
TARGET SPACE ENTANGLEMENT, 

FINITENESS AND HOLOGRAPHY

Sumit R. Das



• (S.R.Das, A. Kaushal, G. Mandal and S.P. Trivedi :  J.Phys. A53 (2020) 44, 444002)

• (S.R.Das, A. Kaushal, S. Liu, G. Mandal and S.P. Trivedi: JHEP 04 (2021) 225)

• (S.R. Das, A. Jevicki & J. Zheng – JHEP 12 (2022) 052.) 

• (S.R.Das, A. Kaushal, M.H. Radwan, G. Mandal, K.K. Nanda & S. Trivedi –

arXiv:2212.11640)



Target Space Entanglement

• A familiar kind of entanglement in quantum field theories is entanglement in base 
space – this is the notion of entanglement of the degrees of freedom localized in 
some subregion of the space on which the theory is defined, with the rest.

• This can be described in terms of a subalgebra of operators – those which can be 
used to perform measurements in     . 

• In holographic theories this is evaluated by the Ryu-Takayanagi formula and its 
generalizations.

• In usual relativistic field theory, the entanglement is divergent.



• In this talk I will discuss notions of entanglement of internal degrees of freedom of a 
quantum theory.

• In particular, gauge theories of matrices e.g.                 Matrices

• We are interested in defining notions of entanglement among the matrix degrees of 
freedom. 

• To isolate this kind of entanglement from entanglement among regions of the base 
space, concentrate on quantum mechanics of matrices



• One motivation for studying this problem is holography.

• Usual base space entanglement plays a key role in the emergence of a smooth 
gravitational dual – best understood when the bulk is AdS.

• There are examples of holography where the dual theory is 0+1 dimensional – e.g.
D0 brane holography, two dimensional non-critical strings.

• We would like to understand if there is a connection of smooth bulks with 
entanglement – such entanglement is necessarily that between the internal degrees 
of freedom.

• In fact, in most known examples of holography, the bulk space-time has an internal 
compact space, e.g.                       . The internal space geometrizes a R symmetry. We 
would like to learn if a smooth        is related to some kind of entanglement.

• Apart from holography, gauge theories of matrices also appear in other interesting 
physical situations as well – as we will mention later.



Single Matrix Quantum Mechanics

• Consider single matrix quantum mechanics. The action is

• In the                  gauge, the Gauss Law constraint requires the states to be singlets 
under the global 

• The Hamiltonian is now

• This by itself is the earliest model of holography.



• An obvious guess is to consider the entanglement of a block in the matrix with the 
rest, e.g.

• A priori this does not make much sense, since a gauge transformation mixes up the 
matrix elements.

• One of our main aims will be to define something like this in a gauge invariant 
fashion.

• (S.R.D., A. Kaushal, G. Mandal & S. Trivedi, 2020; 

• (S.R.D., A. Kaushal, S. Liu, G. Mandal & S. Trivedi, 2020)



• The gauge invariant operators are of the form

• Now consider a projector for an interval     on the real line

• The projected operators 

form a subalgebra.

• Expectation values of these operators are evaluated by a reduced density matrix with 
an associated von Neumann entropy.



• To see the nature of this projection, consider the gauge in which      is diagonal. 

• The operators are

• The projected operators are then

• The theory becomes that of N free non-relativistic fermions in some external 
potential. The         are the coordinates of these fermions.

• Consider now the expectation value of such a projected operator in a slater 
determinant state



• Consider the simplest type of operator

• The projected version is then

• Consider now the expectation value of such an operator in a system of 2 particles  

• This therefore measures the sum of powers of the eigenvalue only if it lies in the 
region of interest A.              



• This means that the Hilbert space becomes a sum over sectors, labelled by the 
number of particles k which lie in the region of interest. (S.R.D, G. Mandal & S. 
Trivedi; Mazenc & Ranard, 2019)

• Acting on a state in this sector the operator has a non-trivial action only on those 
particles – so we can think in terms of an operator          which lives in this smaller 
Hilbert space pertaining to the region of interest.

• The entire answer may be written in terms of reduced density matrices

• Where the trace is over the smaller Hilbert space



• Note that each of the         is not normalized. Its trace is the probability for k particles 
to lie in A

• The full reduced density matrix is block diagonal – each block corresponds to a 
sector

• The associated entanglement entropy is then given by

• The               sector is special. The density matrix is a number, equal to 

• This generalizes to situations where the whole system is in a mixed state.



• The entropy can be re-expressed in terms of normalized density matrices

• The first term is a “classical” piece. The second term is the sum of entropies of each 
sector weighted by the probability of      particles to be in A.

• In fact, this notion exists even for a single particle. In this case the answer for the 
entanglement entropy has only the classical term

• Where       is the probability of this particle to be in the region.



• The theory can be also expessed in a second quantized form

• Here       is the Fermi Level.

• In this fermion field theory, we could consider the entanglement of an interval in the      
space defined by     in the filled fermi level ground state.

• This usual base space entanglement of this second quantized theory is exactly the 
target space entanglement we have been discussing.



Finiteness of the EE

• When the external potential is absent, the result for entanglement entropy 
associated with an interval (a,b) in eigenvalue space is – for large N

• The large interval answer looks very much like the entanglement entropy of a single 
massless scalar in 1+1 dimensions – with        playing the role of the cutoff 
(S.R.D.1995)

• For generic potentials, the local fermi momentum which plays this role. This can be 
explicitly seen in a WKB approximation



• The appearance of the local fermi momentum as a cutoff is perfectly natural from 
the point of view of fermions.

• However, from the point of view of the collective field theory this is interesting, since 
the local fermi momentum is a position dependent coupling.

• Treating the collective field theory perturbatively, the lowest order result is that of 
1+1 dimensional CFT – with the usual UV divergent result.

• Clearly interactions should convert this to a finite result. We want to know how does 
this happen.



• For the inverted harmonic oscillator potential relevant for two dimensional strings, 
the result for large enough intervals far from the turning point is similar  (Hartnoll
and Mazenc, 2015)

• As was guessed, the cutoff is indeed provided by the local depth of the fermi sea.



Multiple Matrices and D0 Branes

• When we have gauged quantum mechanics of many matrices, e.g BFSS D0 brane 
theory

we cannot of course choose a gauge where all the matrices are diagonal. 

• However, a similar construction involving a projection operator provides a gauge 
invariant notion of entanglement in target space.

• For low energy states with the eigenvalues of        well separated, these eigenvalues 
have an interpretation as coordinates of D0 branes.



• Consider some Hermitian matrix operator made out of the matrices

• For example                      , or                                 with

• Now construct a projection operator

• Starting with the gauge invariant operators

• We can now construct a subalgebra of projected operators

• where

• We can then associate a reduced density matrix and a corresponding von Neumann 
entropy for this subalgebra.



• For example, consider the case 

• The projection then retains those eigenvalues of         which lies in the interval

• This is clear if we choose a gauge in which        is diagonal.

• The remaining symmetries are Weyl transformations

• And                 transformations 

• These need to be imposed on the states.  



• Once again there are sectors labelled by the number of eigenvalues of       ,      which 
lie in the region of interest.     

• What does this projection do to the other matrices which are not diagonal ?

• In the sector labelled by      it is easy to see that the projector in the matrix space is 
given by

• Thus, we retain all operators in the                 block.



• Once again there are sectors labelled by the number of eigenvalues of       ,      which 
lie in the region of interest.     

• What does this projection do to the other matrices which are not diagonal ?

• In the sector labelled by      it is easy to see that the projector in the matrix space is 
given by

• Thus, we retain all operators in the                 block.



• Consider a typical snapshot of a configuration of the eigenvalues        and the matrix 
elements       . Consider              , and the matrices

• A configuration can be pictorially represented as



• For the constraint                  the projector       then keeps 



• In a similar spirit,  a constraint

• Could be associated with a bulk region

We will come to some

caveats later



• For example, consider the case of two matrices. Construct the complex matrix

• This can be written in terms of a Hermitian matrix       and a unitary matrix

• This construction is based on the work of Masuku & Rodrigues, which we modified to 
ensure that 

• The construction can be generalized to arbitrary number of matrices.



• There is also a projection where the open strings joining branes in the region of 
interest with those in the complement are kept.

• Even though the open strings which join branes in complementary regions are not 
observables in the region of interest, the           charges carried by these strings are 
observables.

• Gauss Law constraints then restrict the charges on the open strings which lie entirely 
in the region of interest.

• For a given number of D0 branes in the region of interest, the Hilbert space has a 
further decomposition into charge super-selection sectors.

(Hampapura, Harper and Lawrence, 2021; Frenkel and Hartnoll,2021)



Dp Branes

• Our considerations extend to Dp brane theories with the same target space constraint at all 
points on the Dp brane base space. 

• For example, in a “unitary” gauge where one the scalar fields       is diagonal the following 
form a basis of states

• We can now define a sub-algebra of operators which have nontrivial matrix elements 
between states in this basis which have some number of eigenvalues of        lie in the region 
of interest, at all points on the D-brane.

• However, now we have a richer possibility: we could impose target space constraints which 
apply to part of the base space.

• This would be a combination of base space and target space entanglement which we are 
exploring. 



What would the answer be ?

• Multi matrix quantum mechanics is notoriously difficult. 

• There are a few results for this kind of entanglement

(1) Hampapura, Harper and Lawrence perform a Born-Oppenheimer 

calculation. For a given     sector they get an answer proportional to 

(2)  Frenkel and Hartnoll – deal with a 2 matrix problem where one of the

matrices is canonically conjugate to the other. This kind of model is of

interest in Quantum Hall physics. They find a very interesting interplay

of entanglement produced by the off-diagonal matrix elements.



• It is natural to expect that the answer is proportional to      . . This would make sense 
since this is the inverse of the Newton’s constant.

• We have set up  explicit path integral expressions for the Renyi entropies resulting 
from a thermal density matrix – with the hope that one can evaluate them 
numerically.

• Recent years have witnessed remarkable progress in calculating finite temperature 
partition functions of BFSS/BMN and finding precise agreement with holographic 
expectations.

(Caterall & Wiseman; Hanada, Hyakutake, Ishiki & Nishimura; Berkowitz, Rinaldi, 
Hanada, Ishiki, Shimasaki & Vranas) 

• Hopefully these calculations can be extended to these Renyi entropies.

• Finally, regardless of holography, this formulation should be useful for many body 
systems where the wave function is better understood in the first quantized 
description. 



Finiteness of EE in Collective Field Theory
(S.R.D, A. Jevicki and J. Zheng)

• As we saw the entanglement entropy in single matrix quantum mechanics is finite –
the role of the UV cutoff is played by the local fermi momentum.

• Significantly this remains finite even when               provided the fermi momenta 
remain finite.

• E.g. For free fermions in a box this is                and              keeping           finite.

• For inverted oscillator this is the double scaling limit.

• We now turn to the question: how does collective field theory manage to make the 
final answer finite ?



• In non-relativistic fermion field theory the entanglement entropy has a cumulant 
expansion (Song, Flindt, Rachel, Klich & Le Hur)

• For large N systems usually the lowest order term – which is the dispersion of the 
fermion number in the interval - dominates. 

• This can be evaluated in a WKB/ Thomas-Fermi approximation for intervals which are 
far from the turning point and where the potential varies slowly.



• For an interval of size    centered at a location      the second cumulant leads to

• Where              is the local fermi momentum.

• In the regime

• The result is

• As promised, the answer is pretty much like that of a single massless scalar field in 
1+1 dimensions with the local momentum playing the role of the UV cutoff. 



• Cumulants of the fermion number in the region of interest are equal time correlation 
functions of the collective field - the fermion number density.

• We will now evaluate this using the collective field theory Hamiltonian.

• Reminder: in the collective field theory Hamiltonian the local fermi momentum 
appears as a coupling.

• In lowest order of perturbation theory this will give the conformal field theory result 
which is UV divergent.

• Therefore, the finiteness is an effect of interactions.

• The way the coupling enters suggests that the effect must be non-perturbative.



Exact evaluation for vanishing potential

• The question of UV finiteness has little to do with the nature of the external 
potential. We therefore consider the simplest case: vanishing potential

• Introduce a            matrix

• This is like putting the space of eigenvalues in a box. 

• The Hamiltonian now becomes a Laplacian on 



• The exact eigenfunctions and eigenstates of this Hamiltonian are known (Nomura, 
1986; Jevicki, 1991).

• Introduce the variables

• This is the fourier transform (in eigenvalue space) of the collective field. The 
fluctuation about the saddle point is

• The Hamiltonian for fluctuations can be then written in terms of these oscillators.



• The exact eigenstates are labelled by a Young diagram

• They are given by the action of Schur Polynomials of the

• The eigenvalue for this state is

• The connection of Schur polynomials with slater determinants show that the exact eigenstates 
are states of the N fermion system – as they should be



• We need to calculate the connected two-point function of the collective field.

• The fourier transform of this is

• The only states which contribute to this sum are states labelled by two integers

• Which have

• The matrix element which appears above is unity since for these states



• These states are in fact the bosonic description of fermion-hole excitations where we 
remove a single fermion at a level  m inside the fermi sea to a state labelled by  m+n

• The energy is 

• In the limit of large      this is simply

• In the correlation function there is an integral over      

• The final result is

• In exact agreement with the fermion answer.

m

m+n



• Extracting the equal time correlator one can now compute the second cumulant 
contribution to the entanglement entropy in an interval

• Which agrees with a direct fermion calculation.

• In two extreme limits



EE in Perturbation Theory

• For nontrivial potentials we do not have the luxury of exact solutions – so it is 
important to ask if this finite result can be obtained in a perturbation calculation.

• Introduce chiral fields

• The Hamiltonian becomes



• The perturbation expansion is a low momentum expansion in powers of

• To see what to expect, consider the momentum space equal time Green’s function of 
collective fields calculated exactly.

• This kind of result cannot be obtained in any tranucation of the expansion in  

• The series can be summed. The result is in exact agreement with the exact answer.

• Similar expansion appears in XXZ chain (Pereira, Sirker, Cux, Hagemans, Maillet, 
White and Affleck, 2007)



Other Notions

• In matrix theories there are other notions of entanglement which deal with 
entanglement of color degrees of freedom. One such notion is “matrix 
entanglement” is natural in theories with partial deconfinement. (Gautam, Hanada, 
Jevicki and Peng).

• Entwinement : is a notion similar to k-body density matrix used by chemists. In the 
context of holography this notion is relevant to duals of symmetric product orbifolds.



Lessons ?

• These results suggest that this kind of entanglement entropy in gravitational theories 
is finite because the Newton’s constant is finite.

• This finiteness is possibly invisible in a perturbation theory unless one can sum the 
entire perturbation expansion. 

• Note that finiteness of N brings in a “stringy exclusion principle”. In our exact 
calculation this is built in – the variables         and                . In the perturbation 
calculation this is hard to trace. However, it is natural to believe that this plays a  
role.



RT Surfaces ?
(S.R.D, A. Kaushal, G. Mandal, K. Nanda, M. Radwan & S. Trivedi)

• Are there notions of entanglement in internal space which relate to RT surfaces ?

• Consider for example the familiar example of

• The usual RT surfaces which measure base space entanglement are anchored on a 
region of the boundary of             and smeared on the 

• One can ask: do extremal surfaces which are anchored on a subregion of the          
and completely smeared along the             directions measure any kind of 
entanglement ?

• This question has been addressed in the past, with no clear answer (Mollabashi, 
Shiba and Takayanagi; Karch and Uhlemann; Anous, Karczmarek, Mintun, Van 
Raamsdonk and B. Way)



• This question is somewhat confusing because of a result of Graham and Karch: If 
such an RT surface goes into the bulk and end on the boundary of a subregion of the 
internal compact space – that boundary itself has to be extremal.

• When the internal space is a      , this RT surface has to end on an equator of the               
located at the boundary of the 

• If we allow the            space to end on a cutoff boundary, it is possible for the RT 
surface to end on e.g. a cap of arbitrary size.

• For                      the only extremal surface is the one which hugs the boundary along 
the internal space.



• When the internal space is non-compact, the Graham-Karch result does not directly 
apply.

• However, a similar analysis shows that the only extremal surfaces which go all the 
way to the boundary of are those which end on regions of infinite size.

• These facts, which follow from asymptotic properties of            , makes it confusing to 
associate any entanglement entropy with such surfaces.

• Significantly the Graham-Karch result can be avoided if we consider warped products 
where the size of the internal space depends on the AdS radial direction.



• The meaning of these RT surfaces become clear in cases when such product spaces 
appear as IR geometries of a higher dimensional asymptocially spaces.

• The most well-known example is the near horizon geometry of extremal AdS black 
holes or black branes. The scale of the flow is the chemical potential

• Other examples include the dual of 3+1 dimensional N=4 theory in the presence of a 
constant magnetic field,                                        . The magnetic field provides the scale 
of the flow. (D’Hoker and Kraus)



• Consider e.g.                                       and a RT surface anchored on a strip of some 
width      on the boundary.

• The area of this RT surface is the usual base space EE of the UV theory.

• When                , the surface does not traverse much of the strip direction till it enters 
the                     region.

• Such a RT surface can be then thought of a RT surface which lives in the IR geometry 
which is anchored on the internal space

• More precisely, the      derivative of the area is determined by the IR geometry which 
is a warped product of             and       .

• In this calculation warping plays a key role. In higher dimensions not so important.



• This quantity can be interpreted as a quantity in the 0+1 dimensional dual of 1+1 
dimensional JT gravity living in the IR geometry – pretty much like many other 
quantities (e.g. thermodynamics).

• This now appears as an entanglement entropy of internal degrees of freedom – since 
this dual theory has no space – this part of the entropy is extensive.

• There is a similar story for the higher dimensional examples. In these cases, the RT 
surface can be thought of being anchored on a region of internal space, and smeared 
over the base space directions.

• The situation for                                       is similar for caps on the        which are large 
enough – but much more involved.                    



• To determine the kind of entanglement in the IR theory this is evaluating consider 
the case of 

• From the point of view of the UV, the dual field theory is characterized by operators

• The entanglement we are evaluating is that of a region of              space.

• Equivalently these operators may be characterized by angular momentum quantum 
numbers, 

• In the IR, these angular momentum quantum numbers become internal symmetry 
quantum numbers –

• The entanglement becomes that in the internal space.



• Consider the familiar example of                        and the standard set of gauge invariant 
operators in the boundary theory

• Folding with spherical harmonics one can construct operators which are 

• Where            are a set of coordinates on the 

• The subalgebra of operators obtained by taking products and sums of these can be 
used to define a reduced density matrix which quantifies a notion of entanglement 
of internal degrees of freedom.

• Note that this notion of entanglement does not deal with entanglement of the color 
degrees of freedom- the projections are applied after a color trace is performed.

• This entanglement is closely related to supergravity modes rather than D branes.



Epilouge

• We have explored possible notions of entanglement of internal degrees of freedom.

• One such notion is natural from the point of view of “bulk entanglement” as 
perceived by D branes, e.g. in the Matrix Model description of two-dimensional 
string theory.

• Other notions are more natural from the view of supergravity modes.

• There are other possible notions of entanglement in string theory, e.g. considering 
String Theory on a non-compact orbifold to mimic replica calculation of 
entanglement entropy in usual field theories (Dabholkar; He, Numasawa, Takayanagi 
& Watanabe; Witten).

• Usual base space entanglement plays a key role in obtaining a smooth bulk space-
time. Target space entanglement – or generally entanglement of internal degrees of 
freedom should also play a role in ensuring that the internal spaces are smooth.



THANK YOU



• It is also possible to construct another projector which retains the                        and 
the                     blocks as well. 

• To do this we first define the projector to the complement

• Then the corresponding operator subalgebra is obtained by the replacements

• In the matrix space



• While the second projector keeps


