Entanglement, global symmetries and topological contributions

Marina Huerta
Instituto Balseiro - Centro Atómico Bariloche - CONICET In collaboration with H. Casini, J.M.Magan and D. Pontello

Fifth Mandelstam Theoretical Physics School and Workshop Recent developments in Entanglement, Large N in QFT and String theory Johannesburg, January 2023

Based on

Entanglement entropy and superselection sectors I: Global symmetries Entropic order parameters for the phases of QFT

Preliminaries

Entanglement Entropy in QFT

Region R and state $\rho \underset{\mathscr{H}_{R} \otimes \mathscr{H}_{R^{\prime}}}{\longrightarrow} S(R)=-\operatorname{tr} \rho_{R} \log \rho_{R}$

RG flows:

$$
S(r)=\mu_{d-2} r^{d-2}+\mu_{d-4} r^{d-4}+\cdots+ \begin{cases}(-)^{\frac{d}{2}-1} 4 A \log (R / \epsilon) & \text { d even } \\ (-)^{\frac{d-1}{2}} F & \text { d odd }\end{cases}
$$

[Myers, Sinha, 2010] [Solodukhin, 2008]
[Casini, MH, (2004 \& 2012)], [Casini, Teste, Torroba 2017] [Casini, MH, Myers 2012]
Holographic EE:

$$
S_{E E}=\frac{A}{4 G} \quad \begin{aligned}
& \text { [Ryu, Takayanagi, 2006] } \\
& \begin{array}{l}
\text { [Hubeny, Rangamani, Takayanagi, 2007] } \\
\text { [Lewkowycz, Maldacena, 2013] }
\end{array}
\end{aligned}
$$

Preliminaries

Perspective:
Algebraic approach to QFT based on algebras of operators corresponding to causal spacetime regions

QFT : Entanglement Entropy of a region

"described by a net of von Neumann algebras"
strong indication that the assignation $\mathscr{A}(\mathscr{R})$ is in the core of the EE

Global symmetry \longrightarrow Subset of invariant operators \longrightarrow DHR formalism
[Doplicher, Haag, Roberts, 1969]
non unique assignation!
$S(R)$ is not unique
Region $\stackrel{?}{\longleftrightarrow}$ Local algebra

Motivations

- Anomaly mismatch for gauge theories
- Regularization/Lattice require fine-tuning
- Mutual Information seems to fail

$$
a_{M I} \neq a_{\left\langle T_{\mu}^{\mu}\right\rangle}
$$

- Topological theories

Motivations

- A different perspective: Algebraic approach

- Algebra/Region ambiguities on the lattice [Casini, MH, Rosabal, 2014]

Motivations

- A different perspective: Algebraic approach
Region

Local algebra

- Algebra/Region ambiguities on the lattice
[Casini, MH, Rosabal, 2014]

Infinite number of choices...the same mutual information

Plan of the talk

- Algebras and regions in QFT
- Superselection sectors from global symmetries
- Relative entropy and conditional expectations
- Novel universal terms in the entanglement entropy
- Chiral Scalar in two dim

Algebras and regions in QFT

Algebras and regions in QFT

- Isotony

Algebras and regions in QFT

- Isotony $R_{1} \subseteq R_{2} \longrightarrow \mathscr{A}_{R_{1}} \subseteq \mathscr{A}_{R_{2}}$
- Additivity

Algebras and regions in QFT

- Isotony $A \subseteq B \longrightarrow \mathcal{O}_{A} \subseteq \mathcal{O}_{B}$
- Additivity $\mathscr{A}\left(R_{1} \vee R_{2}\right)=\mathscr{A}\left(R_{1}\right) \vee \mathscr{A}\left(R_{2}\right)$
- Causality

$$
\left[\mathscr{A}(R), \mathscr{A}\left(R^{\prime}\right)\right]=0
$$

$$
1
$$

$$
\mathscr{A}(R) \subset \mathscr{A}\left(R^{\prime}\right)^{\prime}
$$

Algebras and regions in QFT

- Isotony $A \subseteq B \longrightarrow \mathcal{O}_{A} \subseteq \mathcal{O}_{B}$
- Additivity $\mathscr{A}\left(R_{1} \vee R_{2}\right)=\mathscr{A}\left(R_{1}\right) \vee \mathscr{A}\left(R_{2}\right)$
- Causality $\mathscr{A}(R) \subset \mathscr{A}\left(R^{\prime}\right)^{\prime}$
- Duality?

$$
\mathscr{A}(R) \stackrel{?}{=} \mathscr{A}\left(R^{\prime}\right)^{\prime}
$$

Algebras and regions in QFT

- Isotony $A \subseteq B \longrightarrow \mathcal{O}_{A} \subseteq \mathscr{O}_{B}$
- Additivity $\mathscr{A}\left(R_{1} \vee R_{2}\right)=\mathscr{A}\left(R_{1}\right) \vee \mathscr{A}\left(R_{2}\right)$
- Causality $\mathscr{A}(R) \subset \mathscr{A}\left(R^{\prime}\right)^{\prime}$
- Duality?

For simply connected regions (most QFT's)

$$
\mathscr{A}(R)=\mathscr{A}\left(R^{\prime}\right)^{\prime}
$$

Algebras and regions in QFT

- Isotony $A \subseteq B \longrightarrow \mathcal{O}_{A} \subseteq \mathscr{O}_{B}$
- Additivity $\mathscr{A}\left(R_{1} \vee R_{2}\right)=\mathscr{A}\left(R_{1}\right) \vee \mathscr{A}\left(R_{2}\right)$
- Causality $\mathscr{A}(R) \subset \mathscr{A}\left(R^{\prime}\right)^{\prime}$
- Duality?

For simply connected regions (most QFT's)

But what about regions with non-trivial topology?

Algebras and regions in QFT

- Isotony $A \subseteq B \longrightarrow \mathcal{O}_{A} \subseteq \mathcal{O}_{B}$
- Additivity $\mathscr{A}\left(R_{1} \vee R_{2}\right)=\mathscr{A}\left(R_{1}\right) \vee \mathscr{A}\left(R_{2}\right)$
- Causality $\mathscr{A}(R) \subset \mathscr{A}\left(R^{\prime}\right)^{\prime}$
- Duality $\mathscr{A}(R)=\mathscr{A}\left(R^{\prime}\right)^{\prime}$ simply connected regions (most QFT's)

Consider the regions $R \equiv R_{1} \vee R_{2}$ and R^{\prime}

From causality

$$
\mathscr{A}_{R} \subset \mathscr{A}_{(R)^{\prime}}^{\prime}
$$

The region R has non trivial $\pi_{0}(R)$. The region R^{\prime} has non trivial $\pi_{d-2}(R)$

Algebras and regions in QFT

- Isotony $A \subseteq B \longrightarrow \mathcal{O}_{A} \subseteq \mathcal{O}_{B}$
- Additivity $\mathscr{A}\left(R_{1} \vee R_{2}\right)=\mathscr{A}\left(R_{1}\right) \vee \mathscr{A}\left(R_{2}\right)$
- Causality $\mathscr{A}(R) \subset \mathscr{A}\left(R^{\prime}\right)^{\prime}$
- Duality $\quad \mathscr{A}(R)=\mathscr{A}\left(R^{\prime}\right)^{\prime}$ simply connected regions (most QFT's)

From causality
$\mathscr{A}_{R} \subset \mathscr{A}_{(R)^{\prime}}^{\prime}$
$\mathscr{A}(R) \stackrel{?}{=} \mathscr{A}\left(R^{\prime}\right)^{\prime}$

Algebras and regions in QFT

$\mathscr{A}(R) \stackrel{?}{\xlongequal{2}} \mathscr{A}\left(R^{\prime}\right)^{\prime}$
If duality is not satisfied for certain region

$$
\mathscr{A}_{\max }(R) \equiv\left(\mathscr{A}\left(R^{\prime}\right)\right)^{\prime}=\mathscr{A}(R) \vee\{a\}
$$

Interestingly, the breaking of duality in region R forces a dual breaking in region R^{\prime}

$$
\mathscr{A}_{\max }\left(R^{\prime}\right) \equiv(\mathscr{A}(R))^{\prime}=\mathscr{A}\left(R^{\prime}\right) \vee\{b\}
$$

It also implies that the dual sets of non-local operators are complementary

$$
[a, b] \neq 0
$$

To construct QFT nets satisfying duality requires introducing some operators. In these cases, "generalized sectors" $[a]$ and $[b]$ arise by a quotient of the maximal algebra with respect to the local algebra

$$
[a] \equiv \mathscr{A}_{\max }(R) / \mathscr{A}(R) \quad[b] \equiv \mathscr{A}_{\max }\left(R^{\prime}\right) / \mathscr{A}\left(R^{\prime}\right)
$$

The classes define a natural notion of fusion

$$
[a]\left[a^{\prime}\right]=\sum_{a^{\prime \prime}}[n]_{a a^{a^{\prime \prime}}}^{a^{\prime}}\left[a^{\prime \prime}\right] \quad[n]_{a a^{\prime}}^{a^{\prime \prime}}=0,1
$$

QFT with global symmetries

Simple example: Free Dirac field restricted to the algebra of bosonic operators

$$
\begin{gathered}
\mathscr{F} \equiv 1, \psi(x), \cdots \\
\mathcal{O} \equiv 1, \psi(x) \psi(y), \psi^{\dagger}(x) \psi^{\dagger}(y), \psi(x) \psi^{\dagger}(y), \cdots
\end{gathered}
$$

This is a Z_{2} symmetry for which the fermion has charge one.
In the model \mathscr{F} we can consider the following localized operator

$$
V_{A}=\int_{A} d^{d-1} x \alpha(x)\left(\psi(x)+\psi^{\dagger}(x)\right)
$$

If we have two regions we can construct the "intertwiner"

$$
\mathscr{J}_{R_{1} R_{2}}=V_{R_{1}} V_{R_{2}}^{\dagger}
$$

QFT with global symmetries

With respect to region $R \equiv R_{1} \vee R_{2}$

But does the intertwiner belong to the algebra of the union in \mathcal{O} ?

$$
\mathcal{O}\left(R_{1} \vee R_{2}\right)=\mathcal{O}\left(R_{1}\right) \vee \mathcal{O}\left(R_{2}\right)
$$

QFT with global symmetries

The additive algebra is the product of even operators in the right and in the left

QFT with global symmetries

It does not belong to the local algebra...

QFT with global symmetries

With respect to region R^{\prime}

$$
\mathscr{A}(R)^{\prime}=\mathscr{A}\left(R^{\prime}\right) \vee\{b\}
$$

The commutant $\mathcal{O}(R)^{\prime}$ contains "twist" operators that implement the symmetry transformations locally

$$
\tau_{R_{1}}=e^{i \pi \int d t d^{d-1} x \gamma(t) \beta_{R_{1}}(\vec{x}) J^{0}(x)}
$$

The spatial test function is zero in region R_{2}, and one in R_{1} so that

$$
\tau V_{R_{1}} \tau^{-1}=-V_{R_{1}} \quad \tau V_{R_{2}} \tau^{-1}=V_{R_{2}}
$$

QFT with global symmetries

With respect to region R^{\prime}

The twists belong to the commutant $\mathcal{O}(R)^{\prime}$
Crucially, this implies that

$$
\left[\tau, \mathscr{F}_{A B}\right] \neq 0
$$

QFT with global symmetries

$$
\begin{aligned}
& \mathcal{O}(R) \subset \mathcal{O}_{\text {max }}(R) \equiv \mathcal{O}(R) \vee \mathscr{J}_{R_{1} R_{2}}^{r} \\
& \mathcal{O}\left(R^{\prime}\right) \subset \mathcal{O}_{\text {max }}\left(R^{\prime}\right) \equiv \mathcal{O}\left(R^{\prime}\right) \vee \tau_{[g]}
\end{aligned}
$$

$$
\left[\mathscr{J}_{R_{1} R_{2}}^{r}, \tau_{[g]}\right] \neq 0
$$

The global symmetry manifests itself in the difference between the maximal algebras and the local algebras of regions with specific topologies

Relative entropy and conditional expectations

Given an inclusion of algebras

$$
\mathcal{O} \subset \mathscr{F}
$$

A conditional expectation E is a linear map from \mathscr{F} to \mathcal{O} satisfying

$$
E\left(b_{1} a b_{2}\right)=b_{1} E(a) b_{2} \quad b_{1}, b_{2} \in \mathcal{O}, a \in \mathscr{F}
$$

Relative entropy and conditional expectations

Given an inclusion of algebras

$$
\mathcal{O} \subset \mathscr{F}
$$

A conditional expectation E is a linear map from \mathscr{F} to \mathcal{O} satisfying

$$
E\left(b_{1} a b_{2}\right)=b_{1} E(a) b_{2} \quad b_{1}, b_{2} \in \mathcal{O}, a \in \mathscr{F}
$$

Example: Tracing out a factor is a conditional expectation

$$
\mathscr{F}=\mathscr{O} \otimes \mathscr{A} \quad E(O \otimes A)=\operatorname{Tr}(A) O \otimes 1_{\mathscr{A}}
$$

Relative entropy and conditional expectations

Given an inclusion of algebras

$$
\mathcal{O} \subset \mathscr{F}
$$

A conditional expectation E is a linear map from \mathscr{F} to \mathcal{O} satisfying

$$
E\left(b_{1} a b_{2}\right)=b_{1} E(a) b_{2} \quad b_{1}, b_{2} \in \mathcal{O}, a \in \mathscr{F}
$$

Example: Tracing out a factor is a conditional expectation

$$
\mathscr{F}=\mathcal{O} \otimes \mathscr{A} \quad E(O \otimes A)=\operatorname{Tr}(A) O \otimes 1_{\mathscr{A}}
$$

Another example (our case): Quotient by a symmetry group

$$
\mathcal{O}=\frac{1}{G} \sum_{g} \tau_{g} \mathscr{F} \tau_{g}^{-1}=E(\mathscr{F})
$$

Relative entropy and conditional expectations

Conditional expectations can be composed with states

$$
\omega_{\mathscr{O}} \rightarrow\left(\omega_{\mathscr{O}} \circ E\right)_{\mathscr{F}}
$$

Relative entropy and conditional expectations

Conditional expectations can be composed with states

$$
\omega_{\mathscr{O}} \rightarrow\left(\omega_{\mathscr{O}} \circ E\right)_{\mathscr{F}}
$$

Relative entropy: Let us remind the relative entropy definition

$$
S_{\mathscr{F}}(\omega \mid \phi)=\operatorname{Tr} \omega \log \omega-\operatorname{Tr} \omega \log \phi
$$

It can be used to define Mutual Information

$$
I_{A B}=S\left(\omega_{A B} \mid \omega_{A} \otimes \omega_{B}\right)
$$

Relative entropy and conditional expectations

Conditional expectations can be composed with states

$$
\omega_{\mathscr{O}} \rightarrow\left(\omega_{\mathscr{O}} \circ E\right)_{\mathscr{F}}
$$

Relative entropy: Let us remind the relative entropy definition

$$
S_{\mathscr{F}}(\omega \mid \phi)=\operatorname{Tr} \omega \log \omega-\operatorname{Tr} \omega \log \phi
$$

It can be used to define Mutual Information

$$
I_{A B}=S\left(\omega_{A B} \mid \omega_{A} \otimes \omega_{B}\right)
$$

RE+CE The following key equation can be proven [Petz, 1993]

$$
S_{\mathscr{F}}(\omega \mid \phi \circ E)=S_{\mathscr{O}}(\omega \mid \phi)+S_{\mathscr{F}}(\omega \mid \omega \circ E)
$$

Relative entropy and conditional expectations

Conditional expectations can be composed with states

$$
\omega_{\mathscr{O}} \rightarrow\left(\omega_{\mathscr{O}} \circ E\right)_{\mathscr{F}}
$$

Relative entropy: Let us remind how relative entropy is defined

$$
S_{\mathscr{F}}(\omega \mid \phi)=\operatorname{Tr} \omega \log \omega-\operatorname{Tr} \omega \log \phi
$$

It can be used to define Mutual Information

$$
I_{A B}=S\left(\omega_{A B} \mid \omega_{A} \otimes \omega_{B}\right)
$$

RE+CE The following key equation can be proven [Petz, 1993]

$$
S_{\mathscr{F}}(\omega \mid \phi \circ E)=S_{O}(\omega \mid \phi)+S_{\mathscr{F}}(\omega \mid \omega \circ E)
$$

This in particular implies

$$
S_{\mathscr{F}}(\omega \circ E \mid \phi \circ E)=S_{\mathscr{O}}(\omega \mid \phi)
$$

Relative entropy and conditional expectations

Entanglement entropy does not properly exists in QFT. It is just infinite.

Relative entropy and conditional expectations

Entanglement entropy does not properly exists in QFT. It is just infinite.
Using Mutual Information to define EE in QFT introduces a non-trivial topological

configuration.
In the presence of superselection sectors we have two choices

$$
\mathcal{O}(R) \quad \mathcal{O}(R) \vee \mathscr{J}_{R_{1} R_{2}}
$$

leading to two relative entropies

$$
S_{O(R)}\left(\omega, \omega_{R_{1}} \otimes \omega_{R_{2}}\right)=I_{\overparen{O}}\left(R_{1}, R_{2}\right)
$$

$$
S_{O\left(R^{\prime}\right)}\left(\omega,\left(\omega_{R_{1}} \otimes \omega_{R_{2}}\right) \circ E\right)=I_{\mathscr{F}}\left(R_{1}, R_{2}\right)
$$

Relative entropy and conditional expectations

Entanglement entropy does not properly exists in QFT. It is just infinite.
Using Mutual Information to define EE in QFT introduces non-trivial topological
 configurations.
In the presence of superselection sectors we have two choices

$$
\mathcal{O}(R) \quad \mathcal{O}(R) \vee \mathscr{J}_{R_{1} R_{2}}
$$

Leading to two relative entropies

$$
S_{O(R)}\left(\omega, \omega_{R_{1}} \otimes \omega_{R_{2}}\right)=I_{\overparen{O}}\left(R_{1}, R_{2}\right)
$$

$$
S_{O\left(R^{\prime}\right)}\left(\omega,\left(\omega_{R_{1}} \otimes \omega_{R_{2}}\right) \circ E\right)=I_{\mathscr{F}}\left(R_{1}, R_{2}\right)
$$

The algebras are related by

$$
E: \mathcal{O}(R) \vee \mathscr{J}_{R_{1} R_{2}} \rightarrow \mathcal{O}(R)
$$

The previous formula involving RE and CE implies

$$
I_{\mathscr{F}}\left(R_{1}, R_{2}\right)-I_{\mathscr{O}}\left(R_{1}, R_{2}\right)=S_{\mathscr{F}}(\omega, \omega \circ E)
$$

Novel universal terms in the entanglement entropy

We are led to compute

$$
I_{\mathscr{F}}\left(R_{1}, R_{2}\right)-I_{\mathscr{O}}\left(R_{1}, R_{2}\right)=S_{\mathscr{F}}(\omega, \omega \circ E)
$$

Difference between both states only come from the intertwiners

$$
\begin{gathered}
\mathscr{J}_{R_{1} R_{2}} \equiv \sum_{i} V_{R_{1}}^{i}\left(V_{R_{2}}^{i}\right)^{\dagger} \\
\omega\left(\mathscr{J}_{R_{1} R_{2}}\right) \neq 0 \quad \omega \circ E\left(\mathscr{J}_{R_{1} R_{2}}\right)=0
\end{gathered}
$$

We approach the computation by means of monotonicity of relative entropy.
A lower bound arises by restricting to the "intertwiner algebra"

$$
I_{\mathscr{F}}\left(R_{1}, R_{2}\right)-I_{\mathscr{O}}\left(R_{1}, R_{2}\right)=S_{\mathscr{F}}(\omega, \omega \circ E) \geq S_{\mathscr{J}_{R_{1} R_{2}}}(\omega, \omega \circ E)
$$

What about a higher bound?

Novel universal terms in the entanglement entropy

Question: What could bound the relative entropy associated to intertwiners?

Novel universal terms in the entanglement entropy

Question: What could bound the relative entropy associated to intertwiners?

Answer: Due to the uncertainty principle, whatever observable algebra which does not commute with the intertwiners.

Novel universal terms in the entanglement entropy

$$
\left[\mathscr{J}_{R_{1} R_{2}}, \tau_{[g]}\right] \neq 0
$$

Novel universal terms in the entanglement entropy

The story repeats itself for the spherical shell region.

Novel universal terms in the entanglement entropy

The story repeats itself for the spherical shell region.

We have two algebras, with or without the twist algebra

$$
\mathcal{O}_{S} \quad \mathcal{O}_{S} \vee \tau_{[g]}
$$

There is a conditional expectation killing the twists

$$
\tilde{E}: \mathcal{O}_{S} \vee \tau_{[g]} \rightarrow \mathcal{O}_{S}
$$

And an associated relative entropy

$$
S_{\mathscr{O}_{S} \vee \tau_{[g]}}(\omega, \omega \circ \tilde{E})
$$

Novel universal terms in the entanglement entropy

For finite groups the following entropic certainty relation can be derived

$$
S_{\mathscr{O}_{R} \vee \mathscr{I}_{R_{1} R_{2}}}(\omega, \omega \circ E)+S_{\mathscr{O}_{S} \vee \tau_{[g]}}(\omega, \omega \circ \tilde{E})=\log |G|
$$

In the past and also recently, information theoretic versions of the uncertainty principle have been explored

See review for history and references [Coles, Berta, Tomamichel, Wehner, 2017]
Some of those follow from monotonicity of relative entropy of the entropic certainty relation

We finally find the higher bound

$$
S_{\mathscr{I}_{R_{1} R_{2}}}(\omega \mid \omega \circ E) \leq I_{\mathscr{F}}\left(R_{1}, R_{2}\right)-I_{\mathscr{O}}\left(R_{1}, R_{2}\right) \leq \log |G|-S_{\tau_{[\mathscr{I}]}}(\omega \mid \omega \circ \tilde{E})
$$

Novel universal terms in the entanglement entropy

- Finite groups $\Delta I=\log G=\log D^{2}$
- Lie groups $\quad \Delta I \simeq \frac{1}{2}(d-2) \mathscr{G} \log \frac{R}{\epsilon} \quad \Delta I \simeq \frac{1}{2} \mathscr{G} \log \left(\log \frac{R}{\epsilon}\right)$
- Multicomponent regions $S_{\mathscr{F}}\left(\omega_{A B} \mid \omega_{A B} \circ \otimes_{i} E_{A_{i}} \otimes_{j} E_{B_{j}}\right)=n_{\partial} \log |G|$
- SSB scenarios

$$
\begin{aligned}
& S_{\mathscr{F}_{A}}\left(\omega_{1} \mid \omega_{1} \circ E_{1}\right) \sim \frac{(d-2)}{2} \log (R \mu) \\
& \Delta I_{A B}= \begin{cases}\frac{d-2}{2} \log (\mu R)+\frac{1}{2} \log (\log (R / \epsilon)) & R \mu \ll 1 \\
\frac{1}{2} \log (\log (R / \epsilon)) & R \mu \gg 1\end{cases}
\end{aligned}
$$

Novel universal terms in the entanglement entropy

Chiral free scalar in two dim.
Conformal, with $c=1 / 2$
$j\left(x^{+}\right)=\partial_{+} \phi \quad x^{+}$null coordinate, is an operator in a line.
The algebra of the current (or the chiral scalar) is exactly formed by the operators of the fermion algebra that are invariant under charge transformations $\psi(x) \rightarrow e^{i \alpha} \psi(x)$. So there is a $U(1)$ symmetry in the fermion such that the orbifold, the part of the algebra invariant under the symmetry, is the scalar.
$H=\frac{1}{2} \int d x j(x)^{2},[j(x), j(y)]=i \delta(x-y)$

two intervals

In the line $S(R)=\frac{c}{3} \log (R)$ for any CT

Novel universal terms in the entanglement entropy

Chiral free scalar in two dimensions

$$
j\left(x^{+}\right)=\partial_{+} \phi \quad H=\frac{1}{2} \int d x j(x)^{2},[j(x), j(y)]=i \delta(x-y)
$$

Checking duality in mutual information

$$
\begin{aligned}
& I\left(I_{1}, I_{3}\right)=S\left(I_{1}\right)+S\left(I_{3}\right)-S\left(I_{1} \cup I_{3}\right) \\
& I\left(I_{2}, I_{4}\right)=S\left(I_{2}\right)+S\left(I_{4}\right)-S\left(I_{2} \cup I_{4}\right)
\end{aligned}
$$

$$
\begin{gathered}
a_{1} b_{1} a_{2} b_{2} \\
\eta=\frac{\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)}{\left(a_{2}-a_{1}\right)\left(b_{2}-b_{1}\right)}
\end{gathered}
$$

Assuming duality $\quad S\left(I_{1} \cup I_{3}\right)=S\left(I_{2} \cup I_{4}\right)$

$$
I\left(I_{1}, I_{3}\right)=I\left(I_{2}, I_{4}\right)+S\left(I_{1}\right)+S\left(I_{3}\right)-S\left(I_{4}\right)-S\left(I_{2}\right)
$$

$I(\eta)=I(1-\eta)-\frac{c}{3} \log \left(\frac{1-\eta}{\eta}\right) \leftrightarrow U(\eta)=U(1-\eta)$ Haag duality

Novel universal terms in the entanglement entropy

Circle Length 100ϵ

$$
S\left(I_{1}\right)=S\left(I_{2} \cup I_{3} \cup I_{4}\right)
$$

$$
S\left(I_{1} \cup I_{3}\right) \neq S\left(I_{2} \cup I_{4}\right)
$$

Novel universal terms in the entanglement entropy

Novel universal terms in the entanglement entropy

Twist and intertwines?

$$
\begin{aligned}
& O_{13}= \phi\left(x_{1}\right)-\phi\left(x_{3}\right)=\int_{x_{1}}^{x_{3}} d x \partial_{x} \phi(x), \quad x_{1} \in I_{1} \text { and } x_{3} \in I_{3} \\
& O_{13} \in \mathcal{O} \quad O_{13} \in\left(\mathcal{O}_{2} \cup \mathcal{O}_{3}\right)^{\prime} \\
& O_{13} \notin \mathcal{O}_{1} \cup \mathcal{O}_{3}
\end{aligned}
$$

$$
\left[O_{13}, O_{24}\right]=i
$$

$$
\left(\mathcal{A}_{\mathrm{add}}\left(I_{1} I_{3}\right)\right)^{\prime}=\left(\mathcal{A}\left(I_{1}\right) \vee \mathcal{A}\left(I_{3}\right)\right)^{\prime}=\mathcal{A}\left(I_{2}\right) \vee \mathcal{A}\left(I_{4}\right) \vee O_{24}=\mathcal{A}_{\mathrm{add}}\left(I_{2} I_{4}\right) \vee O_{24},
$$

$$
\left(\mathcal{A}_{\mathrm{add}}\left(I_{2} I_{4}\right)\right)^{\prime}=\left(\mathcal{A}\left(I_{2}\right) \vee \mathcal{A}\left(I_{4}\right)\right)^{\prime}=\mathcal{A}\left(I_{1}\right) \vee \mathcal{A}\left(I_{3}\right) \vee O_{13}=\mathcal{A}_{\text {add }}\left(I_{1} I_{3}\right) \vee O_{13} .
$$

\mathscr{F} : Chiral fermion with $\mathrm{c}=1 / 2$

$$
I(\eta)=-\frac{c}{3} \log (1-\eta)+U(\eta)
$$

$\dot{U}(\eta) \leq 0 \quad U(\eta)=0$

O: Chiral scalar is a subalgebra of the chiral fermion generated by the current

$$
j(x)=\psi^{\dagger} \psi \underset{\text { bosonization }}{\longrightarrow} j\left(x^{+}\right)=\partial_{+} \phi
$$

Conclusion

Theories based on subsets of local operators invariant under

- some global symmetry lead to a Haag duality/additivity violation
- Why? Existence of twists and intertwiners
- Assignation of algebra to a region is Non unique
- Novel topological contributions to EE

Comment:

- Local symmetries give rise to the same structure: violation of additivity/duality, existence of non locally generated operators, wilson and 't Hooft loops. Solution to the mismatch of the Maxwell anomaly

Thanks!

