
The Attractor Mechanism in
Gauged Supergravity

Finn Larsen

University of the Witwatersrand

12th Joburg Workshop on String Theory

December 8, 2022



Perspective

Perspectives on Black Holes in String Theory

I Microscopic entropy: supersymmetric indices, ....

I Black hole quantum information, entanglement, complexity ....

I Spacetime properties of black holes.



Introduction

I Objective: “attractor mechanism” for BPS Black holes in
gauged SUGRA.

I Review: the attractor mechanism for BPS black holes in
ungauged SUGRA.

I Obvious differences between gauged and ungauged SUGRA
⇒ attractor mechanism is different.

I The entropy function revisited.

I Conserved charges as flux integrals.

Research “in progress” with Marina David, Nizar Ezroura. Supported by DoE.



A Black Hole as a Domain Wall

The radial (and angular) evolution interpolates between

I Distant region (Minkowski or AdS).

I Horizon region (includes an AdS2).

Highly symmetric asymptotics in both directions.

Radial dependence:
interpolation between vacua = domain wall.



Setting: Extended Supergravity in Five Dimensions

An instructive theory: N = 2 supergravity in D = 5 dimensions.

Spectrum:

I N = 2 gravity: graviton, graviphoton A0
µ, gravitini.

I N = 2 vector: gauge field AI
µ, real scalar X I , gaugini.

Index I = 0, . . . nV (nv + 1 values) for AI
µ.

Scalars X I projective: defined modulo X I → λX I with λ ∈ R.

Prepotential:

F =
1

6
cIJKX

IX JXK =
gauge

1



Asymptotics of Black Holes in Ungauged Supergravity

Moduli: exactly massless scalars X I .

The solution far away:
Minkowski and scalars taking any value X I

∞.

Black hole BPS mass related to the central charge Z

{Qα,Qα} = 2PµΓµ
αβ − δαβZ ⇒ M = Zinfty = QIX

I
∞ .

Free parameters of black hole: electric charges QI and moduli X I
∞.



The Attractor Mechanism in Ungauged Supergravity

Attractor mechanism:

I Horizon values X I
hor independent of X I

∞.

I Interpretation: black hole interior independent of couplings.

Bonus:

I Simple attractor flow relates asymptotic and horizon data.

I Flow controlled by local central charge:

Z = QIX
I



Highlights of the Ungauged Attractor Flow

I Geometry:

ds25 = −f 2dt2 + f −1
(
dR2 + R2dΩ2

3

)
I SUSY requires monotonic central charge “flow”:

∂R2Z = 2f −2GIJR
4∂R2X I∂R2X J ≥ 0

I It is minimized at the horizon and black hole entropy is

S = 2π(
1

3
Zmin)

3
2

I Minimization over moduli space yields attractor values X I
hor.

I Many generalizations: rotation, curvature corrections, ....



Attractor Flow in Gauged Supergravity?

Standard AdS/CFT correspondence:

I Asymptotic AdS, including fall-off encoding BH quantum
numbers: UV behavior.

I Flow: renormalization group repackages QFT data.

I Horizon geometry, including approach encoding horizon
potentials: IR behavior.

What is the fate of the attractor mechanism from ungauged
supergravity?



The AdS5 Vacuum: Asymptotic Behavior

In gauged supergravity scalars X I experience a potential:

V =
1

2
G IJDIWDJW −

2

3
W 2 .

FI-gauging a simple set-up for U(1)nV theory.

The superpotential with FI parameters ξI :

W = ξIX
I

Extremization conditions:

DIW = ξI −
1

3
XI (ξ · X ) = 0

⇒ 1

2
cIJKX

JXK ≡ XI ∝ ξI



No Attractor Mechanism for Gauged Supergravity

Asymptotic values for the scalars fixed by theory:

X I
infty =

1

2
c IJK ξJξK

AdS5 scale yields overall normalization of FI-parameters:

(
1

6
c IJK ξI ξJξK )

1
3 = `5 = g−1

Scalar values at the horizon: functions of QI and ξI .

There is no attractor mechanism in FI-gauged supergravity:

scalars X I
hor depend on all asymptotic data, including X I

∞.



(Near) Horizon Perspective: the Entropy Function

Attractor mechanism and “entropy extremization” have similarities.

Highlights of entropy extremization:

I Entropy function: Lagrangian density on AdS2 as function
of all continuous parameters.

I Extremization determines continuous parameters at horizon
and black hole entropy.

Important differences:

I Starting point: horizon geometry (the IR).

I Extremal black holes: AdS2 × . . .. SUSY optional.



The Entropy Function: Details

I Preserve entire AdS2 symmetry.

I The microcanonical ensemble (fixed QI , J, . . .).

Include appropriate Wilson lines or Legendre transform.

I Angular momenta: preserve symmetries e.g. KK reduction.

I Chern-Simons terms: add total derivatives so bulk flux is
conserved.

I Exact construction (includes higher curvature, quantum, ...).



Supersymmetric Black Holes in AdS

The entropy function is a great tool. Challenges:

I FI parameters ξI are continuous parameters, do we extremize?

No, they are couplings.

I Supersymmetric black holes in AdS must rotate.

More work and want to avoid KK reduction 5D → 4D (new).

I SUSY black holes exist only when charges satisfy constraint:

(
QI ·

1

2
c IJK ξJξK +

π

4G5

)[
ξI ·

1

2
c IJKQJQK −

π

4G5

· 2J
]
= g3

(
1

6
c IJKQIQJQK +

G5

4π
J2

)

Goal: extremize entropy function and study attractor flow in 5D.



Ansatz for the Near Horizon Geometry

The near horizon geometry (free parameters: e−U1 , e−U2 , v , e0):

ds25 = dAdS22︸ ︷︷ ︸
AdS2 scale=v

+ e−U1dΩ2
2︸ ︷︷ ︸

horizon scale ∼ e−U

+

squashing︷︸︸︷
e−U2 ( σ3 − e0R2dt︸ ︷︷ ︸

e0 = angular velocity

)2

Matter: scalars X I and gauge fields (free parameters: e I , v I ):

AI = e IR2dt︸ ︷︷ ︸
electric field

+

magnetic field︷︸︸︷
v I (σ3 − e0R2dt)︸ ︷︷ ︸

preserves AdS2 symmetry

Electric fields e I and angular velocity e0 potentials for QI , J.



Details of the Entropy Function

Entropy function is near horizon Lagrangian after Legendre
transform to fixed charges:

S =
4π2

G5
· e−U1− 1

2
U2

[
1− v

4
eU1 +

v

16
e2U1−U2 +

v

256
e2U1+2U2(J − QI v

I − 2

3
cIJKv

I v JvK )2

− v

4
(
2

3
W 2 − 1

2
G IJDIWDJW ) +

v

512
e2U1+U2G IJ(QI + 2cIKLv

KvL)(QJ + 2cJMNv
MvN)

+
v

8
e2U1GIJv

I v J
]
.

Conserved charges QI = ∂e IL and J = ∂e0L.

Input: conserved charges (QI , J) and couplings ξI (encoded in W ).

Output determined by extremization:
near horizon geometry v ,U1,U2, magnetic fields v I , scalars X I .



Entropy Extremization: The AdS2 Scale

Entropy function:

S =
4π2

G5
· e−U1− 1

2
U2

[
1− v

4
eU1 +

v

16
e2U1−U2 +

v

256
e2U1+2U2(J − QI v

I − 2

3
cIJKv

I v JvK )2

− v

4
(
2

3
W 2 − 1

2
G IJDIWDJW ) +

v

512
e2U1+U2G IJ(QI + 2cIKLv

KvL)(QJ + 2cJMNv
MvN)

+
v

8
e2U1GIJv

I v J
]
.

Extremization over AdS2 scale v ⇒ area law for black hole
entropy:

S =
4π2

G5
· e−U1− 1

2
U2

The near horizon geometry (reminder):

ds25 = dAdS22 + e−U1dΩ2
2 + e−U2(σ3 − e0R2dt)2



Entropy Extremization: Symplectic Vectors

Extremize over magnetic fields v I and scalars X I , then reorganize.

Magnetic fields:

v I =
1

2

c IJKξJQK

( S
2π

)2 − ( 1
2
c IJKQJQK − 1

2
c IJKξJξK

( S
2π

)2)
J( S

2π

)2
+ J2

Scalar fields:

X I =
Jc IJKξJQK + 1

2
c IJKQJQK − 1

2
c IJKξJξK

( S
2π

)2( S
2π

)2
+ J2

· 4e−U1

Note: dependence on FI-couplings ξI all over.



Aside on Units and Notation

In gravity, charges and FI-parameters are dimensionful.

The corresponding quantum numbers:

QI = nI `5

ξ̃I = ξI `5

The gravitational coupling:

π`35
4G5

=
1

2
N2



Extremization: Geometry as Function of Charges

Extremize over horizon scale e−U1 and squashing parameter e−U2 .

The horizon scale (in terms of charges and FI-parameters):

R6
S3 = 64e−3U1 = `65 ·

( S
2π

)2
+ J2

1
2
N2
(
nI · 12c IJK ξ̃J ξ̃K + 1

2
N2 + J

)
The analogous squashing parameter:

eU1−U2 =

2
N2

(
nI · 12c

IJK ξ̃J ξ̃K + 1
2
N2 + J

) ( S
2π

)2( S
2π

)2
+ J2

.

The AdS2 scale (relative to the horizon scale):

v

4
eU1 =

1
2
N2
(
nI · 12c

IJK ξ̃J ξ̃K + 1
2
N2 + J

)
( S
2π

)2
+
(
nI · 12c IJK ξ̃J ξ̃K + 1

2
N2
)2



Collecting Results: Black Hole Entropy

From geometry, entropy as function of charges and FI-parameters:

S = 2π

√
ξ̃I ·

1

2
c IJKnJnK −

1

2
N2 · 2J

Supersymmetric black holes only possible when charges satisfy:

1

6
c IJKQIQJQK +

1

2
N2J2 = (QI

1

2
c IJK ξJξK +

1

2
N2)

(
S
2π

)2

,



Status

I Extremization of the entropy function is principled.

I Output: entropy as function of charges and FI-parameters.
Generalizes to corrections (curvature, quantum, ....).

I But: computation (as presented) is un-illuminating.

Disclosure: complex variables makes formulae smoother.

However, objective is improved spacetime understanding.



BPS Thermodynamics

BPS mass:
M∗ = Z = ΦI

∗QI + 2Ω∗J

The first law near extremality:

TdS = dM+ΦIdQI+2ΩdJ = d(M−M∗)+(ΦI−ΦI
∗)dQI+2(Ω−Ω∗)dJ

The first law at extremality: entropy depends on charges so that

dS = e IdQI + 2e0dJ

Electric fields e I , e0 are thermal derivatives:

e I = lim
T→0

ΦI − ΦI
∗

T
e0 = lim

T→0

Ω− Ω∗
T



Electric Fields in Spacetime

Electric fields e I , e0 are dual to charges Q, J.

dS = e IdQI + 2e0dJ

Electric fields e I , e0 are radial derivatives of potentials

AI = e I R2 dt︸ ︷︷ ︸
electric field

+ v I (σ3 − e0 R2 dt︸ ︷︷ ︸
velocity field

)

Interpretation: a physical temperature near the horizon

Radial derivatives and thermal derivatives are equivalent.



Towards an Attractor Flow

I So far: all computations at horizon.

I Now: return to the attractor flow.

I First: generalize effective Lagrangean to any radial position.

I Result “only” a little more complicated than entropy function
at the horizon.

I But: there are derivatives.



Conserved Currents

I The next step: conserved charges.

I Nearly all explicit computations in GR and AdS/CFT
correspondence: asymptotic expressions.

I The Noether-Wald procedure: conserved charges anywhere
along flow.

I Variation of Lagrangian:

δL = δΦi

[
∂L
∂Φi
− ∂µ

(
δL

δ∂µΦi

)]
+ dΘ[Φi , δΦi ] = dJζ

I Presymplectic potential

Θµ = δΦi
δL

δ∂µΦi



Conserved Charges

I Careful: the Chern-Simons terms.

I Applications:

I Gauge symmetry (electric charge)
I Killing symmetry (angular momentum).

I Results for radially independent charges:

QI = 2Rf −1e−U2GIJ

(
∂R(fX J) + f 2weU2∂Rb

J
)
− 2cIJKb

JbK

J = −2Rf −1e−U2∂R(f 2weU2) + QIb
I +

2

3
cIJKb

IbJbK

I Physical interpretation: QI , J are flux integrals on any
surface surrounding black hole.



Supersymmetry Conditions

Solution Killing spinor equations gives flow equations:(
∂R2 +

1

R2

)
uI =

1

2
εc IJK (f −1XJ)ξK(

∂R2 +
2

R2

)
(gm − 1) =

2

R2
εξIu

I(
∂R2 − 2

R2

)
w = −1

2
f −1XI

(
∂R2 − 2

R2

)
uI

R4∂R2(f −1XI ) = − 1

gm
(QI + 2cIJKu

JuK + 2εwR2ξI )

Supersymmetry insufficient to solve equations.

Need some equations of motion.

The Gauss’s law (conservation law) sufficient.



The Routhian and Its Supersymmetric Solutions

I The Routhian: the Lagrangian (anywhere along the flow) with
electric fields eliminated in favor of conserved charges.

I Supersymmetric flow equations guarantee extremization.

I Working hypothesis: such solutions are gradient flows.

I Work is still in progress.


