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Perspective

Perspectives on Black Holes in String Theory

» Microscopic entropy: supersymmetric indices, ....

» Black hole quantum information, entanglement, complexity ....

» Spacetime properties of black holes.
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Introduction

» Objective: “attractor mechanism” for BPS Black holes in
gauged SUGRA.

» Review: the attractor mechanism for BPS black holes in
ungauged SUGRA.

» Obvious differences between gauged and ungauged SUGRA
= attractor mechanism is different.

» The entropy function revisited.
» Conserved charges as flux integrals.

Research “in progress” with Marina David, Nizar Ezroura. Supported by DoE‘-
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A Black Hole as a Domain Wall

The radial (and angular) evolution interpolates between

» Distant region (Minkowski or AdS).

» Horizon region (includes an AdS»).

Highly symmetric asymptotics in both directions.

Radial dependence:
interpolation between vacua = domain wall.
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Setting: Extended Supergravity in Five Dimensions

An instructive theory: A = 2 supergravity in D = 5 dimensions.
Spectrum:

» A =2 gravity: graviton, graviphoton Ag, gravitini.

» N = 2 vector: gauge field AL, real scalar X'/, gaugini.
Index I =0,...ny (n, + 1 values) for AL.

Scalars X! projective: defined modulo X! — AX/ with \ € R.

Prepotential:

1
./T'.:*CUKXIXJXK = 1
6 gauge
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Asymptotics of Black Holes in Ungauged Supergravity

Moduli: exactly massless scalars X'.

The solution far away:
Minkowski and scalars taking any value X/ .

Black hole BPS mass related to the central charge Z
{QOM Qa} - 2PMFZB - 50{52 = M = Zinfty — QIXOIO .

Free parameters of black hole: electric charges Q; and moduli XC{O.
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The Attractor Mechanism in Ungauged Supergravity

Attractor mechanism:

> Horizon values X/ _independent of X/ .

» Interpretation: black hole interior independent of couplings.

Bonus:
» Simple attractor flow relates asymptotic and horizon data.
» Flow controlled by local central charge:

z = QX'
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Highlights of the Ungauged Attractor Flow

» Geometry:

dss = —f*dt® + f~ (dR® + R*dQ3)

» SUSY requires monotonic central charge “flow”:

OreZ = 2f2GyR*Ope X 92 X’ > 0

» It is minimized at the horizon and black hole entropy is

Nlw

S= 2#(%Zmin)

» Minimization over moduli space yields attractor values Xﬁor.

> Many generalizations: rotation, curvature corrections, ....
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Attractor Flow in Gauged Supergravity?

Standard AdS/CFT correspondence:

» Asymptotic AdS, including fall-off encoding BH quantum
numbers: UV behavior.

» Flow: renormalization group repackages QFT data.

» Horizon geometry, including approach encoding horizon
potentials: IR behavior.

What is the fate of the attractor mechanism from ungauged
supergravity?
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The AdSs Vacuum: Asymptotic Behavior

In gauged supergravity scalars X/ experience a potential:

1 2
V= EG”D,WDJW— §W2 .

Fl-gauging a simple set-up for U(1)"v theory.

The superpotential with FI parameters &;:

W =gX!

Extremization conditions:

DIW =& — 3Xi(€ - X) =0

1
= 5c,JKXJxK =X x & LV 1}
F AL B



No Attractor Mechanism for Gauged Supergravity

Asymptotic values for the scalars fixed by theory:

1
Xintiy = 5¢ HRe ek

AdSs scale yields overall normalization of Fl-parameters:

1 1 -
(g Gtstn): = 6 = g7

Scalar values at the horizon: functions of Q; and &;.

There is no attractor mechanism in Fl-gauged supergravity:

scalars Xéor depend on all asymptotic data, including X/ .
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(Near) Horizon Perspective: the Entropy Function

Attractor mechanism and “entropy extremization” have similarities.
Highlights of entropy extremization:

» Entropy function: Lagrangian density on AdS; as function
of all continuous parameters.

> Extremization determines continuous parameters at horizon
and black hole entropy.

Important differences:
» Starting point: horizon geometry (the IR).

» Extremal black holes: AdS, x .... SUSY optional.
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The Entropy Function: Details

| 2

Preserve entire AdS; symmetry.

The microcanonical ensemble (fixed Q;, J,...).

Include appropriate Wilson lines or Legendre transform.
Angular momenta: preserve symmetries e.g. KK reduction.

Chern-Simons terms: add total derivatives so bulk flux is
conserved.

Exact construction (includes higher curvature, quantum, ...).
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Supersymmetric Black Holes in AdS

The entropy function is a great tool. Challenges:

> FI parameters &' are continuous parameters, do we extremize?

No, they are couplings.

» Supersymmetric black holes in AdS must rotate.

More work and want to avoid KK reduction 5D — 4D (new).

» SUSY black holes exist only when charges satisfy constraint:

Lo L)[ Lok _L.g}_acw §2>
(QI € 5J€K+465 9] 5¢ QQk pres J| =g ¢ Q/QJQK+4WJ
Goal: extremize entropy function and study attractor flow in 5D.
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Ansatz for the Near Horizon Geometry

The near horizon geometry (free parameters: e~ Y1, e~ v, €0):
squashing
ds? = dAdS3 + e Y%dQ:  + e % ( og3—eR%dt )2
— —_——
AdS; scale=v  horizon scale ~ e~V e® = angular velocity

Matter: scalars X' and gauge fields (free parameters: e, v/):
magnetic field
A~
Al= e'R%dt + v (03— e"R%dt)
~— ~————
electric field preserves AdS, symmetry

Electric fields e/ and angular velocity e® potentials for Q;, J.
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Details of the Entropy Function

Entropy function is near horizon Lagrangian after Legendre
transform to fixed charges:

4m® —U1—3U, vV U V. 2u—U. V. 2up+2U / 2 I J Ky2
S_ . 1—3Y2 1 1 1 2 1 2 J
—Gs e —f4e +—16e +—256e (4= Qv —73C/JKV vivh)

2 1
(5 W2 — EGUDI WD, W) + Le2U1+U2 GU(QI + 2C/KLVKVL)(QJ + 2CJMNVMVN)

512
Conserved charges Q) = 0. L and J = 0o L.

Input: conserved charges (Qy, J) and couplings &; (encoded in W).

Output determined by extremization:
near horizon geometry v, U, U, magnetic fields v/, scalars X'.
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Entropy Extremization: The AdS, Scale

Entropy function:

4n®  _y_1y v oy, Vo oou-u V. oy t2u ;2 I J K2
_ b2 |1 Ll v 1—U2 v 1 b _ =
S G e 4e + 16e —|—256e (J— Qv 3cu;<v vivh)
- %(% w2 - %G”D, WD, W) + e 2 6Y(Q + 2amuvv!)(Qs + 2emmv'v")
+KE2U1G/JVIVJ:| .
8
Extremization over AdS, scale v = area law for black hole
entropy:
4 2
S="1 U3l
Gs
The near horizon geometry (reminder):
2 2 —U1 402 —U 0p2 4112
dss = dAdS5 + e “1dQ5 + e 72(03 — e"Rdt) - A
| micHiGaN |
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Entropy Extremization: Symplectic Vectors

Extremize over magnetic fields v/ and scalars X', then reorganize.

Magpnetic fields:

/ 1CUK£JQK (%)2— (%CUKQJQK— TR ek (%)2>J
v =2
2 e

Scalar fields:

2
X — I Qi+ 3 QuQK — 3¢tk (£) e U

(52)" + 2

Note: dependence on Fl-couplings &; all over.
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Aside on Units and Notation

In gravity, charges and Fl-parameters are dimensionful.

The corresponding quantum numbers:

Q = nls

& = &bs
The gravitational coupling:

™ _ Ly

4Gs 2
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Extremization: Geometry as Function of Charges

Extremize over horizon scale e~Y! and squashing parameter e~ Y2,

The horizon scale (in terms of charges and Fl-parameters):
() + 7

Rss = 6de " =15 - - S
Ine (n/ CLUKE i+ N2 4 J)

The analogous squashing parameter:
i (- 3 G+ 3N +J) ()7

U—Ux _ K
(£)"+ 2

e

The AdS; scale (relative to the horizon scale):

- %N2 (nl'%CIJK£J§K+%N2+J)
eVt —

~ o~ 2
4 (£)+ (m CLUKE E 4 %N2)
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Collecting Results: Black Hole Entropy

From geometry, entropy as function of charges and Fl-parameters:

~ 1 1
5227{'\/& -ECUKI'IJHK—ENZ'Z/

Supersymmetric black holes only possible when charges satisfy:

2
1CUKQ/QJQK + 1N2J2 = (Q/ECUKfJfK + 1N2) S
6 2 2 2 27 ’
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Status

P> Extremization of the entropy function is principled.

» Qutput: entropy as function of charges and Fl-parameters.
Generalizes to corrections (curvature, quantum, ....).

» But: computation (as presented) is un-illuminating.

Disclosure: complex variables makes formulae smoother.

However, objective is improved spacetime understanding.
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BPS Thermodynamics

BPS mass:
M, =2 =o.Q +20,J

The first law near extremality:

TdS = dM+6'dQ,+2QdJ = d(M—M,)+(d' —o!)dQ,+2(Q—Q.)dJ

The first law at extremality: entropy depends on charges so that

dS = e!dQ; + 2¢%dJ

Electric fields e/, €0 are thermal derivatives:
/ i o — CDi 0 i Q- Q.
e = IIm e = IiIm
T—0 T T—0 T
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Electric Fields in Spacetime

Electric fields e/, € are dual to charges Q, J.

dS = e'dQ; + 2e%dJ

0

Electric fields e/, €® are radial derivatives of potentials

Al= e R2dt + Vi(o3—€° R? di)
N—— N—
electric field velocity field

Interpretation: a physical temperature near the horizon

Radial derivatives and thermal derivatives are equivalent.
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Towards an Attractor Flow

» So far: all computations at horizon.
> Now: return to the attractor flow.
> First: generalize effective Lagrangean to any radial position.

» Result “only” a little more complicated than entropy function
at the horizon.

» But: there are derivatives.
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Conserved Currents

>

| 4

The next step: conserved charges.

Nearly all explicit computations in GR and AdS/CFT
correspondence: asymptotic expressions.

The Noether-Wald procedure: conserved charges anywhere
along flow.

Variation of Lagrangian:
oL oL
=507 | o = O (e ®;,00,] =
0L=9 [aq)’_ o (5%%)} + dO[®;,00;] = dJ¢
Presymplectic potential
oL

150, e e
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Conserved Charges

» Careful: the Chern-Simons terms.

> Applications:

» Gauge symmetry (electric charge)
> Killing symmetry (angular momentum).

» Results for radially independent charges:
Q, = 2Rf_1e_U2 G/_/ (BR(fXJ) + f2W6U28RbJ) — 2C[_[KbeK

2
J= —2Rf_le_U23R(f2W6U2) + Q/bl + gC/JKbIbeK

» Physical interpretation: @y, J are flux integrals on any
surface surrounding black hole.
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Supersymmetry Conditions

Solution Killing spinor equations gives flow equations:
o 1 I __ 1 UK f71X
R2 + ﬁ u = EEC ( J)fK
2 2
(8R2 + ,?2) (gm — 1) = ﬁEf[UI

2 1 2
(aRZ - ,?2> w = _Ef_IX[ <8R2 - R2> ul

1
R*Ore(F1X)) = —?(Q/ + 2cku? uf + 2ewR?¢))

m

Supersymmetry insufficient to solve equations.

Need some equations of motion.

The Gauss's law (conservation law) sufficient.
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The Routhian and Its Supersymmetric Solutions

» The Routhian: the Lagrangian (anywhere along the flow) with
electric fields eliminated in favor of conserved charges.

» Supersymmetric flow equations guarantee extremization.
» Working hypothesis: such solutions are gradient flows.

> Work is still in progress.
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