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Double scaled SYK

SYK: N Majorana fermions with q-body Hamiltonian

H = iq/2
∑

1≤i1<···<iq≤N
Ji1...iqψi1 · · ·ψiq ,

〈
J2
i1...iq

〉
= J 2/

(N
q

)
,

Double scaling limit

q →∞, N →∞, λ = 2q2/N = fixed.

2 dimensionless parameters: λ ∼ GN/(φr ε), and βJ ∼ β/ε.

I Standard large q limit: λ→ 0, βJ = fixed.

I Triple scaling limit: λ→ 0, βJ → ∞, λβJ = fixed.
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Analogy with N = 4 SYM

1/λ ∼ N2
YM. When 1/λ is large, the saddle point approximation is

valid.

(βJ )−1 ∼ λYM = g2
YMNYM. This controls effects that make the

chaos exponent sub-maximal. In string theory, this is finite α′

corrections. At finite temperatures, don’t get JT gravity but some
more complicated action ∼ higher derivative corrections to Einstein
gravity.

Part of the motivation for this work is to understand chaos at finite
chaos exponent. βJ → 0 the Lyapunov exponent L = J , whereas
at βJ → ∞, L = 2π/β.
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Review of Z (β) Computation

1. Expand e−βH =
∑

m β
mHm/m! and focus on evaluating the

sum term by term.

2. Do the disorder average (Wick contract the J’s in each H).

trHHHH ⊃ trHHHH = tr
(
Ψq

I Ψq
JΨq

I Ψq
J

)
3. To evaluate the remaining trace, anti-commute like fermions

next to each other and then annihilate them using ψ2
i = 1.

Anti-commuting two sets of fermions Ψq
I1

and Ψq
I2

past each

other gives a sign (−1)f , f = |I1 ∩ I2|. In the double-scaling
limit, q =

〈
(−1)f

〉
= e−λ.

4. Sum over Wick contractions and m.
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Chord diagrams

The last two steps are achieved by writing down all “chord
diagrams” and associating a factor q = e−λ to each vertex.

H
H

H H H

H

H

H

HH
H

HH

H

H

H

A contribution to trH16 ⊃ q6.
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How do we enumerate all such diagrams? The idea is that we slice
open all the diagrams and write

ℓ → 0
n = 1

n = 3
n = 5

n = 5
n = 2

n = 0

n = 0
ℓ → 0

(a) (b)Z (β) = 〈0| e−βT |0〉

T accounts for the insertion of H on the boundary using chords.
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Chord Hilbert Space = bulk Hilbert Space

ℓ → 0
n = 1

n = 3
n = 5

n = 5
n = 2

n = 0

n = 0
ℓ → 0

(a) (b)Figure: pure JT gravity vs chords.

The states |n〉 are “bulk” states with n open chords. We
immediately suspect that n ∈ Z is the discrete analog of `.
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To relate n and ` more explicitly, let’s work out the action of T on
a state with n open chords.

In principle, we have two operators TL and TR, which correspond
to inserting H on the L or R. But without matter these operators
are identical.

9 / 37



Two processes that happen when we act with HR:

(a)

n = 6

n = 7

H𝖱

(b)

𝔮3

n = 5

n = 6

H𝖱

On the left, a chord is created. By convention, it does not cross
any chords. On the right, a chord is annihilated. It crosses 3
chords giving a factor of q3.

T = α† + αW , α |n〉 = |n − 1〉 , n > 0

Wn = q0 + q1 + · · ·+ qn−1 =
1− qn

1− q

(1)
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Inner product

So far, we have defined a bulk vector space, spanned by chord
states |n〉. We have also defined the action of the Hamiltonian on
these bulk states.

To complete our definition of a Hilbert space, we need to specify
an inner product. This will also facilitate contact with JT gravity.

The inner product is defined by 〈0|T a+b|0〉 =
〈
T a |0〉 ,T b |0〉

〉
.

(T a)0
n(T b)n0 = gmn(T a)m0(T b)n0.

where gmn =
〈
|m〉 , |n〉

〉
and T |0〉 = Tm

0 |m〉.
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Inner product

γn

γm

middle

|bottom⟩

⟨top |

Figure: Interpretation of the chord diagram as 〈top|bottom〉. The middle
region (pink) defines an inner product. All chords entering through γn
must exit through γm.

(T a)0,n(T b)n,0 = gmn(T a)m,0(T b)n,0.
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Since all chords that cross γn must cross γm, 〈m|n〉 ∝ δmn.

Delete-a-chord recursion relation:

〈n|n〉 = Wn 〈n − 1|n − 1〉 . (2)

γn

γm

middle

|bottom⟩

⟨top |
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Evaluating T in an orthonormal basis gives

H = −g1/2Tg−1/2 = α
√
W +

√
Wα†

= − 1√
1− q

[
e iλk

√
1− e−` +

√
1− e−`e−iλk

]

Here we have identified ` = λn . Taking the triple-scaling limit:

λ→ 0, `→∞, e−`/λ2 = e−
˜̀

= fixed,

we recover Liouville quantum mechanics

H − E0 ∝ k2 + e−
˜̀ (3)

14 / 37



Evaluating T in an orthonormal basis gives

H = −g1/2Tg−1/2 = α
√
W +

√
Wα†

= − 1√
1− q

[
e iλk

√
1− e−` +

√
1− e−`e−iλk

]
Here we have identified ` = λn . Taking the triple-scaling limit:

λ→ 0, `→∞, e−`/λ2 = e−
˜̀

= fixed,

we recover Liouville quantum mechanics

H − E0 ∝ k2 + e−
˜̀ (3)

14 / 37



Chord Hilbert Space = bulk Hilbert Space

JT gravity Double Scaled SYK

Hgrav length |`〉 chords |n〉
H k2 + e−` e ik`

√
1− e−` + cc

Z (β) 〈` = 0| e−βH |` = 0〉 〈0| e−βT |0〉
TFD e−βH/2 |` = 0〉 e−βH/2 |0〉
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Operator Size & Chord Number

Expand any 2-sided state |χ〉 in the “size basis”:

|χ〉 =
∑
s,I

cs,IΨ
s
I |Ω〉 ,

The size of this state is measured by the 2-sided operator:

size =
1

2

N∑
α=1

(
1 + iψL

αψ
R
α

)
.

Let n̄ be the total chord number, weighted by dimension:

n̄ = size/q (4)

16 / 37



Let n̄ be the total chord number, weighted by dimension:

n̄ = size/q (5)

Let’s focus on a particular term in the computation of the average
size:

N∑
α=1

tr (HHHHψαHHHHψα)

∝
∑
I ,α

tr
(

Ψq
I1

Ψq
I1

Ψq
I2

Ψq
I3
ψαΨq

I4
Ψq

I2
Ψq

I4
Ψq

I3
ψα

)
∝
∑
I ,α

tr
(

Ψq
I2

Ψq
I3
ψαΨq

I2
Ψq

I3
ψα

)
(6)
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Bulk-to-boundary map: a warmup

Gram-Schmidt the set of vectors:

|Ω〉 ,H |Ω〉 ,H2 |Ω〉 , · · · , (7)

Since T ∼ α† + α, this generates the chord basis:

|0〉 , |1〉 , |2〉 , · · · , (8)

Explicitly,

|Ω〉 , H |Ω〉 , H2 |Ω〉 − |Ω〉 , H3 |Ω〉 − (2 + q)H |Ω〉 (9)

Similar to Krylov complexity.
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Correlators and matter chords
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Matter chords

Following [Berkooz et al.], we will consider thermal correlators of “matter
operators” with ∆ = s/q fixed:

Ms = i s/2
∑
I

KIψ
s
I (10)

Multi-index notation: Ψs
I = ψi1ψi2 · · ·ψis .
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Case with matter

Feynman rules for matter operators Ms :

(a)

𝔮 = e−λ = e−2q2/N

(b) (c)

e−λΔ2 = e−2s2/N𝔯 = e−λΔ = e−2qs/N

A microscopic origin of Newton’s Law: GM1M2 ∼ (2q2/N)∆1∆2
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Case with matter
The next simplest case is a wormhole with one green particle.
Then states are labeled by |nL, nR〉.

(a)

n𝖫 = 3 n𝖱 = 2

(c)

n𝖫 = 3 n𝖱 = 2

n𝖫 = 2 n𝖱 = 2

𝔯𝔮2

n𝖫 = 3 n𝖱 = 2

n𝖫 = 3 n𝖱 = 1

𝔮

(b)

n𝖫 = 3 n𝖱 = 3

Repeating the logic from before,

TR = α†R + αRWR + αLrq
nRWL,

TL = α†L + αLWL + αRrq
nLWR.

(11)
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Case with matter

For states with multi-particles, states are labeled by

|n0, n1, · · · , nm〉s1,s2,··· ,sm (12)

General expressions for TL,TR:

TL = α†L +
m∑
i=0

αi

[
1− e−`i

1− q

]∏
j<i

rje
−`j ,

TR = α†R +
m∑
i=0

αi

[
1− e−`i

1− q

]∏
j>i

rje
−`j .

(13)

Note that there is only one creation α† operator.
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The chord algebra

We obtained the general expressions for TL,TR acting on arbitrary
states in the double-scaled Hilbert space.

We would like to use these to understand the bulk dual. 0th order
question: what are the symmetries of the bulk (if any)?

In NAdS2, the gauge-invariant bulk isometries of AdS2 are subtle.
They do not commute with the HL,HR, but form an algebra which
includes the Hamiltonian and the length.
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The chord algebra

The total chord number n̄ and TL/R form an algebra, independent
of the matter content:

[TL,TR] = 0

[TL/R, n̄] = TL/R − 2α†L/R

[α†L, α
†
R] = 0

[n̄, α†L/R] = α†L/R

[TL/R, α
†
L/R]q = 1 + (1− q)

(
α†L/R

)2

[TL/R, α
†
R/L] = qn̄

Here [A,B]q = AB − qBA. This algebra has implications for the
bulk dual of double scaled SYK. [HL, Stanford, Yang, upcoming].
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Can find a subalgebra that commutes with n̄, generated by 4
elements:

FLL = α†L(TL − α†L)

FRR = α†R(TR − α†R)

FLR = α†L(TR − α†R)

FRL = α†R(TL − α†L)

(14)

To see that these commute with n̄, recall that Ti − α†i only
annihilates. One can work out the commutation relations of F
using the chord algebra.
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These 4 elements form a subalgebra of Uq1/2(sl(2,R)):

[K 2, E ]q = [F ,K 2]q = 0, EF − FE =
K 2 − K−2

q1/2 − q−1/2

For each n ∈ Z, we get unitary finite-dim reps of this algebra!
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Gravitational algebra

In the triple scaling limit, the chord algebra becomes the JT
gravitational algebra:

[HL,HR] = 0

i [HL/R, ˜̀] = 2kL/R

[˜̀, kL/R] = i

[kL, kR] = 0

−i [kL/R,HL/R] = HL/R − k2
L/R

−i [kL/R,HR/L] = e−
˜̀

In [Harlow & Wu ’21] this algebra was derived classically using Poisson
brackets; here we obtained them quantum mechanically.
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JT with matter

Taking the triple scaling limit of our expressions for TL,TR ⇒
gives concrete reps of the JT algebra.

The simplest case is for
m = 1 matter particles in the wormhole:

˜̀
L = `L + log λ, ˜̀

R = `R + log λ

HL ≈ −∂̃2
L + ∆e−

˜̀
L + e−

˜̀
L (∂R − ∂L) + e−

˜̀
L−˜̀

R

HR ≈ −∂̃2
R + ∆e−

˜̀
R − e−

˜̀
R (∂R − ∂L) + e−

˜̀
L−˜̀

R .

(15)

This is some generalization of Liouville that involves two
coordinates. For m-particle states, there is a generalization
involving m + 1 coordinates.
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Symmetries near the horizon

An interesting sub-algebra of the JT gravitational algebra is
generated by elements which commute with ˜̀. This forms an
sl(2,R) algebra [HL, Maldacena, Zhao] that is the near horizon symmetries
of the wormhole.

These generators satisfy [Lm, Ln] = i(m− n)Lm+n

and move matter around in the black hole interior!
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Symmetries

Plugging in our expressions for HL,HR for 1 matter particle gives:

L0 = −i∂x , L± = (∆± ∂x) e∓x (16)

x is essentially the distance from the horizon x = λ(nL − nR)/2.

This sl(2,R) algebra is a contraction of the Uq1/2(sl(2,R))
subalgebra we discussed before.
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Finite temperature sl(2,R) symmetries

We can back off the low temperature limit and consider λ→ 0
holding temperature fixed. (Equivalently, n̄→∞, holding e−λn̄

fixed.)

In this limit, we still find an sl(2,R) symmetry! Immediate
questions:

1. Why is chaos sub-maximal?

2. Is there a hyperbolic space on which this symmetry acts as
the isometries?

Stay tuned...
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Bulk-to-boundary map

In the case without matter, we performed Gram-Schmidt to obtain
|0〉 → |1〉 → |2〉 → · · · . The next simplest case is to consider 1
particle states.

|0, 0〉 → |0, 1〉 → |0, 2〉 → · · ·
↓ ↓ ↓
|1, 0〉 → |1, 1〉 → |1, 2〉 → · · ·
↓ ↓ ↓
|2, 0〉 → |2, 1〉 → |2, 2〉 → · · ·
↓ ↓ ↓
...

...
...

. . .


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Bulk-to-boundary map

To make the first column of this matrix, we can consider the states
with no particle |n〉 and then act with (Ms)R |n〉 = |n, 0〉.

|0, 0〉 → |0, 1〉 → |0, 2〉 → · · ·
↓ ↓ ↓
|1, 0〉 → |1, 1〉 → |1, 2〉 → · · ·
↓ ↓ ↓
|2, 0〉 → |2, 1〉 → |2, 2〉 → · · ·
↓ ↓ ↓
...

...
...

. . .



To carry out this orthogonalization procedure, need to know
trMsH

aMsH
b. Known explicitly [Berkooz et al.].

Subtlety: 〈n,m|n′,m′〉 6= 0 unless n + m 6= n′ + m′.
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Bulk-to-boundary map

Have an algorithm to construct multi-particle states by organizing
the states into a higher dimensional array.Need the n-pt functions
of the theory, known in terms of Γq [Berkooz et al.].

Works for all values of q and temperatures; even when quantum
corrections are large! More complete bulk reconstruction than
HKLL.

Roughly analogous to summing α′ corrections and 1/N
corrections, but not e−N corrections.
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Double scaled algebra

The one-sided algebra of observables generated by
{H,Ms ,Ms′ ,Ms′′ , · · · } form a Type II1 algebra.

Unlike the Type III/II∞ in [Leutheusser & Liu, Witten] the Hamiltonian H is
part of the algebra. Normally the Hamiltonian (and its moments)
diverge in the large N limit. But in SYK, H ∼ N/q2 so H is finite
in the double scaling limit. Therefore, we can include it.

In [Leutheusser & Liu], the near horizon symmetries were constructed using
an algebraic approach. Here I also constructed the near horizon
symmetries. Any relation?
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Future directions

1. Tensor networks

2. Can one derive a QES formula using chords [Lewkowycz & Maldacena]?

3. Wormholes [Jafferis et al.]

4. N = 2 supersymmetry [HL, Maldacena, Rozenberg, Shan; Berkooz et al.]

5. Bulk implications of the q-deformation [HL, Stanford, Yang, in prep]
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