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Incomplete References

JT gravity review:
[Maldacena, Stanford, Yang 1606.01857]
[Sarosi 1711.08482]

[Mertens & Turiaci 2210.10846]

JT gravity in the gauge-invariant formalism:
[Harlow & Jafferis, 1804.01081],
[Harlow & Wu, 2108.04841],

[HL, Maldacena, Rozenberg, Shan, 2207.00408]

SYK, etc.

SYK [Maldacena & Stanford, 1604.07818]
traversable wormholes [Maldacena, Stanford, Yang 1704.05333] [HL, Maldacena, Zhao, 1904.12820]

double scaled SYK [Berkooz et al. 1811.02584] [HL 2208.07032]
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Double scaled SYK

SYK: N Majorana fermions with g-body Hamiltonian

H = iq/2 Z Ji1...iqwl'1 o 'w’.q’ <J’21’q> = j2/(lf\il)’

1<i<-<ig<N

Double scaling limit

q— 00, N— o0, \=2g?/N = fixed.

2 dimensionless parameters: A ~ Gy /(¢r€), and BT ~ [/e.
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Double scaled SYK

SYK: N Majorana fermions with g-body Hamiltonian

H = iq/2 Z Ji1...iqwl'1 o 'w’.q’ <J’21’q> = j2/(lf\il)’

1<i<-<ig<N

Double scaling limit

q— 00, N— o0, \=2g?/N = fixed.

2 dimensionless parameters: A ~ Gy /(¢r€), and BT ~ [/e.
» Standard large g limit: A — 0, 87 = fixed.
» Triple scaling limit: A — 0,87 — oo, ABJ = fixed.
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Analogy with N/ = 4 SYM

1/X ~ N2y,. When 1/ is large, the saddle point approximation is
valid.

(BT)™t ~ Aym = g2y, Nym. This controls effects that make the
chaos exponent sub-maximal. In string theory, this is finite o/
corrections. At finite temperatures, don't get JT gravity but some
more complicated action ~ higher derivative corrections to Einstein
gravity.

Part of the motivation for this work is to understand chaos at finite

chaos exponent. 57 — 0 the Lyapunov exponent £ = J, whereas
at BT — oo, L =271/0.
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Review of Z(3) Computation

1. Expand e " =3~ BMH™/m! and focus on evaluating the
sum term by term.

2. Do the disorder average (Wick contract the J's in each H).

— 1
tr HHHH > tr HHHH = tr(WIwIwiw)

3. To evaluate the remaining trace, anti-commute like fermions
next to each other and then annihilate them using w,-z =1
Anti-commuting two sets of fermions \UZ and \|172 past each
other gives a sign (—1)f, f = [, N k|. In the double-scaling
limit, g = ((-1)") = e~

4. Sum over Wick contractions and m.
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Chord diagrams

The last two steps are achieved by writing down all “chord
diagrams” and associating a factor q = e~ to each vertex.
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Chord diagrams

The last two steps are achieved by writing down all “chord
diagrams” and associating a factor q = e~ to each vertex.

A contribution to tr H*® 5 ¢°.
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How do we enumerate all such diagrams? The idea is that we slice
open all the diagrams and write

Z(B) = (0le~"T0)

T accounts for the insertion of H on the boundary using chords.
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Chord Hilbert Space = bulk Hilbert Space

Figure: pure JT gravity vs chords.

The states |n) are “bulk” states with n open chords. We
immediately suspect that n € Z is the discrete analog of /.
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To relate n and £ more explicitly, let’s work out the action of T on
a state with n open chords.

In principle, we have two operators T; and Tg, which correspond

to inserting H on the L or R. But without matter these operators
are identical.
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Two processes that happen when we act with Hg:

3
LHR T n,
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Two processes that happen when we act with Hg:

3
LHR T n,

On the left, a chord is created. By convention, it does not cross
any chords. On the right, a chord is annihilated. It crosses 3
chords giving a factor of ¢3.

T=ao+aW, alny=|n—1), n>0
1— g 1
Wn=q°+q1+-~+q"’1=ﬁ (1)
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Inner product

So far, we have defined a bulk vector space, spanned by chord
states |n). We have also defined the action of the Hamiltonian on
these bulk states.
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Inner product

So far, we have defined a bulk vector space, spanned by chord
states |n). We have also defined the action of the Hamiltonian on
these bulk states.

To complete our definition of a Hilbert space, we need to specify
an inner product. This will also facilitate contact with JT gravity.

The inner product is defined by (0| 73+2|0) = <T" 0y, T?10) > :

(T2)°2(T")"0 = gma(T)"5(T")".

where gmp, = < |m) , ]n>> and T|0) = T |m).
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Inner product

Figure: Interpretation of the chord diagram as (top|bottom). The middle
region (pink) defines an inner product. All chords entering through =,
must exit through v,,.

(T?)o.n(T*)no = 8™ (T?)mo(T")no.
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Since all chords that cross 7, must cross v, (m|n) o« dmp.
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Since all chords that cross 7, must cross v, (m|n) o< dmp.

Delete-a-chord recursion relation:

(n|ny = Wh(n—1n—1). (2)
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Evaluating T in an orthonormal basis gives
H=—g"?Tg 2 = av/W + VWa'l

1 [i)\k\/ —iXk
= - e 1—el4/1—etle
v1—q
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Evaluating T in an orthonormal basis gives
H=—g"?Tg 2 = av/W + VWa'l

1 [i)\k\/ —iXk
= - e 1—el4/1—etle
v1—q

Here we have identified . Taking the triple-scaling limit:

A—=0, =00, e /A% =e""=fixed,

we recover Liouville quantum mechanics

H—Eyox k?+e* (3)
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Chord Hilbert Space = bulk Hilbert Space

JT gravity Double Scaled SYK
Hegrav length |£) chords |n)
H k% + et ekl\/1 — e~ + cc
z(8) [ =0le P =0)| (0[P |0)
TFD e PH/2 |0 = 0) e PH/20)
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Operator Size & Chord Number

Expand any 2-sided state |x) in the “size basis":

)= Vi),
s,1

The size of this state is measured by the 2-sided operator:

size = % XN: <1 + /'1&'&1/15) .

a=1

Let 7 be the total chord number, weighted by dimension:

@
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Let i1 be the total chord number, weighted by dimension:
n=size/q (5)

Let's focus on a particular term in the computation of the average
size:

N T
> tr (HHHH , HHHH ., )

I

a=1
| \
Y tr (‘”Z"’Z‘UZWZ%\UMwa %) (6)
l,o

q 9 q 9
o 3t (VW v, Wi )
I,
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Bulk-to-boundary map: a warmup

Gram-Schmidt the set of vectors:
Q) HIQ), H[Q), -, (7)
Since T ~ af + a, this generates the chord basis:
10),11),12)---, (8)
Explicitly,
Q), HIQ), H?[Q) - 1Q), H*|Q) -2+ a)H|Q)  (9)

Similar to Krylov complexity.
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Correlators and matter chords
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Matter chords

Following [gerkooz et a1, We will consider thermal correlators of “matter
operators” with A = s/q fixed:

Ms =¥ " Ky (10)
i

Multi-index notation: W§ = v 4, - - - 1)j,.
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Case with matter

Feynman rules for matter operators Mj:

~2 = o=24°IN —IN? _ p=25°IN

a=e

A microscopic origin of Newton's Law: GM; M, ~ (2¢%/N)A1As
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Case with matter

The next simplest case is a wormhole with one green particle.
Then states are labeled by |ni, ng).

L a tq’
G

Repeating the logic from before,

Tk = al + ar Wk + aptq™ W, (11)
T = OéI + oW+ OéthnL Wk.
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Case with matter

For states with multi-particles, states are labeled by

‘n07 ny,---, nm>51,52,-~~ Sm (12)
General expressions for T, Tgr:
= 1—e
T — ¢
TL—CXL—FX;O[,'[ 1-q :|1:J;'Cje i,
1= 1
m ’ (13)
T ]_ - eiéi _Z
TR:aR+Zai ﬁ Htje I,
i=0 J>i

Note that there is only one creation a! operator.
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The chord algebra

We obtained the general expressions for T, Tr acting on arbitrary
states in the double-scaled Hilbert space.

We would like to use these to understand the bulk dual. Oth order
question: what are the symmetries of the bulk (if any)?

In NAdS,, the gauge-invariant bulk isometries of AdS, are subtle.
They do not commute with the Hi, Hr, but form an algebra which
includes the Hamiltonian and the length.
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The chord algebra

The total chord number 7 and T g form an algebra, independent
of the matter content:

[T, TRl =0

[T/, A= TR — 2OZI/R

[of o] =0

[7, O‘I/R] = O‘I/R
[TL/RuO‘I/R]q =1+(1-q) (aI/R)2
[TL/RﬂTR/L] =q"

Here [A, B]; = AB — qBA. This algebra has implications for the
bulk dual Of dOUb|e scaled SYK [HL, Stanford, Yang, upcoming].
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Can find a subalgebra that commutes with 7, generated by 4
elements:

F|_|_ = OzI(TL — OéI)
FRR = OKE(TR — Oz;r?) (14)
Flr = aI(TR — ozTR)
FRL = Oé]F;(TL — O{
To see that these commute with 7, recall that 7; — a:-r only

annihilates. One can work out the commutation relations of F
using the chord algebra.
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These 4 elements form a subalgebra of U,1/2(sl(2,R)):

K2 o K—2

2 _ 21 —
[K,g]q—[f,K]q—O, E.F—Fg—m

For each n € Z, we get unitary finite-dim reps of this algebra!
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Gravitational algebra

In the triple scaling limit, the chord algebra becomes the JT
gravitational algebra:

[H,Hr] =0
iHL/r, 0] = 2k R
[0 kiRl =i
[k, kr] =0

—ilkL/rs HuR] = Hur — KR
—ilki R, Hrpl = 7"

In [Hartow & wu 21] this algebra was derived classically using Poisson
brackets; here we obtained them quantum mechanically.
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JT with matter

Taking the triple scaling limit of our expressions for T, TR =
gives concrete reps of the JT algebra.
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JT with matter

Taking the triple scaling limit of our expressions for T, TR =
gives concrete reps of the JT algebra. The simplest case is for
m = 1 matter particles in the wormhole:

EL =/ + log A, ER =/(r+ log A
H =~ —5E + Ae_gL + (—Z'_ZL (8R — (9|_) + e_ZL_ZR (15)

Hr ~ —83 + Ae~lr — ok (Or — OL) + e 7,

This is some generalization of Liouville that involves two
coordinates. For m-particle states, there is a generalization
involving m + 1 coordinates.
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Symmetries near the horizon

An interesting sub-algebra of the JT gravitational algebra is
generated by elements which commute with 7. This forms an
s[(2,R) algebra (HL, Maidacena, zhao] that is the near horizon symmetries
of the wormhole.
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Symmetries near the horizon

An interesting sub-algebra of the JT gravitational algebra is
generated by elements which commute with 7. This forms an
s[(2,R) algebra (HL, Maidacena, zhao] that is the near horizon symmetries
of the wormhole. These generators satisfy [Ly, Lp] = i(m—n)Lmin
and move matter around in the black hole interior!

Fdfrasnniy . IEREEREERE
§ A - [EEEEERNEN]
R [EEEEERNEN]
[REeewSPy - [EEEEERNEN]
Ry - IEREEREERE
ViV sesanty e IEEEEREERE
V4 s e - [EEEREREEN]
LSS [EEEREREEN]
VNNt - [EEEEEREEN]
[Ny « IEEEEEEENN]
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Symmetries

Plugging in our expressions for Hi, Hg for 1 matter particle gives:
Lo=—idy, Ly=(A+0)e™ (16)

x is essentially the distance from the horizon x = \(n_ — ng)/2.
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Symmetries

Plugging in our expressions for Hi, Hg for 1 matter particle gives:
Lo=—idy, Ly=(A+0)e™ (16)

x is essentially the distance from the horizon x = \(n_ — ng)/2.
This s[(2,R) algebra is a contraction of the U,1/2(sl(2, R))
subalgebra we discussed before.
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Finite temperature s[(2, R) symmetries

We can back off the low temperature limit and consider A — 0
holding temperature fixed. (Equivalently, i — oo, holding e=*7
fixed.)
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Finite temperature s[(2, R) symmetries

We can back off the low temperature limit and consider A — 0
holding temperature fixed. (Equivalently, i — oo, holding e=*7
fixed.) In this limit, we still find an sl(2,R) symmetry! Immediate
questions:

1. Why is chaos sub-maximal?

2. Is there a hyperbolic space on which this symmetry acts as
the isometries?

Stay tuned...
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Bulk-to-boundary map

In the case without matter, we performed Gram-Schmidt to obtain
|0) — |1) — |2) — ---. The next simplest case is to consider 1
particle states.

[10,0) & [0,1) = [0,2) = - ]
) ) )

1,0) = [1,1) = [1,2) —

) ) )

2,00 [2,1) = [2,2) =

) ) )
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Bulk-to-boundary map

To make the first column of this matrix, we can consider the states
with no particle |n) and then act with (Ms)r |n) = |n, 0).

[10,0) — 10,1) = [0,2) —
\ 3 1

1,00 = [1,1) = [1,2) =
1 3 1

2,00 = [2,1) = [2,2) =
1 3 1
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Bulk-to-boundary map

To make the first column of this matrix, we can consider the states
with no particle |n) and then act with (Ms)r |n) = |n, 0).

[10,0) — 10,1) = [0,2) —
\ 3 1

1,00 = [1,1) = [1,2) =
1 3 1

2,00 = [2,1) = [2,2) =
1 3 1

To carry out this orthogonalization procedure, need to know
tr MsH?MHP. Known explicitly (serkooz et a1).

Subtlety: (n,m|n’,m") # 0 unless n+ m=#n"+m'.
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Bulk-to-boundary map

Have an algorithm to construct multi-particle states by organizing
the states into a higher dimensional array.Need the n-pt functions
of the theory, known in terms of I'g [Berkooz et ai].

Works for all values of q and temperatures; even when quantum
corrections are large! More complete bulk reconstruction than

HKLL.

Roughly analogous to summing o corrections and 1/N
corrections, but not e~V corrections.
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Double scaled algebra

The one-sided algebra of observables generated by
{H, Ms, Mg, Mg, ---} form a Type Il; algebra.
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Unlike the Type /Il in [eutheusser & Liv, witren] the Hamiltonian H is

part of the algebra. Normally the Hamiltonian (and its moments)

diverge in the large N limit. But in SYK, H ~ N/g? so H is finite
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Double scaled algebra

The one-sided algebra of observables generated by
{H, Ms, Mg, Mg, ---} form a Type Il; algebra.

Unlike the Type /Il in [eutheusser & Liv, witren] the Hamiltonian H is

part of the algebra. Normally the Hamiltonian (and its moments)

diverge in the large N limit. But in SYK, H ~ N/g? so H is finite
in the double scaling limit. Therefore, we can include it.

IN [Leutheusser & Liu], the near horizon symmetries were constructed using
an algebraic approach. Here | also constructed the near horizon
symmetries. Any relation?

36/37



Future directions

Tensor networks
Can one del’ive a QES fOI’mu|a using Chords [Lewkowycz & Maldacena]?
Wormholes pafferis et ai]

N = 2 Supersymmetry [HL, Maldacena, Rozenberg, Shan; Berkooz et al.]

AN

Bulk implications of the g-deformation [uL, stanford, Yang, in prep]
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