anti-commutators
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vanish. Up to overall scaling, these are now the anti-commutation relations of

two fermionic oscillators and hence the total dimension of the representation is

22 = 4 which is not CPT-selfconjugate. In local field theory we also get the

CPT conjugate of the representation and hence the massless representation is

8-dimensional.

The important point is that for a massive representation, with M = ε > 0, no matter

how small ε, the supermultiplet is long and precisely at M = 0 it is short. Thus the

size of the supermultiplet has to change discontinuously if the state has to acquire

mass. Furthermore, the size of the supermultiplet is determined by the number of

supersymmetries that are broken because those have non-vanishing anti-commutations

and turn into fermionic oscillators.

There are two massless representations that will be of interest to us.

1. Supergravity multiplet:

It contains the metric gµν , a vector A0
µ, and two gravitini ψi

µα.

2. Vector Multiplet:

It contains a vector AI
µ, a complex scalar field XI , and the gaugini χi

α,

where the index I goes from 1, . . . nv if we have nv vector multiplets.

Note that in the case Z = 0 that we discussed above, there is a bound on the

mass M ≥ 0 which simply follows from the fact the using (4.7)one can show that

the mass operator on the right hand side of the equation equals a positive operator,

the absolute value square of the supercharge on the left hand side. The massless

representation saturates this bound and is ‘small’ whereas the massive representation

is long. There is an analog of this phenomenon also for nonzero Z. In this case,

following a similar argument using the supersymmetry algebra one can prove the BPS

bound M − |Z| ≥ 0 by showing that this operator is equal to a positive operator.

When this bound is saturated then we have a BPS state with M = |Z|. In this

case, half of supersymmetries are unbroken as in the case for massless representation.

As a result, one gets only two fermionic oscillators and an eight-dimensional CPT

conjugate representation. Indeed, the massless representation is a special case of a BPS

representation with M = Z = 0. On the other hand, when the bound is not saturated,

M > |Z|, then all supersymmetries are broken, and one obtains a 16-dimensional

representation. The M = |Z| representation is often called the ‘short’ representation

and the M ≥ |Z| representation ‘long’ because of the size of the representation.

With N = 4 supersymmetry, which we will use later, there are altogether 16 real

supercharges. For the non-BPS states, all are broken and there are effectively eight
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fermionic oscillators resulting in a ‘long’ representation that is 256-dimensional. The

‘short’ representation that preserves half the supersymmetries is on the other hand

16-dimensional.

The significance of BPS states in string theory and in gauge theory stems from

the classic argument of Witten and Olive which shows that under suitable conditions,

the spectrum of BPS states is stable under smooth changes of moduli and coupling

constants. The crux of the argument is that with sufficient supersymmetry, for example

calN = 4, the coupling constant does not get renormalized. The central charge Z of the

supersymmetry algebra depends on the quantized charges and the coupling constant

which therefore also does not get renormalized. This shows that for BPS states, the

mass also cannot get renormalized because if the quantum corrections increase the

mass, the states will have to belong a long representation. Then, the number of states

will have to jump discontinuously from, say 16 to 256 which cannot happen under

smooth variations of couplings unless there is a phase transition.

As a result, one can compute the spectrum at weak coupling in the region of moduli

space where perturbative or semiclassical counting methods are available. One can

then analytically continue this spectrum to strong coupling. This allows us to obtain

invaluable nonperturbative information about the theory from essentially perturbative

commutations.

4.4 Supersymmetric States and Supergravity Solutions

This was global, rigid supersymmetry. In supergravity we have local supersymmetry.

The black holes are solutions of the supergravity equations of motion that are asymp-

totically flat. In asymptotically flat spacetime, one can consider supergravity gauge

transformations (which include coordinate transformations as well as local supersym-

metry transformations) with gauge parameters that do not vanish at infinity. These

are rigid transformations. In asymptotically flat space we obtain a representation of

this asymptotic symmetry. For example, a soliton can be moved around

xµ → xµ + εµ

This is a coordinate transformation in a theory of gravity for a with constant gauge

parameter εµ(x) = εµ. Such global coordinate transformations generate the group

of translations with generators i∂/∂xµ = Pµ. Similarly, the boosts and rotations of

the asymptotic Poincar/’e algebra can be obtained by coordinate transformations with

constant gauge parameters. States in asymptotic space form representations of this

Poincaré algebra. Given a black hole solution we can boost it to consider a black hole

moving with some momentum. In supergravity, in the same way, we look for represen-

tations of rigid supersymmetry algebra generated by supersymmetry transformations
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with gauge parameters that does not vanish at infinity. A BPS representation of this

algebra then would preserve half the supersymmetries and we are thus led to look for

solutions that preserve half (or more generally quarter, or some other fraction) of the

supersymmetries.

In supergravity, to find a half-BPS solution (M = |Z|) we therefore try to find a

solution that preserves half the supersymmetries with constant gauge parameters at

infinity. Acting on bosonic fields, the supersymmetry transformations give fermionic

fields. Since classically all fermionic fields have vanishing expectation value, these

variations of bosonic fields vanish automatically. On the other hand variations of

the fermionic fields give bosonic fields and are not zero automatically. Setting these

variations to zero gives a set of first order equations often called the ‘Killing spinor

equations’ which we have to solve to find the unbroken supersymmetries. The solutions

are called ‘Killing spinors’ by analogy with Killing vectors which are the vector fields on

which the fields do no depend. For example static solutions have ∂/∂t time translations

as a Killing vector. Killing spinor generate supertranslations under which the fields are

invariant.

Solving the Killing spinor equations is often easier because these are first order

equations compared to the original second-order equations of motion. The solutions of

Killing spinor equations in supergravity corresponding to supersymmetric black hole so-

lutions typically take the Reissner-Nordström form that we encounter earlier in isotropic

coordinates,

ds2 = −
(

1 +
|Z|
r

)2

+

(
1 +

|Z|
r

)2

(dr2 + r2dΩ2), (4.9)

where Z is the supersymmetry central charge. The black hole has mass M = |Z| and

entropy S = π|Z|2 analogous to the extremal RN black hole.The near horizon geometry

is then AdS2 × S2 as before and the radius of both factors equals |Z|.

4.5 Perturbative BPS States

An instructive example of BPS of states is provided by an infinite tower of BPS states

that exists in perturbative string theory.

Consider, heterotic string theory compactified on T 4×S1× S̃1 to four dimensions.

We denote spacetime coordinates by xM , M = 0, . . . , 9 and take (0123) to label the non-

compact spacetime coordinates, (4) and (5) to label S̃1 and S1 coordinates respectively,

and (6789) to label the T 4 coordinates.

Consider a perturbative string state wrapping around S1 with winding number w

and quantized momentum n. Let the radius of the circle be R and α′ = 1, then one
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can define left-moving and right-moving momenta as usual,

PL,R =

√
1

2

( n

R
± wR

)
. (4.10)

The Virasoro constraints are then given by

H̃ = −M2

4
+ Ñ +

P 2
R

2
= 0 (4.11)

H = −M2

4
+ N +

P 2
L

2
= 0, (4.12)

where N and Ñ are the left-moving and right-moving oscillation numbers respectively.

Recall that the heterotic strings consists of a right-moving superstring and a left-

moving bosonic string. In the NSR formalism in the light-cone gauge, the worldsheet

fields are:

• Right moving superstring

X i(σ−) ψ̃i(σ−) i = 1 · · · 8

• Left-moving bosonic string

X i(σ+), XI(σ+) I = 1 · · · 16,

where X i are the bosonic transverse spatial coordinates, ψ̃i are the worldsheet fermions,

and XI are the coordinates of an internal E8 × E8 torus.

The left-moving oscillator number is then

N =
∞∑

n=1

(
8∑

i=1

nαi
−nα

i
n +

16∑
I=1

nβI
−nβ

I
−n)− 1, (4.13)

where αi are the left-moving Fourier modes of the fields X i, and βI are the Fourier

modes of the fields XI .

A BPS state is obtained by keeping the right-movers in the ground state with no

oscillations thus setting Ñ = 0. From the Virasoro constraint (4.11) we see that the

state saturates the BPS bound

M =
√

2pR, (4.14)

and thus
√

2pR can be identified with the central charge of the supersymmetry algebra.

The right-moving ground state after the usual GSO projection is indeed 16-dimensional
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as expected for a BPS-state in a theory with N = 4 supersymmetry. To see this, note

that the right-moving fermions satisfy anti-periodic boundary condition in the NS sector

and have half-integral moding, and satisfy periodic boundary conditions in the R sector

and have integral moding. The oscillator number operator is then given by

Ñ =
∞∑

n=1

8∑
i=1

(nα̃i
−nα̃

i
n + rψ̃i

−rψ̃
i
r −

1

2
). (4.15)

with r ≡ −(n− 1
2
) in the NS sector and by

Ñ =
∞∑

n=1

8∑
i=1

(nα̃i
−nα̃

i
n + rψ̃i

−rψ̃
i
r) (4.16)

with r ≡ (n− 1) in the R sector.

In the NS-sector then one then has Ñ = 1
2

and the states are given by

ψ̃i
− 1

2
|0 >, (4.17)

that transform as the vector representation 8v of SO(8). In the R sector the ground

state is furnished by the representation of fermionic zero mode algebra {ψi
0, ψ

j
0} = δij

which after GSO projection transforms as 8s of SO(8). Altogether the right-moving

ground state is thus 16-dimensional 8v ⊕ 8s.

We thus have a perturbative BPS state which looks pointlike in four dimensions

with two integral charges n and w that couple to two gauge fields g5µ and B5µ re-

spectively. It saturates a BPS bound M =
√

2pR and belongs to a 16-dimensional

short representation. This point-like state is our ‘would-be’ black hole. Because it

has a large mass, as we increase the string coupling it would begin to gravitate and

eventually collapse to form a black hole.

Microscopically, there is a huge multiplicity of such states which arises from the

fact that even though the right-movers are in the ground state, the string can carry

arbitrary left-moving oscillations subject to the Virasoro constraint. Using M =
√

2pR

in the Virasoro constraint for the left-movers gives us

N =
1

2
(p2

R − p2
L) = nw. (4.18)

We would like to know the degeneracy of states for a given value of charges n and

w which is given by exciting arbitrary left-moving oscillations whose total worldsheet

energy adds up to N . Let us denote the degeneracy by Ω(N) which we want to compute.
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As usual, it is more convenient to evaluate the canonical partition function and then

read off the microcanonical degeneracy Ω(N) by inverse Laplace transform.

Z(β) = Tre−βN (4.19)

≡
∑

Ω(N)qN , (4.20)

where q = e−β. Using the expression (4.13) for the oscillator number N and the fact

that

Tr(q−nα−nαn) = 1 + qn + q2n + q3n + · · · = 1

(1− qn)
, (4.21)

the partition function can be readily evaluated to obtain

Z(β) =
1

q

∞∏
n=1

1

(1− qn)24
. (4.22)

The degeneracy Ω(N) is given by the inverse Laplace transform

Ω(N) =
1

2πi

∫
dβeβNZ(β). (4.23)

We would like to evaluate this integral for large N which corresponds to large

worldsheet energy. We would therefore expect that the integral will receive most of its

contributions from high temperature or small β region of the integrand. To compute

the large N asymptotics, we then need to know the small β asymptotics of the partition

function. Now, β → 0 corresponds to q → 1 and in this limit the asymptotics of Z(β)

are very difficult to read off from (4.22) because its a product of many quantities that

are becoming very large. It is more convenient to use the fact that Z(β) is a modular

form of weight 12 which means that

Z(β) = (β/2π)12Z(
4π2

β
). (4.24)

This allows us to relate the q → 1 or high temperature asymptotics to q → 0 or low

temperature asymptotics as follows. Now, Z(β̃) = Z
(

4π2

β

)
asymptotics are easy to

read off because as β → 0 we have β̃ →∞ or e−β̃ = q̃ → 0. As q̃ → 0

Z(β̃) =
1

q̃

∞∏
n=1

1

(1− q̃n)24
∼ 1

q̃
. (4.25)

This allows us to write

Ω(N) ∼ 1

2πi

∫ (
β

2π

)12

eβN+ 4π2

β dβ. (4.26)
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This integral can be evaluated easily using saddle point approximation. The function

in the exponent is f(β) ≡ βN + 4π2

β
which has a maximum at

f ′(β) = 0 or N − 4π2

βc

= 0 or βc =
2π√
N

. (4.27)

The value of the integrand at the saddle point gives us the leading asymptotic expression

for the number of states

Ω(N) ∼ exp (4π
√

N). (4.28)

This implies that the black holes corresponding to these states should have nonzero

entropy that goes as

S ∼ 4π
√

nw. (4.29)

We would now like to identify the black hole solution corresponding to this state and

test if this microscopic entropy agrees with the macroscopic entropy of the black hole.

4.6 Cardy’s Formula

Before turning to black hole geometry and the entropy, let us discuss one general point

that has proved to be useful in the stringy explorations of black hole physics.

The formula that we derived for the degeneracy Ω(N) is valid more generally in

any 1 + 1 CFT. In a general the partition function is a modular form of weight k

Z(β) ∼ Z

(
4π2

β

)
βk.

which allows us to high temperature asymptotics to low temperature asymptotics for

Z(β̃) because

β̃ ≡ 4π2

β
→∞ as β → 0. (4.30)

At low temperature only ground state contributes

Z(β̃) = Tr exp(−β̃(L0 − c/24))

∼ exp(−E0β̃) ∼ exp(
β̃c

24
),

where c is the central charge of the theory. Using the saddle point evaluation as above

we then find.

Ω(N) ∼ exp (2π

√
cN

6
). (4.31)

In our case, because we had 24 left-moving bosons, c = 24, and then (4.31) reduces to

(4.28).
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This formula has been used extensively in black hole physics in string theory.

Typically, one reduces the black hole counting problem to a counting problem in 1 + 1

CFT. For example, in the well-known Strominger-Vafa black hole in five dimensions, the

microscopic configuration consists of Q5 D5-branes wrapping K3 × S1, Q1 D1-branes

wrapping the S1, with total momentum N along the circle. . The bound states are

described by an effective string wrapping the circle carrying left-moving momentum N .

The central charge of the system can be computed at weak coupling and is given by

6Q1Q5. Then applying Cardy’s formula

Ω(N) = exp(2π

√
6Q1Q5N

6
). (4.32)

which implies a microscopic entropy S = log Ω = 2π
√

Q1Q5N . The corresponding BPS

black hole solutions with three charges in five dimensions can be found in supergravity

and the resulting entropy matches precisely with the macroscopic entropy.

We would now like to see if a similar comparison can be carried out for our two

charge states in four dimensions.

5. Black Hole Attractor Geometry

Corresponding to our state with two charges, we have a point-like object that couples

to two types of gauge fields with charges n,w. It also couples to the metric and two

scalar moduli, the dilaton and the radius. An explicit solution in supergravity with

these charges and coupling can be found easily. However one finds that the resulting

solution is not a black hole at all but is in fact mildly singular with vanishing area.

The Bekenstein-Hawking entropy would thus be zero which seems to be in contradiction

with the counting of states that we did earlier.

Of course, to correctly carry out the comparison, one must remember that near

the singularity, where the curvature becomes large, stringy corrections will become

important. For the heterotic state that we have considered, the dilaton remains very

small near the horizon so one expects that stringy loop corrections can be ignored but

the alpha prime corrections to the geometry must be taken into account.

At first sight, it looks like a hopeless task to find a corrected geometry including

the corrections. That would involve first finding the effective action including higher

derivative corrections and then solving these equations of motion to find the corrected

near-horizon geometry. It seems well nigh impossible to solve the non-linear partial

differential equations with higher order derivative.

It turns out though using supersymmetry and the formalism of special geometry

in supergravity one can solve the equations and evaluate the entropy explicitly. What
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makes this possible is a combination of supersymmetry and the so called ‘attractor

mechanism’ in the presence of black holes. To understand the attractor phenomenon,

note that in the black hole couples to a the metric and a given set of vector fields and

moduli. Hence in the black hole geometry all these fields vary as a function of radial

distance:

gµν(r), AI
µ(r), XI(r),

where AI
µ are the vector fields and XI are the moduli. The index I runs over 0, 1, 2, . . . , nv

if there are nv vector multiplets of N = 2 supergravity. The relevant aspects of super-

gravity will be explained in the next section.

Now, since XI are moduli fields that parameterize the size and shape of the in-

ternal manifold of string compactification, at asymptotic infinity as r →∞, they can

take any value XI
0 . The solution for the black hole geometry and therefore the en-

tropy would then seem to depend on these arbitrary continuous parameters. How can

it possibly agree with the well-defined microscopic log Ω(Q) which depends only on

integral charges? The answer to this puzzle is provided by the attractor phenomenon.

It turns out that the horizon of a black hole is a very special place. No matter what

value XI
0 the moduli have at asymptotic infinity, at the horizon they get ‘attracted’

to value XI
∗ (Q) that depends only on the charges of the black holes. Furthermore,

in N = 2 supergravity, the attractor values of the moduli are determined by solving

purely algebraic equations.

For example in our example, the radius modulus can take arbitrary value at infinity

R that corresponds to the radius of the internal circle. But as we will see, near the

horizon of the black hole corresponding to our state with two charges n and w, the

modulus gets attracted to the value
√

n
w
. Similarly, the string coupling constant or the

dilaton gets attracted to
√

1
nw

.

What is more, the entire near horizon geometry is determined in terms of the

attractor values. This is because, the near horizon geometry is AdS2×S2 and the radius

of the two factors is determined by the value of the central charge of the supersymmetry

algebra which in turn is determined completely in a given theory by the attractor values

of the moduli.

This is an enormous simplification. The problem of solving the higher order, non-

linear partial differential equations is reduced to solving algebraic equations using su-

persymmetry and the attractor phenomenon. When one includes the higher derivative

corrections to the two-derivative supergravity action, there is an additional subtlety

that needs to be taken into account.

The higher derivative corrections are expected to modify not only the equations

of motion and the solution but also the black hole entropy formula itself. Fortunately,
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there is an elegant generalization of the Bekenstein-Hawking formula due to Wald that

allows us to take these corrections into account in a systematic way.

While some of these ideas such as the Wald entropy have a broader applicability,

the supergravity formalism of special geometry is what makes it possible to carry out

explicit computations. So we now turn to supergravity and special geometry

5.1 Special Geometry

Consider N = 2 supergravity with nv vector multiplets. The bosonic fields from the

gravity multiplet are (gµν , A
0
µ) and those from the vector multiplets are (AA

µ , XA),

A = 1, 2, . . . , nV .

In string theory, N = 2 supergravity arises naturally in the context of compactifica-

tion of Type-II string on a Calabi-Yau three-fold to four dimensions. Special geometry

formalism then describes the vector multiplet moduli space and the supergravity cou-

plings of this sectors. In Type-IIA strings, vector fields arise from 3-form RR fields

in 10d that have two indices coming from harmonic (1, 1)-forms on CY3 and hence

the vector multiplet moduli space corresponds to the moduli space of Kähler defor-

mations. In Type-II strings vector fields arise from 4-form RR fields in 10d that have

three indices two indices coming from harmonic (1, 2)-forms of the CY3 and hence the

vector multiplet moduli space corresponds to the moduli space of complex structure

deformations. Our discussion of black holes will be mostly in the context of Type-IIA

compactifications.

To discuss black holes, we need to know the low energy effective action coupling the

metric gµν with the vector fields {A0
µ, A

A
µ} and the complex scalar fields {XA}. This

action is summarized elegantly using special geometry. The name ‘Special Geometry’

refers to the fact that the moduli space parameterized by the fields XA is a special

Kähler manifold. The geometry is completely specified by a single holomorphic function

F called the prepotential. We review a few relevant facts below.

Special geometry is most conveniently described using complex projective coordi-

nates called special coordinates. To motivate this choice of coordinates note that we can

collect the vector fields into {AI
µ} with I = 0, 1, 2, . . . , nv. A generic state will therefore

carry (nv + 1) electric charges {qI} and (nv + 1) magnetic charges {pI}. If there are

two states with charges (qI , p
I) and (q′I , p

′I) then they satisfy the Dirac quantization

condition qIp
′J − pIq

J ′ = 2πn for some integer n. The Dirac quantization condition is

left invariant by and Sp(nv + 1;Z) transformation. To see this note that the product

of charges that appears in the Dirac quantization condition can be written

(
q p

) (
0 −1

1 0

)(
q′

p′

)
, (5.1)
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where q etc are (nv + 1)-dimensional vectors 1 is a (nv + 1)× (nv + 1) block-diagonal

matrix. The quantization condition is left invariant by transformation g with integer

entries such that

g

(
0 −1

1 0

)
gt, (5.2)

which is the definition of the symplectic group with integer entries. Now, since the

symplectic group acts linearly on the charges it acts linearly on the vector fields but

not on XA. This is because while there (nv +1) vector fields, there are only nV complex

scalar fields. It is convenient to introduce an additional ‘fake’ coordinate X0 and write

XI = (X0, XA).

This additional unwanted degree of freedom can be removed by demanding that the

vector (XI) is defined only up to projective scaling

XI ∼ λ(XI),

so that when X0 us nonzero, one can simply choose λ = (X0)−1 for rescaling to get

XI = (1, XA/X0). In this formalism then XA/X0 are the physical moduli fields which

are the Kähler deformation of the Calabi-Yau manifold if we are discussing Type-IIA

string theory. The advantage of using these projective coordinates is that the vector

( XI , FI ) transforms linearly under Sp(nv +1;Z) exactly as ( pI , qI ), where FI are given

in terms of a holomorphic prepotential F as

FI =
∂F
∂XI

.

The prepotential is a function of the projective coordinates that is homogenous of

degree two, F(λXI) = λ2F(XI).

The formalism of special geometry is quite powerful because specifying the single

holomorphic function F , the couplings of the vectors, scalars and metric are completely

specified. What is more interesting, this is not limited to only two-derivative action but

even higher derivative interactions of a certain type (those that can be written as chiral

integrals on superspace) can be obtained by a slight generalization of the prepotential

by letting it depend on an additional auxiliary field Â of degree two under the rescaling.

Thus, the couplings of all these massless fields with higher derivatives are completely

specified by specifying the holomorphic prepotential F(XI , Â).

For our purposes, the relevant quantities are given in terms of the prepotential as

follows. The Kähler potential which governs the kinetic terms of the scalars is given

by,

e−K = i(X̄IFI − F̄IX
I); (5.3)
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the central charge of the supersymmetry algebra is given by

Z = eK/2(pIFI − qIX
I). (5.4)

For a Type-IIA compactification on a given Calabi-Yau manifold M , the pre-

potential is completely specified by topological data of the Calabi-Yau manifold. Let

{ωA} be a properly normalized basis of (1, 1) harmonic forms and let {ΣA} be the basis

of Poincaré dual 4-cycles. (Recall that the 4-cycle ΣA Poincaré dual to ωA is defined

so that for any given 4-form β,
∫

ΣA
β =

∫
M β ∧ ωA. Now, the prepotential is given

to entirely in terms of the intersection numbers of the 4-cycles, CABC ≡
∫
M ωAωBωC ,

and the second Chern-numbers c2A of the 4-cycles which are the integrals of the second

Chern class on the 4-cycles. The prepotential then takes the form

F =
1

6

DABCXAXBXC

X0
+ dA

XA

X0
Â, (5.5)

where

DABC = −1

6
CABC , dA = − 1

24

1

64
c2A.

The first term in the prepotential is th classical supergravity piece that determines the

two derivative terms in the action and the Â term encapsulates higher-curvature terms

of the type
∫

XA

X0 R2, where R2 is an appropriately contracted term quadratic in the

Riemann tensor. There are further instanton corrections to the prepotential which will

not be important for our purpose.

5.2 Attractor Equations

Having specified the prepotential, we have specified the supergravity action including

higher derivative corrections. One would now like to find the BPS black hole solutions

of this action. What is of more direct interest to us is the near horizon geometry of

this black hole so that we can read off the entropy of the black hole.

Fortunately, as we mentioned earlier, the geometry near the horizon is determined

completely in terms of the values of the moduli fields at the horizon. These in turn

get attracted to some special values that depend only on the charge configuration

(pI , qI) of the black hole that we have chosen independent of their asymptotic values far

away from the black hole. Furthermore, attractor values of the moduli are determined

completely by solving the following algebraic equations. To write down these equation

it is convenient to define the rescaled variables Y I = e
K
2 Z̄XI and Υ = eKZ̄2. The

scaling is chosen so that under the projective scalings XI → λXI , Â → λÂ the new

variables are invariant. These new variables thus are no longer projective. The attractor
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equations then take the form

Y I − Ȳ I = ipI (5.6)

FI − F̄I = iqI Υ = −64. (5.7)

Furthermore, the metric is determined completely because the near horizon geometry

is AdS2 × S2 with the radius of curvature of both factors given by |Z| as in (4.9). On

the attractor solution, |Z| is determined in terms of the charges by

ZZ̄ = pIFI(Y, Υ)− qIY
I . (5.8)

Given the geometry, one can readily evaluate the Bekenstein-Hawking entropy

which would be given by S = π|Z|2. This however is not the complete story. Our

action now has higher derivative interactions in addition to the Einstein-Hilbert term.

The Bekenstein-Hawking entropy on the other hand was derived from the first law

of thermodynamics that followed from the Einstein-Hilbert action. To do everything

self-consistently, we must also include the corrections to the black hole entropy formula

when there are additional higher derivative interactions present in the action. This is

provided by Wald’s formula for the black hole entropy.

5.3 Bekenstein-Hawking-Wald Entropy

In our discussion of Bekenstein-Hawking entropy of a black hole, the Hawking tem-

perature could be deduced from surface gravity or alternatively the periodicity of the

Euclidean time in the black hole solution. These are geometric asymptotic properties

of the black hole solution. However, to find the entropy we needed to use the first law

of black hole mechanics which was derived in the context of Einstein-Hilbert action

1

16π

∫
R
√

gd4x.

Generically in string theory, we expect corrections (both in α′ and gs) to the ef-

fective action that has higher derivative terms involving Riemann tensor and other

fields.

I =
1

16π

∫
(R + R2 + R4F 4 + · · ·).

How do the laws of black hole thermodynamics get modified?

Wald derived the first law of thermodynamics in the presence of higher derivative

terms in the action. This generalization implies an elegant formal expression for the

entropy S given a general action I including higher derivatives

S = 2π

∫

ρ2

δI

δRµγαβ

εµνερσ
√

hd2Ω,
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where εµν is the binormal to the horizon, h the induced metric on the horizon, and the

variation of the action with respect to Rµναβ is to be carried out regarding the Riemann

tensor as formally independent of the metric gµν .

As an example, let us consider the Schwarzschild solution of the Einstein Hilbert

action. In this case, the event horizon is S2 which has two normal directions along r

and t. We can construct an antisymmetric 2-tensor εµν along these directions so that

εrt = εtr = −1.

L =
1

16π
Rµγαβgναgµβ,

∂L
∂Rµγαβ

=
1

16π

1

2
(gµαgγβ − gναgµβ)

Then the Wald entropy is given by

S =
1

8

∫
1

2
(gµαgνβ − gναgµβ)(εµνεαβ)

√
hd2σ

=
1

8

∫
gttgrr · 2 =

1

4

∫

S2

√
hd2σ =

AH

4
,

giving us the Bekenstein-Hawking formula as expected.

In our case, our action has many higher derivative terms in the effective action that

follows from our generalized prepotential F(XI , Â). Now that we have the generalized

entropy formula, we can apply it to black hole solutions of this effective action. The

Wald entropy in this case takes a simple form in terms of the prepotential,

S = π
[
|Z|2 − 256Im[FÂ(XI , Â)]

]
,

where FÂ = ∂ÂF . Equipped with formula for entropy we can now apply it to our two-

charge black hole by solving the attractor equations for the specific compactification

that we have chosen.

5.4 Solution of Attractor Equations

For a general charge configuration, we would like to solve the attractor equations and

then evaluate the entropy. We restrict our attention to states with p0 = 0.

5.5 Large Black Holes

Let us first solve the attractor equations for ‘large’ black holes that have large area

of the event horizon in the supergravity approximation. Later, to make contact with

our two-charge states, we consider ‘small’ black holes that have vanishing area in the

supergravity approximation but which develop nonzero area after including the higher

derivative corrections.
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Given a prepotential of the form (5.5) and a state with charges (pI , qI), we can

define the following quantities

D = DABCpApBpC , DAB = DABCpC ,

q̂0 = q0 +
1

12
DABqAqBDABDBC where DABDBC = δA

C .

Then the first set of attractor equations (5.7) in are solved by

Y 0 − Ȳ 0 = 0 ⇒ Y 0 = Ȳ 0 (5.9)

Y A − Ȳ A = pA ⇒ Y A = wA +
ipA

2
, (5.10)

for some real wA. Now the second set of attractor equations (5.7) result in (nv +1) real

equations for (nv + 1) real unknowns wA and Y 0 which in our case can be explicitly

solved as follows.

Using the equations

FA − F̄Ā =
6iDABwB

Y 0
= iqA, (5.11)

we can express all wA in terms of Y 0 and the charges. Then using the equation

F0 − F̄0 =
DABCpApBpC

4(Y 0)2
− dApAγ

(Y 0)2
− 3DABCWAWBY 0pC = q0, (5.12)

we obtain

(Y 0)2 =
D − 4dApAΥ

4q̂0

. (5.13)

The final solution then takes the form

Y 0 = Ȳ 0, (Y 0)2 =
D − 4dApAγ

4q̂0

(5.14)

Y A =
1

6
Y 0DABqB +

i

2
pA. (5.15)

The area of the horizon and the Wald entropy are given by

AH = 4π|Z|2 = 16πY 0|q̂0| − 8πdApAΥ

Y o
(5.16)

S = 4πY 0|q̂0|. (5.17)
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5.6 Small Black Holes

We would now like to compare the microscopic entropy that we derived in by counting

perturbative BPS states in heterotic string theory compactified on T 4×S1× S̃1. As we

have already noted, the solution corresponding to this state is singular in leading two

derivative supergravity action. We can now take the higher derivative corrections into

account using the special geometry formalism described above by keeping the Â term in

the prepotential. Our state counting was done in the heterotic string but the formalism

of special geometry for finding the macroscopic entropy is phrased more naturally in

the Type-II language for Calabi-Yau compactifications. To make contact between the

two, we use the Heterotic-Type-IIA duality which relates Heterotic on T 4×S1× S̃1 to

Type-II on K3××S1 × S̃1.

For IIA compactified on K3 × T 2 results in various electric and magnetic charges

which we denote as (q0, q1, · · · , qnv) and (p0, p1, · · · , pnv). These arise from wrapped

D-branes as follows

q0 ≡ D0-brane p0 = D6 brane / K3× T 2

q1 ≡ D2 on T 2 p1 = D4 on K3

qa ≡ D2 on Σa pa = D4 on Σ̃a × T 2,

where a = 2, 2, . . . , 23 labels the 22 2-cycles of K3. There are additional states from

winding and momenta along the T 2 and their magnetic duals but those will not play

an important role here. In the notation of the previous subsection we then have 23

vector multiplets and the index A runs over (1, a) from 1, 2, . . . , 23.

Under duality map between heterotic and Type-IIA, a fundamental string of het-

erotic wrapping on S1 is dual to the NS5 brane of IIA wrapping on K3× S1. Starting

with our winding-momentum, F1-P configuration we can then follow a chain of dualities

to turn it into a collection of D-branes in Type-II description as follows

F1-P → NS5-P
T5−→ NS5-F1

S−→ D5-D1
T5−→ D4-D0,

where T5 is T-duality along the S1 coordinate that the string is wrapping on and S is

the S-duality of Type-IIB.

We therefore have a charge configuration with q0 = n and p1 = w and all other

charges zero. Since p1 comes from a D4-brane wrapping the K3, the relevant second

Chern number that appears in the prepotential is the second Chern number of K3

which equals 24. We are now ready to apply the entropy formula (5.17) which gives

S = 4πY 0|q̂0| = 4π

√
c2ApA|q̂0|

24
= 4π

√
p1q0 = 4π

√
nw, (5.18)

in remarkable agreement with the microscopic entropy (4.29) computed by completely

different means including the precise numerical coefficient.
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6. Concluding Remarks

We have seen that there is striking agreement between the macroscopic entropy of the

black hole and the microscopic counting of states in string theory. This provides a

nontrivial test of the consistency of string theory as a theory of quantum gravity.

Notice that for our two charge black holes, the stringy quantum corrections to the

effective action were essential for this agreement. The classical limit of the attractor

equations can be obtained by simply setting Â to zero in the prepotential (5.5), because

then the action reduces to the two-derivative supergravity action. In this limit we find

that the attractor equations are singular for the two charge state because for this state

since D ≡ DABCpApBpC = 0. Then from (5.13) we see

(Y 0)2

classical =
D

4q̂0

= 0.

Inclusion of quantum corrections to the prepotential are thus essential to get sensible

answers from the attractor equations. After including the quantum corrections one can

then consistently solve the attractor equations to find an entropy which we found to

be in precise agreement with the microscopic counting.

In fact, one can do better. Under reasonable assumptions about an appropriate

statistical ensemble, one can compute even the subleading corrections to the entropy.

These corrections are then in precise agreement with the microscopic counting to all

orders in inverse powers of
√

nw.

The entropy of black hole thus continues to be a rich source of important tests of

string theory and offers us invaluable glimpses of the quantum structure of gravity.
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