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Motivation

The holographic approach to quantum gravity implies that there
are two descriptions of gravitational physics.

The “semiclassical” description involves a curved spacetime with
dynamical gravity and propagating quantum fields, and is only
approximate.

The “microscopic” description consists of a lower-dimensional
quantum theory without gravity. This description is exact and
constitutes a non-perturbative definition of quantum gravity.
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Motivation

The existence of two descriptions of the same physics, one of
which is missing some microscopic details, is a familiar situation.
We have tools like the renormalization group to make such ideas
precise in quantum field theory.

What is unfamiliar in gravity is the existence of black holes. Black
holes in the semiclassical description lead to apparent
inconsistencies which do not arise in standard situations without
gravity. Two related examples of such inconsistencies are the
information paradox and firewall paradox.
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Motivation

Ideas from quantum information theory have been helpful in
sharpening the apparent disconnect between the semiclassical and
microscopic descriptions.

In particular, quantum error correction serves as a link between the
two descriptions. The basic idea is that there is a linear map V
which embeds a subspace Hb of the semiclassical Hilbert space
into HB , the microscopic Hilbert space.

V : Hb → HB
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Motivation

The error correction properties of the map V come from the fact
that Hb is encoded redundantly in HB . Erasing part of HB leaves
behind a remainder which can still be enough to “reconstruct”
some part of Hb.

To ensure the consistency and functionality of this encoding
structure, it is necessary to impose some restrictions on Hb as a
subspace.

A common choice of subspace is a small energy band of local
semiclassical excitations around a particular background geometry.
This usually ensures that there are enough states in HB to encode
all of Hb in a useful manner.
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Motivation

In some situations with black holes, choosing a small energy band
will not even ensure the most basic requirement of standard error
correction: |b| < |B|.

In fact, in the information paradox, one explicitly encounters
situations where semiclassical physics in the black hole interior is
expected to be valid for a very large number of states |b| ≫ |B|
compared to the black hole entropy. But in general it is not
possible to faithfully encode a large Hilbert space into a small one.

The goal of this talk is to explain, in a toy model of black hole
evaporation, how gravity gets around this issue and manages to
encode semiclassical states (from a larger space) into a smaller
microscopic space. The semiclassical states are effective field
theory excitations in the interior, while the microscopic states are
the black hole microstates.
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Outline

1. Isometric and non-isometric error correction

2. Black hole interior code from Euclidean path integrals

3. Properties of the non-isometric interior code
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Isometric codes

Standard quantum error correction begins with an isometry L
between a code Hilbert space Hcode and a physical Hilbert space
Hphys. We distinguish these from V , Hb, and HB which we will
only use in the gravity context.

L : Hcode → Hphys , L†L = 1code

The isometry condition implies |code| ≤ |phys|, essentially by
counting. If |code| > |phys|, there must exist a nonzero
|α⟩ ∈ Hcode with L|α⟩ = 0, which makes the isometry condition
impossible to satisfy.
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Isometric codes

The sense in which L corrects errors is then that L allows
“simulation” of unitary operators W on Hcode on the encoded
state in Hphys.

∥W̃ L|ψ⟩ − LW |ψ⟩∥ ≤ ϵ , |ψ⟩ ∈ Hcode

This is trivially satisfied, with zero error ϵ, by a “global
reconstruction”.

W̃ = LWL†

The nontrivial error correction properties of L are related to the
case when W̃ can be defined using only a subspace of Hphys. If we

are able to satisfy the simulation condition even when W̃ acts only
on a subspace of Hphys, we can erase the rest of Hphys and still
simulate W .
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Non-isometric codes

When L is far from an isometry, it is not clear what to expect from
a theory of error correction. Even the global reconstruction is
guaranteed to fail on certain states.

Trying the global reconstruction W̃ = LWL† in the error correction
criterion yields an error proportional to:

∥L†L|ψ⟩ − |ψ⟩∥

As we saw before, when |code| > |phys|, there must be a state
|α⟩ ∈ Hcode with L|α⟩ = 0. Considering |α⟩ in the above criterion
gives a large error (1).
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Non-isometric codes

A proposal for non-isometric error correction has been developed
recently. [Akers, Penington 21] [Akers, Engelhardt, Harlow, Penington, Vardhan 22]

The main ingredients are a discrete set S of states in Hcode and a
notion of approximate state-specific reconstruction which should
be possible for states in S and operators W which preserve S .

∥W̃ (ψ)L|ψ⟩ − LW |ψ⟩∥ ≤ ϵ , |ψ⟩,W |ψ⟩ ∈ S

One asks only for error correction on this discrete set S in the code
space and for operators which preserve it. In this way,
non-isometric codes do not faithfully encode the entire space
Hcode, but only a discrete subset thereof.
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Non-isometric codes

A useful method to verify the state-specific error correction
criterion is the decoupling principle.

|⟨ψ|W †L†LW |ψ⟩ − ⟨ψ|L†L|ψ⟩| ≤ ϵ2

This implies the existence of W̃ (ψ).

∥W̃ (ψ)L|ψ⟩ − LW |ψ⟩∥ ≤ ϵ

The decoupling principle is fairly intuitive: if L|ψ⟩ and LW |ψ⟩ have
approximately the same norm, they are approximately related by a
unitary rotation W̃ (ψ). The state-dependence is present because
we cannot guarantee the same rotation will work for any choice of
|ψ⟩ ∈ S .
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Non-isometric codes

This gives a natural type of set S for any non-isometric code L: a
set of states in Hcode which have approximately preserved overlaps
or norms after the action of L.

|⟨ψ2|L†L|ψ1⟩ − ⟨ψ2|ψ1⟩| ≤ ϵ , |ψ1⟩, |ψ2⟩ ∈ S

So, the discrete sets S we will consider are those upon which L
acts almost like an isometry.

The most basic question about non-isometric codes L then is to
understand the properties of such sets S , including their typical
size and the allowed subspace reconstructions in Hphys.
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Black hole interior code

A useful toy model for black hole evaporation is AdS2
Jackiw-Teitelboim gravity with non-dynamical end-of-the-world
branes. [Penington, Shenker, Stanford, Yang 19]

I = S0χ(M) +
1

2

∫
M

√
gϕ(R + 2)

+

∫
∂M

√
hϕ(K − 1) +

∫
brane

√
h(ϕK − µ)

∂M : ds|∂M =
dτ

ϵ
, ϕ|∂M =

1

ϵ
, ϵ→ 0

brane: K = 0 , na∂aϕ = µ

We will construct a non-isometric dictionary V sending
semiclassical to microscopic states by using the Euclidean path
integral of this gravity theory and its holographic dual.
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Black hole interior code

A brief review of Euclidean path integral technology will be helpful.

The simplest Euclidean path integral prepares the thermal partition
function.

Z (β) = Tr e−βH

In the microscopic theory, the Euclidean manifold is a circle with
circumference β. The line segment represents the Euclidean
evolution e−βH , and joining the endpoints generates the trace.

In the semiclassical theory, the Euclidean manifold is a disk with
the hyperbolic metric which fills in a circle with renormalized
circumference β.
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Black hole interior code

To create states, we cut open the path integrals along a Cauchy
slice. This leads to the semiclassical |tfd(β)⟩ and microscopic
|TFD(β)⟩ thermofield double states.

|tfd(β)⟩ =
∫ ∞

0
dE ρ(E )e−βE/2|E ⟩ , ρ(E ) =

1

2π2
sinh(2π

√
2E )

|TFD(β)⟩ =
∞∑
n=0

e−βEn/2|En⟩ ⊗ |En⟩
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Black hole interior code

The dictionary V acts by “hollowing out” the interior of the
semiclassical path integral and leaves behind the microscopic path
integral.

V |tfd(β)⟩ = |TFD(β)⟩
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Black hole interior code
To create an excitation in the interior, we insert a brane boundary.

The corresponding states are the semiclassical and microscopic
brane states.

|br(β)⟩ =
∫ ∞

0
dE fµ(E )ρ(E )e

−βE/2|E ⟩ , fµ(E ) = Γ(µ+
1

2
+i

√
2E )

|BR(β)⟩ =
∞∑
n=0

fµ(En)e
−βEn/2Cn|En⟩ , V |br(β)⟩ = |BR(β)⟩
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Black hole interior code

The coefficients Cn are complex Gaussian random variables with
zero mean and unit variance.

By adding |b| flavors of branes, we can create different types of
interior excitations and we define Hb as the span of these states.
Since the different flavors are non-interacting, these states are
orthogonal in the semiclassical description.

In the microscopic theory, this extends the set Cn of complex
Gaussian random coefficients to a set Cnξ where ξ labels the brane
flavor.

Passing to the microcanonical ensemble (fixing the coarse-grained
energy instead of the inverse temperature β) eliminates the tension
µ and smooth energy E dependence in the state coefficients, and
makes |B| finite.
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Black hole interior code

The upshot of all of this is that the dictionary V in this toy model
of the black hole interior is proportional to a complex Gaussian
random matrix with independent entries.

V =
1√
|B|

C , C ∼ CNormal(0, 1)|B||b|

dimC = |B| × |b|

The fact that an ensemble appears is related to recent discussions
of ensemble averaging in low-dimensional gravity. [Saad, Shenker, Stanford 19]

[Many others 19-22]
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Black hole interior code

To make the black hole evaporate, we add a radiation reservoir HR

in both the semiclassical and microscopic descriptions. This allows
us to consider entangled states between the interior excitations
(brane flavors) and the radiation. We extend the dictionary by the
identity on HR .

Hcode = Hb ⊗HR , Hphys = HB ⊗HR , L = V ⊗ 1R

We now turn to studying the properties of this ensemble of
dictionaries.

L =
1√
|B|

C ⊗ 1R , C ∼ CNormal(0, 1)|B||b|

dimC = |B| × |b|
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Non-isometric interior code properties

We will use the ensemble to study averaged error correction
properties. Specifically, our goals are to study the typical size of
discrete state sets S which have preserved overlaps and the allowed
subsystem reconstructions (on HB or HR) using the decoupling
principle.

The latter question more explicitly is the following: when a unitary
operator acts only as Wb or WR , when can we reconstruct it using
W̃B(ψ) or W̃R(ψ)?

The subsystem reconstruction results must be consistent with
entanglement wedge reconstruction.
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Non-isometric interior code properties

The ensemble we have found is a high-dimensional Gaussian
distribution on a complex Euclidean manifold. To study its average
properties as a family of non-isometric codes, we use measure
concentration. [Akers, Engelhardt, Harlow, Penington, Vardhan 22]

Roughly speaking, measure concentration is a property of certain
probability distributions on Riemannian manifolds which allows one
to use low moments of sufficiently well-behaved functions to put
strong bounds on the probability of deviations from the mean.
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Non-isometric interior code properties

The main theorem we need states that a κ-Lipschitz function
G (C ) has bounded deviations with probability that is exponentially
suppressed in 1/κ.

Pr

[
G (C ) ≥

∫
DC G (C ) + ϵ

]
≤ exp

(
−ϵ2

κ2

)
The notion of a κ-Lipschitz function formalizes our “well-behaved”
criterion. A κ-Lipschitz function G (C ) is one which has changes
bounded by the geodesic distance of the underlying Riemannian
manifold.

|G (C1)− G (C2)| ≤ κ∥C1 − C2∥2
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Non-isometric interior code properties

Let F (C ) measure the norm of a state after applying the encoding
map L.

F (C ) = ∥V ⊗ 1R |ψ⟩∥ , |ψ⟩ ∈ Hcode = Hb ⊗HR

Computing the Lipschitz constant for F and applying measure
concentration and the union bound, we find a bound on pairwise
overlap preservation in a state set S . [AK 22]

Pr

[
max

|ψ1⟩,|ψ2⟩∈S

∣∣∣⟨ψ2|L†L|ψ1⟩ − ⟨ψ2|ψ1⟩
∣∣∣ ≥ √

18|B|−γ
]

≤ 12

(
|S |
2

)
exp

(
−|B|1−2γ

2

)
This holds for any 0 < γ < 1/2 and |B| ≥ 4.
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Non-isometric interior code properties

Pr

[
max

|ψ1⟩,|ψ2⟩∈S

∣∣∣⟨ψ2|L†L|ψ1⟩ − ⟨ψ2|ψ1⟩
∣∣∣ ≥ √

18|B|−γ
]

≤ 12

(
|S |
2

)
exp

(
−|B|1−2γ

2

)
The meaning of this bound is the following. As long as |S | is is
parametrically smaller than exp(|B|1−2γ), the right hand side is
small when |B| ≫ 1.

|S | ≤ exp(|B|α) , α < 1− 2γ

When the right hand side is small, there is a very high probability
that a randomly chosen encoding L will approximately preserve all
pairwise overlaps in S to within an error |B|−γ .
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Non-isometric interior code properties

So the typical black hole interior code allows for the encoding of a
discrete set of states which is in fact quite large. It is
subexponentially large in the black hole Hilbert space dimension
|B|.

|S | ≤ exp(|B|α)

We can compare this to the total number of states in HB itself. In
the Haar metric, a projective Hilbert space (thought of as a unit
sphere of normalized vectors) has finite volume. Discretizing this
volume with ϵ-balls, a Hilbert space with dimension |B| has
roughly exp(|B| log(1/ϵ)) states.

The interior code manages to make fairly efficient use of the
microscopic Hilbert space while preserving semiclassical overlaps
parametrically well.
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Non-isometric interior code properties

Having estimated the number of states |S | for which error
correction could possibly be supported by the typical interior code,
we turn to the problem of subsystem reconstruction.

The most interesting case is when Wb should be reconstructed as
W̃B(ψ) or W̃R(ψ). We begin by defining functions KR(C ) and
KB(C ) which are essentially the functions appearing in the
associated decoupling criteria.

KR(C ) =
∥TrB(LWb|ψ⟩⟨ψ|W †

bL
†)− TrB(L|ψ⟩⟨ψ|L†)∥1

∥LWb|ψ⟩∥+ ∥L|ψ⟩∥

The key point in the subsystem decoupling principle is to take the
partial trace over the system upon which we want to study
reconstruction.
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Non-isometric interior code properties

Applying measure concentration gives deviation bounds for KB(C )
and KR(C ).

Pr[KR(C ) ≥ (2|R|/|B|)1/4 + |B|−γ ] ≤ exp(−|B|1−2γ/36)

Pr[KB(C ) ≥ (2|B|Trψ2
b)

1/4 + |B|−γ ] ≤ exp(−|B|1−2γ/36)

When KR(C ) is small, we have a reconstruction W̃B(ψ), and when

KB(C ) is small, we have a reconstruction W̃R(ψ).

This is consistent with entanglement wedge reconstruction, which
states that reconstruction on B should be possible when
Sψ(R) ≪ log |B| and reconstruction on R should be possible when
Sψ(R) ≫ log |B|.
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Technical summary

After reviewing expectations for isometric and non-isometric codes,
we constructed a non-isometric code in dilaton gravity and studied
its properties.

Using measure concentration for the Gaussian distribution, we
found global operator reconstruction can be supported for discrete
state sets S which can be as large as subexponential exp(|B|α) in
the black hole Hilbert space dimension. Furthermore, we used the
decoupling principle to show that subsystem reconstructions are
possible in regimes consistent with entanglement wedge
reconstruction.
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Discussion

There are several interesting aspects of the non-isometric interior
code.

Most mysteriously, the semiclassical Hilbert space of interior
excitations is “re-quantized” or discretized in the fundamental
description, and certain states in the semiclassical description have
no fundamental meaning. The number of states that can be
described semiclassically is still very large, but the structure of truly
typical interior states remains unclear, and may involve firewalls.

The fundamental averaging we used to study typical properties is
not expected to disrupt standard gravitational features like
diffeomorphism invariance, but removing the averaging will require
a better understanding of interior dynamics. [Blommaert, Usatyuk 21]
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Discussion

The non-isometric error correcting structure represents the current
limit of semiclassical physics in the black hole interior.

It would be very interesting to prove that the dilaton gravity code
discussed here is asymptotically optimal, at least when applying
measure concentration techniques.

If true, it would mean that there is a parametric difference between
the total number of states (not just in a basis!) in a microcanonical
window and states which have reasonable semiclassical descriptions
(operator expectation values match up to e−1/GN corrections).

Whether the non-isometric structure can be extended to capture
more of the microscopic Hilbert space is unclear.
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Discussion

In a more practical direction, the improvement in state size |S | of
the gravitational code over Haar random tensor network methods
is parametrically large by a polynomial power of 12. [Akers, Engelhardt,

Harlow, Penington, Vardhan 22]

The theory of non-isometric codes deserves further study from a
quantum information standpoint, and the fact that this
improvement was possible may mean that they have the potential
to be useful tools in the NISQ era of small quantum devices.
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