
Interactions of Massless Higher

Spin Fields

from String Theory

SFT 09

Johannesburg String and Grav-

ity workshop Nov. 30, 2009

1



•

Gauge field theory describing interact-
ing particles of higher spins (with s >
2) is a fascinating and complicated sub-
ject that has attracted a profound in-
terest over many years since the 30s.

•

Despite strong efforts by some leading
experts in recent years there are still key
issues about these theories that remain
unresolved (even for the non-interacting
particles; much more so in the interact-
ing case)

•

There are several reasons why the higher
spin theories are so complicated

•
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1. In order to be physically meaning-
ful, these theories need to possess suffi-
ciently strong gauge symmetries, pow-
erful enough to ensure the absence of
unphysical (negative norm) states. For
example, in the Fronsdal’s description
(Fronsdal (1978) the theories describ-
ing symmetric tensor fields of spin s are
invariant under gauge transformations
with the spin s− 1 traceless parameter:

Ha1...as(x) → Ha1...as(x)

+∂(asΛa1...as−1)
(x)

Tr(Λ) ≡ ηaiajΛa1...ai...aj...as = 0

1 ≤ i < j ≤ s (1)

where H and Λ are the symmetric spin
s field and spin s − 1 gauge parame-
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ter with H satisfying the on-shell Fierz-
Pauli conditions:

∂a∂
aHa1...as = 0

∂a1Ha1...as = 0

Tr(H) ≡ ηaiajΛa1...ai...aj...as = 0

1 ≤ i < j ≤ s (2)

•

Theories with the vast gauge symme-
tries as this are not trivial to construct
even in the non-interacting case,when
one needs to introduce a number of aux-
iliary fields and objects like non-local
compensators; much more so in the in-
teracting case

•
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In the flat space things are further
complicated because of the no-go the-
orems ( such as Coleman-Mandula the-
orem) imposing strong restrictions on
conserved charges in interacting theo-
ries with a mass gap, limiting them to
the scalars and those related to the stan-
dard Poincare generators. Thus Coleman-
Mandula theorem in d = 4 makes it
hard to construct consistent interacting
theories of higher spin, at least as long
as the locality is preserved

•

String theory is a particularly effec-
tive and natural framework to approach
the problem of higher spins at least in
the massive case, since the higher spin
modes naturally appear in the massive
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sector of the theory. Thus one can hope
to obtain the higher field spin theories
in the low energy limit of string theory,
by analyzing the worldsheet correlators
of the appropriate vertex operators.

•

However, physical vertex operators for
HS fields in string theory are constrained
by the spin to mass relations. Thus only
vertex operator in open string theory,
decoupled from superconformal ghost de-
grees of freedom (and therefore exist-
ing at zero ghost picture) has spin 1.
Therefore the massless operators for the
higher spins are inevitably those that
couple to the worldsheet ghost degrees
of freedom and violate the picture equiv-
alence.
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•

In this talk I discuss the construction
of physical vertex operators describing
massless higher spin fields and the com-
putation of their scattering amplitudes,
by using the ghost cohomology approach.

•

The Pauli-Fierz on-shell conditions (2)
for the massless higher spin fields fol-
low from the BRST-invariance condi-
tions for the constructed open string op-
erators. The gauge transformations (1)
stem from the BRST nontriviality con-
straints for these operators. For this
reason, the interaction terms of the higher
spin fields, determined by the world-
sheet correlation functions of the ver-
tex operators for the higher spins, are
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gauge-invariant by construction.

•

Thus string theory provides an efficient
and natural framework to build the con-
sistent gauge-invariant interacting the-
ories of higher spin fields.

•
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We start from presentingh the expres-
sions for the vertex operators for the
higer spin fields with the spin values
3 ≤ s ≤ 9:

Vs=3(p) = Ha1a2a3(p)

×ce−3φ∂Xa1∂Xa2ψa3ei~p
~X

Vs=4(p) = Ha1...a4(p)

×ηe−4φ∂Xa1∂Xa2
∂ψa3ψa4ei~p

~X

Vs=5(p) = Ha1...a5(p)

×e−4φ∂Xa1...∂Xa3
∂ψa4ψa5ei~p

~X

Vs=6(p) = Ha1...a6(p)

×cηe−5φ∂Xa1...∂Xa3
∂2ψa4∂ψa5ψa6ei~p

~X

Vs=7(p) = Ha1...a7(p)

×ce−5φ∂Xa1...∂Xa4
∂2ψa5∂ψa6ψa7ei~p

~X

Vs=8(p) = Ha1...a8(p)
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×cηe−5φ∂Xa1...∂Xa7
ψa8ei~p

~X

Vs=9(p) = Ha1...a9(p)

×ce−5φ∂Xa1...∂Xa8
ψa9ei~p

~X(3)

where Xa and ψa are the RNS world-
sheet bosons and fermions (a = 0, ..., d−
1), the ghost fields are bosonized as usual,
according to

b = e−σ

c = eσ

γ = eφ−χ ≡ eφη

β = eχ−φ∂χ ≡ ∂ξe−φ

(4)

For simplicity, we shall concentrate on
the totally symmetric polarization ten-

10



sors Ha1...as(p), although it should be
relatively straightforward to generalize
the vertices (1) to less symmetric cases.
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BRST-invariance conditions for the
H.S. vertices:

For simplicity, consider the s = 3 vertex
operator first, all other operators can be
analyzed similarly. For our purposes it
is convenient to cast the BRST operator
as

Qbrst = Q1 +Q2 +Q3 (5)

where

Q1 =
∮ dz

2iπ
{cT − bc∂c}

Q2 = −
1

2

∮ dz

2iπ
γψa∂X

a

Q3 = −
1

4

∮ dz

2iπ
bγ2 (6)

where T is the full stress-energy ten-
sor. It is easy to demonstrate that all
the vertex operators (1) commute with
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Q2 and Q3 of Qbrst. The commuta-
tion withQ1, however, requires the con-
straints on the on-shell fields. Since all
the operators (1) are the worldsheet in-
tegrals of operators of conformal dimen-
sion 1, they commute with Q1 if the
integrands are the primary fields, i.e.
their OPEs with T don’t contain singu-
larities stronger than double poles (along
with the on-shell (~p)2 = 0 condition).
Since Ha1a2a3 is fully symmetric, the
OPE is given by
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T (z)∂X(a1∂Xa2ψa3)ei~p
~X(w)Ha1a2a3(p)

∼ −
η(a1a2ψa3)ei~p

~X(w)Ha1a2a3(p)

(z − w)4

+i
p(a1∂Xa2ψa3)ei~p

~X(w)Ha1a2a3(p)

(z − w)3

+O((z − w)−2)(7)

Therefore the BRST-invariance condi-
tions for the s = 3 vertex:

Ha1
a1a3

(p) = 0

pa1Ha1a2a3(p) = 0

p2Ha1a2a3(p) = 0 (8)

are precisely the Pauli-Fierz conditions
for the symmetric massless higher spins.

14



•

BRST Nontriviality of the

Higher Spin Vertex operators

We look for the conditions to ensure
that Vs cannot be represented as a BRST
commutators with operators in small Hilbert
space,i.e. for a given Vs there is no op-
erator Ws such that Vs = {Qbrst,Ws}.
We start with the operators for mass-
less fields with odd spin values (s =
3, 5, 7, 9) that have the following struc-
ture if taken at minimal negative ghost
pictures −n (n = 3 for s = 3, n = 4 for
s = 5 and n = 5 for s = 7, 9):

Vs = ce−nφFn2
2 −n+1

(X,ψ) (9)

where Fn2
2 −n+1

(X,ψ) is the primary

15



matter field of conformal dimension n2

2 −
n+1 (suppressing all the indices). Then
there are only two possible sources of
Ws. The first possibility is that Ws is
proportional to the ghost factor ∂cc∂ξ∂2ξe−(n+2)

Then there is a possibility that Vs could
be obtained as a BRST commutator with

Ws = ∂cc∂ξ∂2ξe−(n+2)φ

×G(2n−3)(φ, χ, σ)Fn2
2 −n+1

(X,ψ)

(10)

where G(2n−3)(φ, χ, σ) is the confor-
mal dimension 2n−3 polynomial in the
derivatives of the bosonized ghost fields
φ, χ and σ that must be chosen so that

[Q1,Ws] = 0 (11)
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Provided thatG(2n−3)(φ, χ, σ) are cho-
sen to satisfy (9), it is easy to check that
the Ws-operators also satisfy

[Q2,Ws] = 0

[Q3,Ws] = αnVs (12)

and therefore

[Qbrst,Ws] = αnVs (13)

where αn are the numerical coefficients
that depend on the structure ofG(2n−3)(φ, χ, σ).
A lengthy but straightforward compu-
tation shows, however, that for all the
choices of G(2n−3)(φ, χ, σ), consistent
with the condition (9) for n = 3, 4, 5
(that are relevant for the higher spin op-
erators (1) with 3 ≤ s ≤ 9) one has

αn = 0

n = 3, 4, 5 (14)
17



The second, and the only remaining
possibility for Vs to be written as BRST
commutators stems from theWs-operators
with the ghost structure∼ c∂ξe−(n+1)φ,satisfying

[Q1,Ws] = 0

[Q2,Ws] ∼ Vs

[Q3,Ws] = 0
(15)

The only possible construction for Ws

with such a structure is given by

Ws = c∂ξe−(n+1)φFn2
2 −n+1

(X,ψ)(ψa∂X
a)

(16)

The operators of this type always com-
mute with Q3 and produce Vs when
commuted with Q2. Therefore Vs are
trivial as long as Ws commute with Q1.
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So Vs are physical operators only if the
commutator ]Q1,Ws]6=0, which, in turn,
imposes constraints on the space-time
fields and entails the gauge symmetries
for the higher spins. Consider the par-
ticular case of s = 3, other operators are
analyzed similarly. The Ws-operator of
the type for Vs=3 is

Ws=3(p) = c∂ξe−4φ∂Xa1∂Xa2ψa3

(~ψ ~∂X)ei~p
~XHa1a2a3(p)

(17)

where, as previously, theH three-tensor
is symmetric and satisfies the Fierz-Pauli
on-shell conditions (6) We easily find
Ws=3 to satisfy:
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[Q1,Ws=3(p)]

= −
i

2
∂2cc∂ξe−4φ∂Xa1∂Xa2ψa3

×(~p~ψ)ei~p
~XHa1a2a3(p)

[Q2,Ws=3(p)] =
d

2
Vs=3(p)

[Q2,Ws=3(p)] = 0(18)

So the nontriviality of Vs=3 requires that
the right hand side of the commutator
[Q1,Ws=3(p)] is nonzero. This leads to
the following nontriviality conditions on
the H-tensor:

p[a4
Ha3]a1a2

6= 0 (19)

The analysis of the nontriviality con-
straints for all other higher spin oper-
ators (both odd and even spin values
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4 ≤ s ≤ 9) is totally similar and leads
to the same conditions on Ha1...as(p):

p[as+1
Has]a1...as−1

6= 0.

(20)

These nontriviality constraints entail the
gauge symmetry transformations for the
higher spin fields. It is convenient to
consider first more general case case when
Has|]a1...as−1

is symmetric in a1, ..., as−1
but not in as. Due to the nontriviality
constraints () the generic Has|]a1...as−1

-

tensor can be shifted as (without chang-
ing any correlation functions)

Has|a1...as−1
→ pasΛa1...as−1 (21)

where Λa1...as−1 is symmetric and must
be traceless due to the BRST-invariance
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conditions (). Renaming the indices:

as ↔ a1

as ↔ a2

...

as ↔ as−1 (22)

we get the chain:
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Ha1|a2...as−1as
→

Ha1|a2...as−1as
+ pa1Λa2...as

Ha2|a1a3...as
→

Ha2|a1a3...as
+ pa2Λa1a3...as

Has−1|a1a2...as−2as
→

Has−1|a1a2...as−2as
+ pas−1Λa1a2...as−2as(23)

summing () together, we get the gauge
transformations for the fully symmetric
tensor Ha1...as, implied by the nontriv-
iality conditions ():

Ha1...as → Ha1...as + p(a1
Λ(a2...as)

(24)

where Λ is traceless. Thus the BRST
invariance and nontriviality conditions
on the higher spin vertex operators ()
altogether impose Fierz-Pauli on-shell
constraints and the gauge symmetries
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analogous to those in the Fronsdal’s ap-
proach. For this reason, the correla-
tion functions of these vertex operators,
computed below, shall by construction
produce the gauge-invariant interaction
terms for the massless higher spin fields
in space-time, satisfying all the stan-
dard on-shell conditions and gauge sym-
metries for the higher spins...

Before we proceed to the calculation of
the gauge-invariant interaction terms de-
termined by the vertex operators (), it
is important to analyze the physical rea-
sons behind the appearance of the higher
spin vertex operators () in the super-
string spectrum. The higher spin vertex
operators () are closely related to the
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surprising nonlinear global space-time
symmetries (α-symmetries) in string the-
ory, mixing matter and ghost degrees
of freedom, and to the hidden space-
time dimensions. Consider the RNS su-
perstring action in the superconformal
gauge:

SRNS = Smatter + Sbc + Sβγ

Smatter =
1

2π

∫
d2z(∂Xm∂̄X

m

+ψm∂̄ψ
m + ψ̄m∂ψ̄

m)

Sbc =
1

2π

∫
d2z(b∂̄c + b̄∂c̄)

Sβγ =
1

2π

∫
d2z(β∂̄γ + β̄∂γ̄)

It turns out that, apart from the stan-
dard global Poincare symmetries (such
as rotations and translations) the action
() is also invariant is invariant under the
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following transformations (with α being
a global parameter):
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δXm = α{2eφ∂ψm + ∂(eφψm)}

δψm = −α{eφ∂2Xm + 2∂(eφ∂Xm)}

δγ = αe2φ−χ{ψm∂
2Xm − 2∂ψm∂X

m}

δβ = δb = δc = 0

so that

δSmatter = −δSβγ

=
1

2π

∫
d2z(∂̄eφ)(ψm∂

2Xm − 2∂ψm∂X
m)

δSbc = δSRNS = 0
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The generator of these transformations
is given by

Lα+ =
∮ dz

2iπ
eφF (X,ψ)

≡
∮ dz

2iπ
eφ(ψm∂

2Xm − 2∂ψm∂X
m)

where it is convenient to introduce the
notation for the dimension 5

2 primary
field:

F (X,ψ) = ψm∂
2Xm − 2∂ψm∂X

m

along with the matter worldsheet su-
percurrent

G = −
1

2
ψm∂X

m
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and the dimension 2 primary

L(X,ψ) = 2∂ψmψ
m − ∂Xm∂X

m

which is the w.s. superpartner of F ,
i.e.

G(z)L(w) ∼
F (w)

z − w
Lα-generator is the element of the ghost
cohomology H1. The integrand of the
Lα+ -generator is a primary field of di-
mension 1, i.e. a physical operator. Its
distinctive property is that there are no
versions of this generator at ghost pic-
tures below 1 (higher pictures can be
obtained from the standard picture-changing
transformation). This means that this
symmetry generator exists at the mini-
mal ghost picture +1. The negative pic-
ture version of this generator can be be
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obtained by replacing φ → −3φ in the
expressions (),(). Using the inverse pic-
ture changing operator Γ−1 = 4c∂ξe−2φ

one can obtain pictures −4,−5, ... of
the symmetry generator ().

The negative picture versions of the
α-symmetry transformations () exist at
ghost picture −3 and below, but not
above −3. Thus the Lα+-generator is
the element of positive ghost cohomol-
ogy H1 and of the negative ghost co-
homology H−3 (the accurate definition
will be given below).

In d-dimensional RNS string theory
there are d + 1 additional α-symmetry
generators of minimal ghost number 1
(elements of H1 ∼ H−3) which also in-
duce global space-time symmetries :
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Lmα =
∮ dz

2iπ
eφ × {∂2ϕψm

−2∂ϕ∂ψm + ∂2Xmλ− 2∂Xm∂λ}(25)

and

Lα− =
∮ dz

2iπ
eφ × {∂2ϕλ

−2∂ϕ∂λ} (26)

where, as previously, m = 0, ..., d −
1 and φ, λ are the components of the
super Liouville field.

Combined together with the (d+1)(d+2)
2

standard Poincare generators (includ-
ing the Liouville direction) the d+ 2 α-
generators Lα±, Lαm extend the spece-
time isometry group from SO(1, d+ 1)
to SO(2, d + 1) bringing in an extra
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dimension and changing the space-time
isometry from flat to AdSd+2
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Definition

•

Positive ghost cohomologies Hn (n >
0) consist of picture-inequivalent physi-
cal operators, existing at pictures n and
above, annihilated by inverse picture chang-
ing transformation at minimal positive
picture n.

•

Negative ghost cohomologies H−n con-
sist of picture-ineguivalent physical op-
erators, existing at pictures −n and be-
low, annihilated by direct picture chang-
ing at minimal negative picture −n.

•
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An isomorphism holds between positive
and negative cohomologies:

Hn ∼ H−n−2

H0 by definition consists of picture-equivalent
operators existing at all pictures (includ-
ing picture 0), while H−1 and H−2 are
empty.
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Thus the space-time α-symmetry gen-
erators of H1 ∼ H−3 bring in an extra
dimension to the theory, with the intex
α labelling the extra dimension. The α-
symmetry generators of higher ghost co-
homologies can be constructed as well.
The d+ 3 generators of H2 ∼ H−4 are
given by

Lβ+ =
∮ dz

2iπ
e−4φF1(X,ψ)F1(ϕ, λ)(z)

Lβ− = −
∮ dz

2iπ
e−4φF1m(X,λ)Fm1 (ϕ, ψ)(z)

Lβm =
∮ dz

2iπ
e−4φ(Fm1 (X,λ)F1(ϕ, λ)

−F1(X,ψ)Fm1 (ϕ, ψ))(z)

Lαβ =
∮ dz

2iπ
e−4φ(

1

2
F2(λ, ϕ)

+L1(X,ψ)∂L1(ϕ, λ)

−∂L1(X,ψ)L1(ϕ, λ))(z)(27)
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with the matter+Liouville structures
L and F (L1, F1 and Fm1 ) being the
primary fields of dimensions 2 and 5

2:

F1(X,ψ) = ψm∂
2Xm

−2∂ψm∂X
m

F1(ϕ, λ) = λ∂2ϕ− 2∂λ∂ϕ

Fm1 (X,λ) = λ∂2Xm − 2∂λ∂Xm

Fm1 (ϕ, ψ) = ψm∂2ϕ− 2∂ψm∂ϕ

L1(X,ψ) =

∂Xm∂X
m − 2∂ψmψ

m

L1(ϕ, λ) = (∂ϕ)2 − 2∂λλ(28)

and F2(λ, ϕ) being the primary field of
dimension 5:
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F2(ϕ, λ) =
1

4
(∂ϕ)5 −

3

4
∂ϕ(∂2ϕ)2

+
1

4
(∂ϕ)2∂3ϕ + λ∂λ(∂3ϕ− (∂ϕ)3)

−
3

2
λ∂2λ∂2ϕ + 3∂λ∂2λ∂ϕ}

≡ i : (
∮
e−iϕλ)3e3iϕλ :(29)

Combined with the matter + Liouville
Poincare generators of SO(2, d) and the
α-generators (4) - (6) ofH1 ∼ H−3, the
α-generators of H2 ∼ H−4 enlarge the
symmetry group to SO(2,d+2), bring-
ing in the second extra dimension to the
theory Finally, the (d+4) α-generators
at the level H3 ∼ H−5 (bringing in the
third hidden dimension labelled by γ)
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are constructed as

Lγ+ =
∮ dz

2iπ
e−5φ{2∂F1(X,ψ)

−F1(X,ψ)∂F2(ϕ, λ)}

Lγβ = [Lγ+, Lβ−]

Lγα = [Lγ+, Lα−]

Lγm = [Lγα, Lαm]

Lγ− = [Lγα, Lα−] (30)

extending the space-time isometry group
to SO(2, d + 3) At this point, we still
lack an explicit construction for the gen-
erators of Hn ∼ H−n−2 for n ≥ 4,
but the conjecture is that each ghost
cohomology of the order n (combined
with the operators of cohomologies of
lower orders) extends the dimensional-
ity of space-time by one unit.
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Supersymmetric Extensions of

α-Symmetries

and Higher Spin Vertex

Operators

•

The supersymmetric extension of the
α-symmetry generators can be obtained
by applying the standard space-time su-
percharge:

QA =
∮ dz

2iπ
e−

1
2φΣA(z)

A = 1, ..., 16 (31)

to Lα±, Lβ±, Lγ± in the negative pic-
ture representations (−3,−4,−5) Then
the higher spin vertex operators () ap-
pear as the central terms in the space-
time superalgebra of the α-extended su-
percharges. The central charges in the
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SUSY algebra are (by no-go theorem)
always related to the appearance of non-
perturbative solutions (such as p-branes)
in the strongly coupled limit of string
theory and to the Wess-Zumino terms
of the p-branes with nontrivial topolog-
ical configurations. Such a connection
between higher spin fields and branes is,
in a sense, not surprising and is directly
related to the role of the higher spin field
operators in the AdS/CFT correspon-
dence
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Higher Spin Vertices in

Positive Picture Representation

Because the higher spin operators () vi-
olate picture equivalence, higher picture
versions cannot be obtained by straight-
forward picture-changing transformation
(which simply annihilates these oper-
ators). Moreover, there are no local
(unintegrated) analogues of the opera-
tors at higher ghost pictures, so all of
their higher picture versions always ap-
pear in the integrated form. In partic-
ular, we shall need to use, in addition
to unintegrated higher spin vertex op-
erators (1) at negative ghost pictures
−n−2 with n = 1, 2, 3, their integrated
counterparts at positive ghost pictures
n. These counterparts can be constructed
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by using the K-transformation proce-
dure, defined as follows. Consider one
of unintegrated vertex operators (1) for
odd spins at minimal negative picture
−n−2 (the even spin case is considered
analogously). Such an operator has a
structure

V−n−2 = ce−(n+2)φFn2
2 +n+1

(X,ψ)

(32)
where, as previously, Fn2

2 +n+1
(X,ψ)

the is matter primary field of conformal

dimension n2

2 +n+1. Using the fact that

the operators e−(n+2)φ and enφ have

the same conformal dimension −n2

2 −n,
one starts with constructing the charge
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∮
Vn ≡

∮
dzenφFn2

2 +n+1
(X,ψ) (33)

This charge commutes with Q1 since it
is a worldsheet integral of dimension 1
and b−c ghost number zero but doesn’t
commute with Q2 and Q3. To make
it BRST-invariant, one has to add the
correction terms by using the following
procedure: We write

[Qbrst, Vn(z)] = ∂U(z)

+W1(z) +W2(z) (34)

and therefore

[Qbrst,
∮
dzVn]

=
∮
dz(W1(z) +W2(z)) (35)

where

U(z) ≡ cVn(z)
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[Q1, Vn] = ∂U

W1 = [Q2, Vn]

W2 = [Q3, Vn] (36)

Introduce the dimension 0 K-operator:

K(z) = −4ce2χ−2φ(z) ≡ ξΓ−1(z)
(37)

satisfying

{Qbrst, K} = 1 (38)

It is easy to check that this operator has
a non-singular operator product with
W1:

K(z1)W1(z2)

∼ (z1 − z2)
2nY (z2) +O((z1 − z2)

2n+1)(39)

where Y is some operator of dimen-
sion 2n+ 1. Then the complete BRST-
invariant operator can be obtained from
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∮
dzVn(z) by the following transforma-

tion:
∮
dzVn(z)→An(w)

=
∮
dzVn(z) +

1

(2n)!

∮
dz(z − w)2n

× : K∂2n(W1 +W2) : (z)

+
1

(2n)!

∮
dz∂2n+1

z

×[(z − w)2nK(z)]K{Qbrst, U}(40)

where w is some arbitrary point on the
worldsheet. It is then straightforward
to check the invariance of An by using
some partial integration along with the
relation (34) as well as the obvious iden-
tity

{Qbrst,W1(z) +W2(z)}

= −∂({Qbrst, U(z)}) (41)
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Although the invariant operatorsAn(w)
depend on an arbitrary point w on the
worldsheet, this dependence is irrelevant
in the correlators since all the w deriva-
tives ofAn are BRST exact - the trivial-
ity of the derivatives ensures that there
will be no w-dependence in any corre-
lation functions involving An. Equiv-
alently, the positive picture representa-
tions An (36) for higher spin operators
can also be obtained from minimal neg-
ative picture representations V−n−2 by
straightforward, but technically more cum-
bersome procedure by using the combi-
nation of the picture-changing and the
Z-transformation (the analogue of the
picture-changing for the b− c-ghosts).

Namely, the Z-operator, transform-
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ing the b − c pictures (in particular,
mapping integrated vertices to uninte-
grated) given by

Z(w) = bδ(T )(w)

=
∮
dz(z − w)3(bT

+4c∂ξξe−2φT 2)(z) (42)

where T is the full stress-energy ten-
sor in RNS theory. The usual picture-
changing operator, transforming the β−
γ ghost pictures, is given by

Γ(w) =: δ(β)G : (w) =: eφG : (w)

. Introduce the integrated picture-changing
operators Rn(w) according to

Rn(w) = Z(w) : Γn : (w) (43)

where : Γn : is the nth power of the
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standard picture-changing operator:

: Γn : (w) =: enφ∂n−1G...∂GG : (w)

≡: ∂n−1δ(β)...∂δ(β)δ(β) :(44)

Then the positive picture representa-
tions for the higher spin operators An
can be obtained from the negative ones
V−n−2 by the transformation:

An(w) = (R2)
n+1(w)V−n−2(w) (45)

Since bothZ and Γ are BRST-invariant
and nontrivial, theAn-operators by con-
struction satisfy the BRST-invariance
and non-triviality conditions identical to
those satisfied by their negative picture
counterparts V−2n−2 and therefore lead
to the same Pauli-Fierz on-shell con-
ditions (6) and the gauge symmetries
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(22), (23) for the higher spin fields.
Below we shall list some concrete ex-

amples of theK-transformation (36) ap-
plied to the spin s = 3 and s = 4 op-
erators that will be used in our calcula-
tions. For the s = 3 operator the above
procedure gives

Vs=3 = ce−3φ∂Xa1∂Xa2

×ψa3ei~p
~XHa1a2a3(p)

→
∮
dzV1 = Ha1a2a3(p)

∮
eφ∂Xa1∂Xa2ψa3ei~p

~X

[Q1, V1] = ∂U

= Ha1a2a3(p)∂(ceφ∂Xa1∂Xa2ψa3ei~p
~X)

[Q2, V1] = W1

=
1

2
Ha1a2a3(p)e

2φ−χ{(−(~ψ∂ ~X)

+i(~p~ψ)P
(1)
φ−χ + i(~p∂ ~ψ))
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×∂Xa1∂Xa2ψa3ei~p
~X

+∂Xa1(∂2ψa2 + 2∂ψa2P
(1)
φ−χ)ψa3

−∂Xa1∂Xa2(∂2Xa3 + ∂Xa3P
(1)
φ−χ)}ei~p

~X

[Q3, V1]

= W2 = −
1

4
Ha1a2a3(p)e

3φ−2χP
(1)
2φ−2χ−σ

×∂Xa1∂Xa2ψa3ei~p
~X(46)

where the conformal weight n poly-
nomials in the derivatives of the ghost
fields φ, χ, σ are defined according to

P
(n)
f (φ,χ,σ) =

e−f (φ,χ,σ) ∂
n

∂zn
ef (φ(z),χ(z),σ(z)) (47)

where f is some linear function in φ, χ, σ.

For example, P
(1)
φ−χ = ∂φ − ∂χ, etc.

Note that the product (43) is defined in
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the algebraic sense (not as an operator
product).

Accordingly,

: K∂2W1 := 4Ha1a2a3(p)cξ{(−(~ψ∂ ~X)

+i(~p~ψ)P
(1)
φ−χ + i(~p∂ ~ψ))∂Xa1∂Xa2ψa3ei~p

~X

+∂Xa1(∂2ψa2 + 2∂ψa2P
(1)
φ−χ)ψa3 −

∂Xa1∂Xa2(∂2Xa3 + ∂Xa3P
(1)
φ−χ)}ei~p

~X

: K∂2W2 := Ha1a2a3(p)

×{ − ∂2(eφ∂Xa1∂Xa2ψa3ei~p
~X)

+P
(2)
2φ−2χ−σe

φ∂Xa1∂Xa2ψa3ei~p
~X}(48)

and

: ∂2n+1KK{Qbrst, U} :=

−24Ha1a2a3(p)∂cc∂ξξe
−φ

×∂Xa1∂Xa2ψa3ei~p
~X

: ∂mKK{Qbrst, U} := 0
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(m < 2n + 1) (49)

and therefore, upon integrating out to-
tal derivatives, the complete BRST-invariant
expression for the s = 3 operator at pic-
ture 1 is

As=3(w) = Ha1a2a3(p)
∮
dz(z − w)2

×{
1

2
P

(2)
2φ−2χ−σe

φ∂Xa1∂Xa2ψa3

+2cξ[(−(~ψ∂ ~X) + i(~p~ψ)P
(1)
φ−χ

+i(~p∂ ~ψ))∂Xa1∂Xa2ψa3ei~p
~X

+∂Xa1(∂2ψa2 + 2∂ψa2P
(1)
φ−χ)ψa3

−∂Xa1∂Xa2(∂2Xa3 + ∂Xa3P
(1)
φ−χ)]

−12∂cc∂ξξe−φ∂Xa1∂Xa2ψa3}ei~p
~X(50)
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To abbreviate notations for our cal-
culations of the correlation functions in
the following sections, it is convenient
to write the vertex operator As=3 as a
sum

As=3 = A0 + A1 + A2 + A3

+A4 + A5 + A6 (51)

where

A0(w) =
1

2
Ha1a2a3(p)

×
∮
dz(z − w)2P

(2)
2φ−2χ−σ

×eφ∂Xa1∂Xa2ψa3ei~p
~X(z) (52)

and

A6(w) = −12Ha1a2a3(p)

×
∮
dz(z − w)2∂cc∂ξξe−φ

×∂Xa1∂Xa2ψa3}ei~p
~X(z) (53)
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have ghost factors proportional to eφ

and ∂cc∂ξξe−φ respectively and the rest
of the terms carry ghost factor propor-
tional to cξ:

A1(w) = −2Ha1a2a3(p)
∮
dz(z − w)2

×cξ(~ψ∂ ~X)

×∂Xa1∂Xa2ψa3ei~p
~X(z)

A2(w) = 2iHa1a2a3(p)

×
∮
dz(z − w)2cξ(~p~ψ)P

(1)
φ−χ

∂Xa1∂Xa2ψa3ei~p
~X(z)

A3(w) = 2iHa1a2a3(p)

×
∮
dz(z − w)2cξ(~p∂ ~ψ)

×∂Xa1∂Xa2ψa3ei~p
~X(z)

A4(w) = 2Ha1a2a3(p)

×
∮
dz(z − w)2cξ
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(∂2ψa2 + 2∂ψa2P
(1)
φ−χ)ψa3ei~p

~X(z)

A5(w) = −2Ha1a2a3(p)

×
∮
dz(z − w)2cξ∂Xa1∂Xa2(∂2Xa3

+∂Xa3P
(1)
φ−χ)ei~p

~X(z)(54)

Analogously, theK-operator procedure
applied to the s = 4 vertex operator in
(1) leads to the positive picture repre-
sentation of the s = 4 operator given by

Bs=4 = B0+B1+B2+B3+B4+B5+B6
(55)

where

B0(w) =
1

2
Ha1a2a3a4(p)

×
∮
dz(z − w)2P

(2)
2φ−2χ−σηe

2φ
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×∂Xa1∂Xa2∂ψa3ψa4ei~p
~X(z) (56)

and

B7(w) = −12Ha1a2a3a4(p)

×
∮
dz(z − w)2∂ccξ

×∂Xa1∂Xa2∂ψa3ψa4ei~p
~X(z) (57)

carry the ghost factors ∼ ηe2φ and ∼
∂ccξ respectively, while the rest of the
terms carry the ghost factor ∼ ceφ:

B1(w) =

−2Ha1a2a3a4(p)
∮
dz(z − w)2ceφ(~ψ∂ ~X)

×∂Xa1∂Xa2∂ψa3ψa4ei~p
~X(z)

B2(w) = 2iHa1a2a3a4(p)
∮
dz(z − w)2

×ceφ(~p∂ ~ψ)P
(1)
φ−χ∂X

a1∂Xa2∂ψa3ψa4ei~p
~X(z)

B3(w) = 2iHa1a2a3a4(p)
∮
dz(z − w)2

×ceφ(~p∂ ~ψ)∂Xa1∂Xa2∂ψa3ψa4ei~p
~X(z)
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B4(w) = 2Ha1a2a3a4(p)
∮
dz(z − w)2

×P
(2)
φ−χce

φ∂Xa1∂2ψa2∂ψa3ψa4ei~p
~X(z)

B5(w) = 2Ha1a2a3a4(p)

×
∮
dz(z − w)2ceφ∂Xa1∂Xa2(

1

2
∂3Xa3

+∂2Xa3P
(1)
φ−χ +

1

2
∂Xa3P

(2)
φ−χ)ψa4ei~p

~X(z)

B6(w) = −2Ha1a2a3a4(p)

×
∮
dz(z − w)2ceφ∂Xa1∂Xa2(∂2Xa3

+∂Xa3P
(1)
φ−χ)∂ψa4ei~p

~X(z)(58)

The procedure is totally similar for
the operators in (1) with s ≥ 5 which
positive picture representations can be
constructed analogously; however, higher
ghost number operators generally con-
sist of bigger number of terms, so the
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manifest expressions for operators with
higher n become quite cumbersome.

Gauge-Invariant Interactions of

Higher Spin Fields

Here we present the result for the 3-
point function describing the cubic gauge-
invariant interaction of two s = 3 and
s = 4 particles. In order to satisfy
the ghost number anomaly cancellation
condition, the overall φ-ghost number of
the correlator must be equal to −2, b−c
ghost number +3 and χ-ghost number
+1. For this reason, two out of 3 ver-
tex operators must be taken at positive
picture representations (integrated) and
one at negative (unintegrated). Note
that the non-standard ghost structure
of the h.s. operators leads to deformed
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Koba-Nielsen’s (SL(2,R)) measure and
thus the integrated vertices enter the
gam already at the level of 3-point func-
tions, leading to non-localities in the in-
teracting terms. The result of the cal-
culation is

< Vs=3(p1)Vs=4(p2)Vs=3(p3) >

= {272ηa3b2ηa2b3ηb4c3T
a1|b1|c1c2
1,1,2|4 (p1, p2, p3)

+144ηa3b2ηb3c2ηb4c3T
a1a2|b1|c1
2,1,1|2 (p1, p2, p3)

−128ηa2b3ηa3c2ηb4c3T
a1|b1b2|c1
1,2,1|2 (p1, p2, p3)

−(16ip
a3
2 η

b3c2ηb4c3

+24ip
b3
2 η

23c2ηb4c3)T
a1a2|b1b2|c1
2,2,1|2 (p1, p2, p3)

−32ip
b3
1 η

a3b2ηb4c3T
a1a2|b1|c1c2
2,1,2|4 (p1, p2, p3)

+(48ip
c3
1 η

a3b4ηa2b3

+72ip
b3
1 η

a2b4ηa3c3
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−144ip
a3
2 η

a2b3ηb4c3)T
a1|b1b2|c1c2
1,2,2|4 (p1, p2, p3)

+((56 − 20(~p1~p2))η
a3b3ηb4c3

−24p
b3
3 p

a3
3

−8p
b3
1 p

b4
1 η

a3c3

−20p
b3
1 p

c3
1 η

a3b4)T
a1a2|b1b2|c1c2
2,2,2|4 (p1, p2, p3)}

×I(~p1~p2)Ha1a2a3(p1)Hb1b2b3b4(p2)Hc1c2c3(p3)

×δ(p1 + p2 + p3)

+{24ηa2b4ηa3[b3ηb5]c3

×T
a1|b1b2b3|c1c2
1,3,2|4 (p1, p2, p3)

+8ηb4c3(ip
b3
1 η

a3b5 − ip
b5
1 η

a3b3)

T
a1a2|b1b2b3|c1c2
2,3,2|4 (p1, p2, p3)}

×I(~p1~p2)Ha1a2a3(p1)Hb1b2b4b5(p2)Hc1c2c3(p3)

×δ(p1 + p2 + p3)

+{24ηa3b3ηb4[a4ηa1]c3
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×T
a1a2|b1b2|c1c2
2,2,2|4 (p1, p2, p3)

+16ηa3b3ηb4[a4ηa1]c3ηb3c2

T
a1a2a3|b1b2|c1
3,2,1|2 (p1, p2, p3)}

×I(~p1~p2)Ha2a3a4(p1)Hb1b2b3b4(p2)Hc1c2c3(p3)

×δ(p1 + p2 + p3)

+ηb5c3ηb3[a3ηa4]b4

×T
a1a2a3|b1b2b3|c1c2
3,3,2|4 (p1, p2, p3)

×I(~p1~p2)Ha1a2a4(p1)Hb1b2b4b5(p2)Hc1c2c3(p3)

×δ(p1 + p2 + p3)(59)

where

I(~p1~p2)

= 4
2∏

n=−3

1

(~p1~p2) + n
(60)
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