The bulk Hilbert space from chords

Henry Lin
based on arXiv:2208.07032
+ upcoming w/ Douglas Stanford and Zhenbin Yang
Fifth Mandelstam Workshop

Incomplete References

JT gravity review:
[Maldacena, Stanford, Yang 1606.01857]
[Sarosi 1711.08482]
[Mertens \& Turiaci 2210.10846]

JT gravity in the gauge-invariant formalism:
[Harlow \& Jafferis, 1804.01081],
[Harlow \& Wu, 2108.04841],
[HL, Maldacena, Rozenberg, Shan, 2207.00408]

SYK, etc.
SYK [Maldacena \& Stanford, 1604.07818]
traversable wormholes [Maldacena, Stanford, Yang 1704.05333] [HL, Maldacena, Zhao, 1904.12820]
double scaled SYK [Berkooz et al. 1811.02584] [HL 2208.07032]

Double scaled SYK

SYK: N Majorana fermions with q-body Hamiltonian

$$
H=i^{q / 2} \sum_{1 \leq i_{1}<\cdots<i_{q} \leq N} J_{i_{1} \ldots i_{q}} \psi_{i_{1}} \cdots \psi_{i_{q}}, \quad\left\langle J_{i_{1} \ldots i_{q}}^{2}\right\rangle=\mathcal{J}^{2} /\binom{N}{q},
$$

Double scaling limit

$$
q \rightarrow \infty, \quad N \rightarrow \infty, \quad \lambda=2 q^{2} / N=\text { fixed }
$$

2 dimensionless parameters: $\lambda \sim G_{N} /\left(\phi_{r} \epsilon\right)$, and $\beta \mathcal{J} \sim \beta / \epsilon$.

Double scaled SYK

SYK: N Majorana fermions with q-body Hamiltonian

$$
H=i^{q / 2} \sum_{1 \leq i_{1}<\cdots<i_{q} \leq N} J_{i_{1} \ldots i_{q}} \psi_{i_{1}} \cdots \psi_{i_{q}}, \quad\left\langle J_{i_{1} \ldots i_{q}}^{2}\right\rangle=\mathcal{J}^{2} /\binom{N}{q},
$$

Double scaling limit

$$
q \rightarrow \infty, \quad N \rightarrow \infty, \quad \lambda=2 q^{2} / N=\text { fixed }
$$

2 dimensionless parameters: $\lambda \sim G_{N} /\left(\phi_{r} \epsilon\right)$, and $\beta \mathcal{J} \sim \beta / \epsilon$.

- Standard large q limit: $\lambda \rightarrow 0, \beta \mathcal{J}=$ fixed.

Double scaled SYK

SYK: N Majorana fermions with q-body Hamiltonian

$$
H=i^{q / 2} \sum_{1 \leq i_{1}<\cdots<i_{q} \leq N} J_{i_{1} \ldots i_{q}} \psi_{i_{1}} \cdots \psi_{i_{q}}, \quad\left\langle J_{\left.i_{1} \ldots i_{q}\right\rangle}^{2}\right\rangle=\mathcal{J}^{2} /\binom{N}{q},
$$

Double scaling limit

$$
q \rightarrow \infty, \quad N \rightarrow \infty, \quad \lambda=2 q^{2} / N=\text { fixed }
$$

2 dimensionless parameters: $\lambda \sim G_{N} /\left(\phi_{r} \epsilon\right)$, and $\beta \mathcal{J} \sim \beta / \epsilon$.

- Standard large q limit: $\lambda \rightarrow 0, \beta \mathcal{J}=$ fixed.
- Triple scaling limit: $\lambda \rightarrow 0, \beta \mathcal{J} \rightarrow \infty, \lambda \beta \mathcal{J}=$ fixed.

Analogy with $\mathcal{N}=4 \mathrm{SYM}$

$1 / \lambda \sim N_{\mathrm{YM}}^{2}$. When $1 / \lambda$ is large, the saddle point approximation is valid.
$(\beta \mathcal{J})^{-1} \sim \lambda_{\mathrm{YM}}=g_{\mathrm{YM}}^{2} N_{\mathrm{YM}}$. This controls effects that make the chaos exponent sub-maximal. In string theory, this is finite α^{\prime} corrections. At finite temperatures, don't get JT gravity but some more complicated action \sim higher derivative corrections to Einstein gravity.

Part of the motivation for this work is to understand chaos at finite chaos exponent. $\beta \mathcal{J} \rightarrow 0$ the Lyapunov exponent $\mathcal{L}=\mathcal{J}$, whereas at $\beta \mathcal{J} \rightarrow \infty, \mathcal{L}=2 \pi / \beta$.

Review of $Z(\beta)$ Computation

Review of $Z(\beta)$ Computation

1. Expand $e^{-\beta H}=\sum_{m} \beta^{m} H^{m} / m$! and focus on evaluating the sum term by term.

Review of $Z(\beta)$ Computation

1. Expand $e^{-\beta H}=\sum_{m} \beta^{m} H^{m} / m$! and focus on evaluating the sum term by term.
2. Do the disorder average (Wick contract the J's in each H).

$$
\operatorname{tr} H H H H \supset \operatorname{tr} \sqrt{H H H}=\operatorname{tr}\left(\Psi_{l}^{q} \Psi_{J}^{q} \Psi_{l}^{q} \Psi_{J}^{q}\right)
$$

Review of $Z(\beta)$ Computation

1. Expand $e^{-\beta H}=\sum_{m} \beta^{m} H^{m} / m$! and focus on evaluating the sum term by term.
2. Do the disorder average (Wick contract the J's in each H).

$$
\operatorname{tr} H H H H \supset \operatorname{tr} \sqrt{H H} H H=\operatorname{tr}\left(\Psi_{l}^{q} \Psi_{J}^{q} \Psi_{l}^{q} \Psi_{J}^{q}\right)
$$

3. To evaluate the remaining trace, anti-commute like fermions next to each other and then annihilate them using $\psi_{i}^{2}=1$.

Review of $Z(\beta)$ Computation

1. Expand $e^{-\beta H}=\sum_{m} \beta^{m} H^{m} / m$! and focus on evaluating the sum term by term.
2. Do the disorder average (Wick contract the J's in each H).

$$
\operatorname{tr} H H H H \supset \operatorname{tr} \overparen{H H H}=\operatorname{tr}\left(\Psi_{l}^{q} \Psi_{J}^{q} \Psi_{l}^{q} \Psi_{J}^{q}\right)
$$

3. To evaluate the remaining trace, anti-commute like fermions next to each other and then annihilate them using $\psi_{i}^{2}=1$. Anti-commuting two sets of fermions $\Psi_{l_{1}}^{q}$ and $\Psi_{l_{2}}^{q}$ past each other gives a sign $(-1)^{f}, f=\left|I_{1} \cap I_{2}\right|$.

Review of $Z(\beta)$ Computation

1. Expand $e^{-\beta H}=\sum_{m} \beta^{m} H^{m} / m$! and focus on evaluating the sum term by term.
2. Do the disorder average (Wick contract the J's in each H).

$$
\operatorname{tr} H H H H \supset \operatorname{tr} \overparen{H H H}=\operatorname{tr}\left(\Psi_{l}^{q} \Psi_{J}^{q} \Psi_{l}^{q} \Psi_{J}^{q}\right)
$$

3. To evaluate the remaining trace, anti-commute like fermions next to each other and then annihilate them using $\psi_{i}^{2}=1$. Anti-commuting two sets of fermions $\Psi_{l_{1}}^{q}$ and $\Psi_{l_{2}}^{q}$ past each other gives a sign $(-1)^{f}, f=\left|I_{1} \cap I_{2}\right|$. In the double-scaling limit, $\mathfrak{q}=\left\langle(-1)^{f}\right\rangle=e^{-\lambda}$.

Review of $Z(\beta)$ Computation

1. Expand $e^{-\beta H}=\sum_{m} \beta^{m} H^{m} / m$! and focus on evaluating the sum term by term.
2. Do the disorder average (Wick contract the J's in each H).

$$
\operatorname{tr} H H H H \supset \operatorname{tr} \overparen{H H H}=\operatorname{tr}\left(\Psi_{l}^{q} \Psi_{J}^{q} \Psi_{l}^{q} \Psi_{J}^{q}\right)
$$

3. To evaluate the remaining trace, anti-commute like fermions next to each other and then annihilate them using $\psi_{i}^{2}=1$. Anti-commuting two sets of fermions $\Psi_{l_{1}}^{q}$ and $\Psi_{l_{2}}^{q}$ past each other gives a sign $(-1)^{f}, f=\left|I_{1} \cap I_{2}\right|$. In the double-scaling limit, $\mathfrak{q}=\left\langle(-1)^{f}\right\rangle=e^{-\lambda}$.
4. Sum over Wick contractions and m.

Chord diagrams

The last two steps are achieved by writing down all "chord diagrams" and associating a factor $\mathfrak{q}=e^{-\lambda}$ to each vertex.

Chord diagrams

The last two steps are achieved by writing down all "chord diagrams" and associating a factor $\mathfrak{q}=e^{-\lambda}$ to each vertex.

A contribution to $\operatorname{tr} H^{16} \supset \mathfrak{q}^{6}$.

How do we enumerate all such diagrams? The idea is that we slice open all the diagrams and write

$$
Z(\beta)=\langle 0| e^{-\beta T}|0\rangle
$$

T accounts for the insertion of H on the boundary using chords.

Chord Hilbert Space $=$ bulk Hilbert Space

Figure: pure JT gravity vs chords.
The states $|n\rangle$ are "bulk" states with n open chords. We immediately suspect that $n \in \mathbb{Z}$ is the discrete analog of ℓ.

To relate n and ℓ more explicitly, let's work out the action of T on a state with n open chords.

In principle, we have two operators T_{L} and T_{R}, which correspond to inserting H on the L or R. But without matter these operators are identical.

Two processes that happen when we act with H_{R} :

Two processes that happen when we act with H_{R} :

On the left, a chord is created. By convention, it does not cross any chords.

Two processes that happen when we act with H_{R} :

On the left, a chord is created. By convention, it does not cross any chords. On the right, a chord is annihilated. It crosses 3 chords giving a factor of \mathfrak{q}^{3}.

$$
\begin{align*}
& T=\alpha^{\dagger}+\alpha W, \quad \alpha|n\rangle=|n-1\rangle, \quad n>0 \\
& W_{n}=\mathfrak{q}^{0}+\mathfrak{q}^{1}+\cdots+\mathfrak{q}^{n-1}=\frac{1-\mathfrak{q}^{n}}{1-\mathfrak{q}} \tag{1}
\end{align*}
$$

Inner product

So far, we have defined a bulk vector space, spanned by chord states $|n\rangle$. We have also defined the action of the Hamiltonian on these bulk states.

Inner product

So far, we have defined a bulk vector space, spanned by chord states $|n\rangle$. We have also defined the action of the Hamiltonian on these bulk states.

To complete our definition of a Hilbert space, we need to specify an inner product. This will also facilitate contact with JT gravity.

Inner product

So far, we have defined a bulk vector space, spanned by chord states $|n\rangle$. We have also defined the action of the Hamiltonian on these bulk states.

To complete our definition of a Hilbert space, we need to specify an inner product. This will also facilitate contact with JT gravity.

The inner product is defined by $\left.\langle 0| T^{a+b}|0\rangle=\left\langle T^{a} \mid 0\right\rangle, T^{b}|0\rangle\right\rangle$.

$$
\left(T^{a}\right)^{0}{ }_{n}\left(T^{b}\right)^{n}{ }_{0}=g_{m n}\left(T^{a}\right)^{m}\left(T^{b}\right)^{n}{ }_{0}
$$

where $\left.g_{m n}=\langle\mid m\rangle,|n\rangle\right\rangle$ and $T|0\rangle=T_{0}^{m}|m\rangle$.

Inner product

Figure: Interpretation of the chord diagram as \langle top|bottom \rangle. The middle region (pink) defines an inner product. All chords entering through γ_{n} must exit through γ_{m}.

$$
\left(T^{a}\right)_{0, n}\left(T^{b}\right)_{n, 0}=g^{m n}\left(T^{a}\right)_{m, 0}\left(T^{b}\right)_{n, 0}
$$

Since all chords that cross γ_{n} must cross $\gamma_{m},\langle m \mid n\rangle \propto \delta_{m n}$.

Since all chords that cross γ_{n} must cross $\gamma_{m},\langle m \mid n\rangle \propto \delta_{m n}$.
Delete-a-chord recursion relation:

$$
\begin{equation*}
\langle n \mid n\rangle=W_{n}\langle n-1 \mid n-1\rangle \tag{2}
\end{equation*}
$$

Evaluating T in an orthonormal basis gives

$$
\begin{aligned}
H & =-g^{1 / 2} T^{-1 / 2}=\alpha \sqrt{W}+\sqrt{W} \alpha^{\dagger} \\
& =-\frac{1}{\sqrt{1-\mathfrak{q}}}\left[e^{i \lambda k} \sqrt{1-e^{-\ell}}+\sqrt{1-e^{-\ell}} e^{-i \lambda k}\right]
\end{aligned}
$$

Evaluating T in an orthonormal basis gives

$$
\begin{aligned}
H & =-g^{1 / 2} T^{-1 / 2}=\alpha \sqrt{W}+\sqrt{W} \alpha^{\dagger} \\
& =-\frac{1}{\sqrt{1-\mathfrak{q}}}\left[e^{i \lambda k} \sqrt{1-e^{-\ell}}+\sqrt{1-e^{-\ell}} e^{-i \lambda k}\right]
\end{aligned}
$$

Here we have identified $\ell=\lambda n$. Taking the triple-scaling limit:

$$
\lambda \rightarrow 0, \quad \ell \rightarrow \infty, \quad e^{-\ell} / \lambda^{2}=e^{-\tilde{\ell}}=\text { fixed }
$$

we recover Liouville quantum mechanics

$$
\begin{equation*}
H-E_{0} \propto k^{2}+e^{-\tilde{\ell}} \tag{3}
\end{equation*}
$$

Chord Hilbert Space = bulk Hilbert Space

	JT gravity	Double Scaled SYK
$\mathcal{H}_{\text {grav }}$	length $\|\ell\rangle$	chords $\|n\rangle$
H	$k^{2}+e^{-\ell}$	$e^{i k \ell} \sqrt{1-e^{-\ell}}+c c$
$Z(\beta)$	$\langle\ell=0\| e^{-\beta H}\|\ell=0\rangle$	$\langle 0\| e^{-\beta T}\|0\rangle$
TFD	$e^{-\beta H / 2}\|\ell=0\rangle$	$e^{-\beta H / 2}\|0\rangle$

Operator Size \& Chord Number

Expand any 2-sided state $|\chi\rangle$ in the "size basis":

$$
|\chi\rangle=\sum_{s, l} c_{s, l} \Psi_{l}^{s}|\Omega\rangle
$$

The size of this state is measured by the 2-sided operator:

$$
\text { size }=\frac{1}{2} \sum_{\alpha=1}^{N}\left(1+i \psi_{\alpha}^{\mathrm{L}} \psi_{\alpha}^{\mathrm{R}}\right) .
$$

Let \bar{n} be the total chord number, weighted by dimension:

$$
\begin{equation*}
\bar{n}=\operatorname{size} / q \tag{4}
\end{equation*}
$$

Let \bar{n} be the total chord number, weighted by dimension:

$$
\begin{equation*}
\bar{n}=\operatorname{size} / q \tag{5}
\end{equation*}
$$

Let's focus on a particular term in the computation of the average size:

$$
\begin{align*}
& \sum_{\alpha=1}^{N} \operatorname{tr}\left(H H H H \psi_{\alpha} \overrightarrow{H H H H} \psi_{\alpha}\right) \\
\propto & \sum_{l, \alpha} \operatorname{tr}\left(\Psi_{l_{1}}^{q} \Psi_{l_{1}}^{q} \Psi_{l_{2}}^{q} \Psi_{l_{3}}^{q} \psi_{\alpha} \Psi_{l_{4}}^{q} \Psi_{l_{2}}^{q} \Psi_{I_{4}}^{q} \Psi_{l_{3}}^{q} \psi_{\alpha}\right) \tag{6}\\
\propto & \sum_{l, \alpha} \operatorname{tr}\left(\Psi_{l_{2}}^{q} \Psi_{l_{3}}^{q} \psi_{\alpha} \Psi_{l_{2}}^{q} \Psi_{l_{3}}^{q} \psi_{\alpha}\right)
\end{align*}
$$

Bulk-to-boundary map: a warmup

Gram-Schmidt the set of vectors:

$$
\begin{equation*}
|\Omega\rangle, H|\Omega\rangle, H^{2}|\Omega\rangle, \cdots, \tag{7}
\end{equation*}
$$

Since $T \sim \alpha^{\dagger}+\alpha$, this generates the chord basis:

$$
\begin{equation*}
|0\rangle,|1\rangle,|2\rangle, \cdots, \tag{8}
\end{equation*}
$$

Explicitly,

$$
\begin{equation*}
|\Omega\rangle, H|\Omega\rangle, H^{2}|\Omega\rangle-|\Omega\rangle, H^{3}|\Omega\rangle-(2+\mathfrak{q}) H|\Omega\rangle \tag{9}
\end{equation*}
$$

Similar to Krylov complexity.

Correlators and matter chords

Matter chords

Following [Berkooz et al], we will consider thermal correlators of "matter operators" with $\Delta=s / q$ fixed:

$$
\begin{equation*}
M_{s}=i^{s / 2} \sum_{l} K_{l} \psi_{l}^{s} \tag{10}
\end{equation*}
$$

Multi-index notation: $\Psi_{I}^{s}=\psi_{i_{1}} \psi_{i_{2}} \cdots \psi_{i_{s}}$.

Case with matter

Feynman rules for matter operators M_{s} :

A microscopic origin of Newton's Law: $G M_{1} M_{2} \sim\left(2 q^{2} / N\right) \Delta_{1} \Delta_{2}$

Case with matter

The next simplest case is a wormhole with one green particle. Then states are labeled by $\left|n_{\mathrm{L}}, n_{\mathrm{R}}\right\rangle$.

Repeating the logic from before,

$$
\begin{align*}
& T_{\mathrm{R}}=\alpha_{\mathrm{R}}^{\dagger}+\alpha_{\mathrm{R}} W_{\mathrm{R}}+\alpha_{\mathrm{L}} \mathfrak{r} \mathfrak{q}^{n_{\mathrm{R}}} W_{\mathrm{L}}, \\
& T_{\mathrm{L}}=\alpha_{\mathrm{L}}^{\dagger}+\alpha_{\mathrm{L}} W_{\mathrm{L}}+\alpha_{\mathrm{R}} \mathfrak{r q}^{n_{\mathrm{L}}} W_{\mathrm{R}} \tag{11}
\end{align*}
$$

Case with matter

For states with multi-particles, states are labeled by

$$
\begin{equation*}
\left|n_{0}, n_{1}, \cdots, n_{m}\right\rangle_{s_{1}, s_{2}, \cdots, s_{m}} \tag{12}
\end{equation*}
$$

General expressions for $T_{\mathrm{L}}, T_{\mathrm{R}}$:

$$
\begin{align*}
& T_{\mathrm{L}}=\alpha_{\mathrm{L}}^{\dagger}+\sum_{i=0}^{m} \alpha_{i}\left[\frac{1-e^{-\ell_{i}}}{1-\mathfrak{q}}\right] \prod_{j<i} \mathfrak{r}_{j} e^{-\ell_{j}} \\
& T_{\mathrm{R}}=\alpha_{\mathrm{R}}^{\dagger}+\sum_{i=0}^{m} \alpha_{i}\left[\frac{1-e^{-\ell_{i}}}{1-\mathfrak{q}}\right] \prod_{j>i} \mathfrak{r}_{j} e^{-\ell_{j}} . \tag{13}
\end{align*}
$$

Note that there is only one creation α^{\dagger} operator.

The chord algebra

We obtained the general expressions for T_{L}, T_{R} acting on arbitrary states in the double-scaled Hilbert space.

We would like to use these to understand the bulk dual. Oth order question: what are the symmetries of the bulk (if any)?

In NAdS_{2}, the gauge-invariant bulk isometries of AdS_{2} are subtle. They do not commute with the $H_{\mathrm{L}}, H_{\mathrm{R}}$, but form an algebra which includes the Hamiltonian and the length.

The chord algebra

The total chord number \bar{n} and $T_{L / R}$ form an algebra, independent of the matter content:

$$
\begin{aligned}
{\left[T_{\mathrm{L}}, T_{\mathrm{R}}\right] } & =0 \\
{\left[T_{\mathrm{L} / \mathrm{R}}, \bar{n}\right] } & =T_{\mathrm{L} / \mathrm{R}}-2 \alpha_{\mathrm{L} / \mathrm{R}}^{\dagger} \\
{\left[\alpha_{\mathrm{L}}^{\dagger}, \alpha_{\mathrm{R}}^{\dagger}\right] } & =0 \\
{\left[\bar{n}, \alpha_{\mathrm{L} / \mathrm{R}}^{\dagger}\right] } & =\alpha_{\mathrm{L} / \mathrm{R}}^{\dagger} \\
{\left[T_{\mathrm{L} / \mathrm{R}}, \alpha_{\mathrm{L} / \mathrm{R}}^{\dagger}\right]_{\mathfrak{q}} } & =1+(1-\mathfrak{q})\left(\alpha_{\mathrm{L} / \mathrm{R}}^{\dagger}\right)^{2} \\
{\left[T_{\mathrm{L} / \mathrm{R}}, \alpha_{\mathrm{R} / \mathrm{L}}^{\dagger}\right] } & =\mathfrak{q}^{\bar{n}}
\end{aligned}
$$

Here $[A, B]_{\mathfrak{q}}=A B-\mathfrak{q} B A$. This algebra has implications for the bulk dual of double scaled SYK. [HL, Stanford, Yang, upcoming].

Can find a subalgebra that commutes with \bar{n}, generated by 4 elements:

$$
\begin{align*}
F_{\mathrm{LL}} & =\alpha_{\mathrm{L}}^{\dagger}\left(T_{\mathrm{L}}-\alpha_{\mathrm{L}}^{\dagger}\right) \\
F_{\mathrm{RR}} & =\alpha_{\mathrm{R}}^{\dagger}\left(T_{\mathrm{R}}-\alpha_{\mathrm{R}}^{\dagger}\right) \tag{14}\\
F_{\mathrm{LR}} & =\alpha_{\mathrm{L}}^{\dagger}\left(T_{\mathrm{R}}-\alpha_{\mathrm{R}}^{\dagger}\right) \\
F_{\mathrm{RL}} & =\alpha_{\mathrm{R}}^{\dagger}\left(T_{\mathrm{L}}-\alpha_{\mathrm{L}}^{\dagger}\right)
\end{align*}
$$

To see that these commute with \bar{n}, recall that $T_{i}-\alpha_{i}^{\dagger}$ only annihilates. One can work out the commutation relations of F using the chord algebra.

These 4 elements form a subalgebra of $U_{\mathfrak{q}^{1 / 2}}(\mathfrak{s l}(2, \mathbb{R}))$:

$$
\left[K^{2}, \mathcal{E}\right]_{\mathfrak{q}}=\left[\mathcal{F}, K^{2}\right]_{\mathfrak{q}}=0, \quad \mathcal{E} \mathcal{F}-\mathcal{F E}=\frac{K^{2}-K^{-2}}{\mathfrak{q}^{1 / 2}-\mathfrak{q}^{-1 / 2}}
$$

For each $n \in \mathbb{Z}$, we get unitary finite-dim reps of this algebra!

Gravitational algebra

In the triple scaling limit, the chord algebra becomes the JT gravitational algebra:

$$
\begin{aligned}
{\left[H_{\mathrm{L}}, H_{\mathrm{R}}\right] } & =0 \\
i\left[H_{\mathrm{L} / \mathrm{R}}, \tilde{\ell}\right] & =2 k_{\mathrm{L} / \mathrm{R}} \\
{\left[\tilde{\ell}, k_{\mathrm{L} / \mathrm{R}}\right] } & =i \\
{\left[k_{\mathrm{L}}, k_{\mathrm{R}}\right] } & =0 \\
-i\left[k_{\mathrm{L} / \mathrm{R}}, H_{\mathrm{L} / \mathrm{R}}\right] & =H_{\mathrm{L} / \mathrm{R}}-k_{\mathrm{L} / \mathrm{R}}^{2} \\
-i\left[k_{\mathrm{L} / \mathrm{R}}, H_{\mathrm{R} / \mathrm{L}}\right] & =e^{-\tilde{\ell}}
\end{aligned}
$$

In [Harlow \& Wu' ${ }^{21]}$ this algebra was derived classically using Poisson brackets; here we obtained them quantum mechanically.

JT with matter

Taking the triple scaling limit of our expressions for $T_{\mathrm{L}}, T_{\mathrm{R}} \Rightarrow$ gives concrete reps of the JT algebra.

JT with matter

Taking the triple scaling limit of our expressions for $T_{\mathrm{L}}, T_{\mathrm{R}} \Rightarrow$ gives concrete reps of the JT algebra. The simplest case is for $m=1$ matter particles in the wormhole:

$$
\begin{align*}
\tilde{\ell}_{\mathrm{L}} & =\ell_{\mathrm{L}}+\log \lambda, \quad \tilde{\ell}_{\mathrm{R}}=\ell_{\mathrm{R}}+\log \lambda \\
H_{\mathrm{L}} & \approx-\tilde{\partial}_{\mathrm{L}}^{2}+\Delta e^{-\tilde{\ell}_{\mathrm{L}}}+e^{-\tilde{\ell}_{\mathrm{L}}}\left(\partial_{\mathrm{R}}-\partial_{\mathrm{L}}\right)+e^{-\tilde{\ell}_{\mathrm{L}}-\tilde{\ell}_{\mathrm{R}}} \tag{15}\\
H_{\mathrm{R}} & \approx-\tilde{\partial}_{\mathrm{R}}^{2}+\Delta e^{-\tilde{\ell}_{\mathrm{R}}}-e^{-\tilde{\ell}_{\mathrm{R}}}\left(\partial_{\mathrm{R}}-\partial_{\mathrm{L}}\right)+e^{-\tilde{\ell}_{\mathrm{L}}-\tilde{\ell}_{\mathrm{R}}} .
\end{align*}
$$

This is some generalization of Liouville that involves two coordinates. For m-particle states, there is a generalization involving $m+1$ coordinates.

Symmetries near the horizon

An interesting sub-algebra of the JT gravitational algebra is generated by elements which commute with $\tilde{\ell}$. This forms an $\mathfrak{s l}(2, \mathbb{R})$ algebra $[H L$, Maldacena, Zhao] that is the near horizon symmetries of the wormhole.

Symmetries near the horizon

An interesting sub-algebra of the JT gravitational algebra is generated by elements which commute with $\tilde{\ell}$. This forms an $\mathfrak{s l}(2, \mathbb{R})$ algebra $[H L$, Maldacena, Zhao] that is the near horizon symmetries of the wormhole. These generators satisfy $\left[L_{m}, L_{n}\right]=i(m-n) L_{m+n}$ and move matter around in the black hole interior!

Symmetries

Plugging in our expressions for $H_{\mathrm{L}}, H_{\mathrm{R}}$ for 1 matter particle gives:

$$
\begin{equation*}
L_{0}=-i \partial_{x}, \quad L_{ \pm}=\left(\Delta \pm \partial_{x}\right) e^{\mp x} \tag{16}
\end{equation*}
$$

x is essentially the distance from the horizon $x=\lambda\left(n_{\mathrm{L}}-n_{\mathrm{R}}\right) / 2$.

Symmetries

Plugging in our expressions for $H_{\mathrm{L}}, H_{\mathrm{R}}$ for 1 matter particle gives:

$$
\begin{equation*}
L_{0}=-i \partial_{x}, \quad L_{ \pm}=\left(\Delta \pm \partial_{x}\right) e^{\mp x} \tag{16}
\end{equation*}
$$

x is essentially the distance from the horizon $x=\lambda\left(n_{\mathrm{L}}-n_{\mathrm{R}}\right) / 2$. This $\mathfrak{s l}(2, \mathbb{R})$ algebra is a contraction of the $U_{q^{1 / 2}}(\mathfrak{s l}(2, \mathbb{R}))$ subalgebra we discussed before.

Finite temperature $\mathfrak{s l}(2, \mathbb{R})$ symmetries

We can back off the low temperature limit and consider $\lambda \rightarrow 0$ holding temperature fixed. (Equivalently, $\bar{n} \rightarrow \infty$, holding $e^{-\lambda \bar{n}}$ fixed.)

Finite temperature $\mathfrak{s l}(2, \mathbb{R})$ symmetries

We can back off the low temperature limit and consider $\lambda \rightarrow 0$ holding temperature fixed. (Equivalently, $\bar{n} \rightarrow \infty$, holding $e^{-\lambda \bar{n}}$ fixed.) In this limit, we still find an $\mathfrak{s l}(2, \mathbb{R})$ symmetry! Immediate questions:

1. Why is chaos sub-maximal?
2. Is there a hyperbolic space on which this symmetry acts as the isometries?

Finite temperature $\mathfrak{s l}(2, \mathbb{R})$ symmetries

We can back off the low temperature limit and consider $\lambda \rightarrow 0$ holding temperature fixed. (Equivalently, $\bar{n} \rightarrow \infty$, holding $e^{-\lambda \bar{n}}$ fixed.) In this limit, we still find an $\mathfrak{s l}(2, \mathbb{R})$ symmetry! Immediate questions:

1. Why is chaos sub-maximal?
2. Is there a hyperbolic space on which this symmetry acts as the isometries?

Stay tuned...

Bulk-to-boundary map

In the case without matter, we performed Gram-Schmidt to obtain $|0\rangle \rightarrow|1\rangle \rightarrow|2\rangle \rightarrow \cdots$. The next simplest case is to consider 1 particle states.

$$
\left[\begin{array}{cccc}
|0,0\rangle \rightarrow & |0,1\rangle \rightarrow & |0,2\rangle \rightarrow & \cdots \\
\downarrow & \downarrow & \downarrow & \\
|1,0\rangle \rightarrow & |1,1\rangle \rightarrow & |1,2\rangle \rightarrow & \cdots \\
\downarrow & \downarrow & \downarrow & \\
|2,0\rangle \rightarrow & |2,1\rangle \rightarrow & |2,2\rangle \rightarrow & \cdots \\
\downarrow & \downarrow & \downarrow & \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Bulk-to-boundary map

To make the first column of this matrix, we can consider the states with no particle $|n\rangle$ and then act with $\left(M_{s}\right)_{\mathrm{R}}|n\rangle=|n, 0\rangle$.

Bulk-to-boundary map

To make the first column of this matrix, we can consider the states with no particle $|n\rangle$ and then act with $\left(M_{s}\right)_{\mathrm{R}}|n\rangle=|n, 0\rangle$.

To carry out this orthogonalization procedure, need to know $\operatorname{tr} M_{s} H^{a} M_{s} H^{b}$. Known explicitly [Berkooz et al] $]$.

Subtlety: $\left\langle n, m \mid n^{\prime}, m^{\prime}\right\rangle \neq 0$ unless $n+m \neq n^{\prime}+m^{\prime}$.

Bulk-to-boundary map

Have an algorithm to construct multi-particle states by organizing the states into a higher dimensional array. Need the n-pt functions of the theory, known in terms of Γ_{q} [Berkooz et al.].

Works for all values of \mathfrak{q} and temperatures; even when quantum corrections are large! More complete bulk reconstruction than HKLL.

Roughly analogous to summing α^{\prime} corrections and $1 / N$ corrections, but not e^{-N} corrections.

Double scaled algebra

The one-sided algebra of observables generated by $\left\{H, M_{s}, M_{s^{\prime}}, M_{s^{\prime \prime}}, \cdots\right\}$ form a Type I_{1} algebra.

Double scaled algebra

The one-sided algebra of observables generated by $\left\{H, M_{s}, M_{s^{\prime}}, M_{s^{\prime \prime}}, \cdots\right\}$ form a Type I_{1} algebra.

Unlike the Type $\mathrm{III} / \mathrm{II}_{\infty}$ in [Leutheusser \& Liu, Witten] the Hamiltonian H is part of the algebra. Normally the Hamiltonian (and its moments) diverge in the large N limit. But in SYK, $H \sim N / q^{2}$ so H is finite in the double scaling limit. Therefore, we can include it.

Double scaled algebra

The one-sided algebra of observables generated by $\left\{H, M_{s}, M_{s^{\prime}}, M_{s^{\prime \prime}}, \cdots\right\}$ form a Type II_{1} algebra.

Unlike the Type $\mathrm{III} / \mathrm{II}_{\infty}$ in [Leutheusser \& Liu, Witten] the Hamiltonian H is part of the algebra. Normally the Hamiltonian (and its moments) diverge in the large N limit. But in SYK, $H \sim N / q^{2}$ so H is finite in the double scaling limit. Therefore, we can include it.

In [Leutheusser \& Liu], the near horizon symmetries were constructed using an algebraic approach. Here I also constructed the near horizon symmetries. Any relation?

Future directions

1. Tensor networks
2. Can one derive a QES formula using chords [Lewkowycz \& Maldacena]?
3. Wormholes [Jafferis et al.]
4. $\mathcal{N}=2$ supersymmetry [HL, Maldacena, Rozenberg, Shan; Berkooz et al.]
5. Bulk implications of the q-deformation [HL, Stanford, Yang, in prep]
