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Introduction

▶ Consider a general, full-rank, bi-partite state Ψ in the (for the
moment, finite dimensional) tensor product Hilbert space
HL ⊗HR .

▶ Any such state can always be written in the form:

|Ψ⟩ =
∑
n

√
pn |χ̃n⟩L ⊗ |χn⟩R ,

where pn are the eigenvalues of the reduced density matrices,
χn are the eigenstates of the reduced density matrix on the
right, and χ̃n are the eigenstates of the reduced density matrix
on the left.

▶ While the eigenvalues are common to both the parties, the
eigenstates are not.



▶ On the other hand, suppose we were only given access to the
left party.

▶ We could write down a purification, called the canonical
purification of this reduced density matrix as:

|Ψ⋆⟩ :=
∑
n

√
pn |χ̃n⟩L ⊗ |χ̃⋆

n⟩L⋆ .

Here |χ̃⋆
n⟩ = Θ|χ̃n⟩ where Θ is an anti-unitary operator on L

(for instance, CPT).

▶ Ψ⋆ resembles the thermofield double state.

▶ We can think of Ψ⋆ as the “simplest” purification that one
could build only given access to the left party.



▶ Since Ψ and Ψ⋆ are two different purifications of the same
density matrix, they are related by a unitary transformation on
the right factor:

|Ψ⋆⟩ := RΨ|Ψ⟩

RΨ : HR → HL⋆ , RΨ :=
∑
n

|χ̃⋆
n⟩L⋆⟨χn|R ,

▶ The operator RΨ quantifies the complexity of reconstructing
the original state Ψ from Ψ⋆.

▶ It goes beyond entanglement in quantifying properties of the
state Ψ.

▶ We will call RΨ the reflection operator w.r.t the left party.



Motivation

▶ In holographic CFTs, it was shown by Harlow that for a bulk
degree of freedom within the entanglement wedge of a
boundary subregion A, the encoding map V into the dual
CFT takes the general form [Harlow ’16]:

|ψi ⟩CFT = V |i⟩bulk = UA|i⟩A1 ⊗ |χ⟩A2,Ā
,

where A = A1 ⊗ A2 ⊕ A3, with A1 being the same dimension
as that of the code subspace.

▶ Harlow’s structure theorem is a general consequence of the
Ryu-Takayanagi formula.



Motivation

▶ We can think of the unitary UA appearing in Harlow’s
structure theorem as a reflection operator: introduce an
auxiliary reference system ref which has the same dimension
as that of the code subspace, and consider the maximally
entangled state:

|Ψ⟩ = 1√
dcode

∑
i

|i⟩ref ⊗ |ψi ⟩CFT.

Then, the unitary UA in Harlow’s theorem is precisely the
reflection operator with respect to ref ∪ Ā.



Motivation 2

▶ A second motivation comes from the fact that the reflected
entropy for a mixed two-party state ρAB is defined in terms of
the canonical purification Ψ⋆

ABA⋆B⋆ as the entanglement
entropy of AA⋆. [Dutta, Faulkner ’19]

▶ The reflected entropy has a natural geometric interpretation in
AdS/CFT in terms of the entanglement wedge cross section.



Motivation 3

▶ Finally, it was argued in [Engelhardt, Folkestad ’22] that for a black hole
evaporating into a non-gravitational bath, the canonical
purification of the total state with respect to the black hole
side is dual to a connected wormhole, thus realzing the
ER=EPR idea in the context of an evaporating black hole.

▶ While the original state of the radiation plus the evaporating
black hole does not appear to have a wormhole in it, the state
after the action of the corresponding RΨ does.

▶ In this way, the unitary RΨ in this case acts to geometrize the
entanglement in the originally complex and non-geometric
state.



Holographic Engelhardt-Wall prescription

▶ For holographic CFTs, it was proposed in [Engelhardt, Wall ’18] that
the classical, Lorentzian bulk geometry dual to the canonical
purification w.r.t a boundary subregion L is obtained by taking
the entanglement wedge of L and gluing it to its CPT image
at the classical extremal surface.

▶ In gluing together solutions of Einstein equations, one must
impose junction conditions at the gluing surfaces. When the
co-dimension two surface we are gluing across is a classically
extremal surface,

θ± = 0

these junction conditions are trivially satisfied.



Holographic Engelhardt-Wall prescription

▶ However, upon including quantum corrections, the gluing
must be done across the quantum extremal surface (QES).
[Bousso et al, ’19]

▶ Due to quantum corrections, the QES is not generically
classically extremal:

θ± +
δSbulk
δx±

= 0.

▶ In this case, the junction conditions imply that the state of
the bulk matter dual to the canonical purification must have a
stress tensor with a delta function “shock”, in order for
Einstein’s equations to be satisfied:

⟨T bulk
++ (x+, x− = 0)⟩Ψ⋆ =

1

π
δ(x+)

δSbulk
δx+

.



Our Goal

▶ Our primary goal will be to verify the above prediction of the
Engelhardt-Wall construction in a perturbative setup.

▶ We will work to first order in perturbation theory around the
TFD state/eternal black hole, and show the presence of this
quantum extremal shock.

▶ Our arguments can also be generalized beyond perturbation
theory with some mild assumptions.

▶ Since the EW prediction follows from Einstein’s equation, we
are seeing here the emergence of Einstein’s equation from the
boundary entanglement structure, in a context where bulk
quantum corrections are important.



Flow equation for RΨ

▶ Let us say that we have a general one-parameter family of
states Ψλ ∈ HL ⊗HR which are all full rank.

▶ At any value of λ, we can construct the reduced density
matrices ρL(λ) and ρR(λ) corresponding to the left and right
factors respectively.

▶ Accordingly, we have the one-parameter family of modular
Hamiltonians KL(λ) and KR(λ), where the modular
Hamiltonian for a density matrix ρ is defined as

K = − log ρ.



Flow equation for RΨ

▶ At any given value of λ, we define the modular eigenvalues
and eigenstates as

KR(λ)|χn(λ)⟩R = En(λ)|χn(λ)⟩R ,

KL(λ)|χ̃n(λ)⟩L = En(λ)|χ̃n(λ)⟩L,

where note that the eigenvalues are common to both sides.

▶ Our first goal is to derive a differential equation for

Rλ =
∑
n

|χ̃⋆
n⟩L⋆⟨χn|R

along the flow parametrized by λ.



Flow equation for RΨ

▶ Upon an infinitesimal deformation of the parameter λ, the
change in the eigenstates of, say KR , is given by (assuming
non-degeneracy)

d

dλ
|χn⟩R =

∑
m ̸=n

⟨χm| d
dλKR |χn⟩R

(En(λ)− Em(λ))
|χm⟩R .

We can rewrite this in the following way:

=
∑
m ̸=n

∫ ∞

0
idt e−ϵt

(
⟨χm|e itKR(λ)

d

dλ
KRe

−itKR(λ)|χn⟩R
)
|χm⟩R

=

∫ ∞

0
idt e−ϵte itKR(λ)

d

dλ
KRe

−itKR(λ)|χn⟩R − i

ϵ

d

dλ
En(λ) |χn⟩R .

where we have introduced a regulator ϵ→ 0+



Flow equation for RΨ

▶ So we have

d

dλ
|χn⟩R = iAR |χn⟩R ,

d

dλ
|χ̃n⟩L = iAL|χ̃n⟩L,

where

AR(λ) = aR(λ) +

∫ ∞

0
dte−ϵt e itK

(λ)
R

d

dλ
K

(λ)
R e−itK

(λ)
R ,

AL(λ) = aL(λ) +

∫ ∞

0
dte−ϵt e itK

(λ)
L

d

dλ
K

(λ)
L e−itK

(λ)
L .



Modular Berry connections

▶ It is natural to interpret A as connection one-forms for a
U(dimHL)× U(dimHR) bundle over parameter space.

▶ To see this more explicitly, imagine that we consider a
modified state Ψ′ = UΨ, where U is a one-sided unitary
transformation acting on R, but we can let U depend on the
parameters λ.

▶ Then, it follows from a short calculation that the connections
transform as

A′
L = AL,

A′
R = U AR U−1 − idU U−1,

which is precisely the transformation property of a connection
1-form. The same formula is also true for the transformation
of AL under a one-sided unitary acting on L.



Flow equation for RΨ

▶ Using this, we can work out the flow equation for Rλ:

d

dλ
Rλ =

∑
n

( d

dλ
|χ̃⋆

n⟩L⋆⟨χn|R + |χ̃⋆
n⟩L⋆

d

dλ
⟨χn|R

)
▶ In terms of the modular Berry connections, we get

i
d

dλ
Rλ = A⋆

L⋆(λ)Rλ +RλAR(λ).

where A⋆
L⋆ = Θ−1ALΘ.



Solution to flow equation for RΨ

▶ The general solution to this differential equation takes the
form:

Rλ = UL⋆(λ) · R0 · UR(λ),

UL⋆ = P exp

{
−i

∫ λ

0
dλ′A⋆

L⋆(λ
′)

}
,

UR = P exp

{
−i

∫ λ

0
dλ′AR(λ

′)

}
,

where P stands for path-ordering.

▶ The operators UR and UL⋆ are somewhat reminiscnet of
Connes cocyles.



Perturbation theory

▶ Now we will specialize to perturbation theory around the TFD
state:

|Ψ0⟩ =
1√
Z

∑
n

e−
β
2
En(0)|χn(0)⟩L ⊗ |χ⋆

n(0)⟩R ,

where En(0) and χn(0) are the eigenstates of some local
Hamiltonian H.

▶ The TFD state can also be thought of as a Euclidean path
integral over a Euclidean time segment of length β/2.

▶ The corresponding operator R0 is given by

R0 =
∑
n

|χ⋆
n(0)⟩L⋆⟨χ⋆

n(0)|R ,

and the corresponding canonical purification Ψ⋆
0 is essentially

the same state, but with the right subsystem re-labelled as L⋆.



Perturbation theory

▶ We wish to consider a one-parameter deformation of the TFD
state.

▶ A natural such family of states can be constructed by turning
on a source J(τ) for some operator O(τ) in the Euclidean
path integral.

▶ Concretely, we change the action inside the Euclidean path
integral in the following way:

Snew = Sold + λ

∫ 0

−β/2
dτJ(τ)O(τ),

where I have only written out the time integrals, leaving the
space integrals implicit.

▶ This new path integral now constructs a new bi-partite state
which we will call Ψλ. We wish to construct the operator Rλ

for this family of states to first order in λ.



First order in Perturbation theory

▶ The derivative of the modular Hamiltonian under such a
deformation is given by [Faulkner, Leigh, Parrikar, Wang ’16, Balkrishnan, Parrikar ’20]

dKR

dλ
=

∫ 2π

0
dτ JR(τ)

∫ ∞

−∞

ds

4 sinh2( s+iτ
2 )

e
is
2π

KR(0)O(0)e−
is
2π

KR(0).

Here KR(0) is the undeformed modular Hamiltonian for Ψ0.

▶ JR(τ) is a time-reflection symmetric version of J(τ):

JR(t) =

{
J(τ) −β/2 < τ < 0

J∗(−τ) 0 < τ < β/2.

▶ A similar formula can also be written for the left subsystem.
The only difference is that the corresponding source JL is
related to JR by a left-right reflection

JL(τ) = JR(β/2− τ).



First order in Perturbation theory

▶ The previous formula essentially follows from the following:

d

dλ
log ρ =

∫ ∞

−∞

ds

4 sinh2( s2)
ρ

is
2π ρ−1 dρ

dλ
ρ−

is
2π ,

which you can prove by re-summing the relevant terms in the
BCH formula, together with the fact that

ρ−1 dρ

dλ
=

∫
dτJ(τ)O(τ).



First order in Perturbation theory
▶ We can now obtain the first order change in UR :

−i
dUR

dλ
(0) = AR(0),

where recall

AR(0) = aR(0) +

∫ ∞

0
dte−ϵt e itK

(0)

R

dKR

dλ
e−itK

(0)
R .

▶ Substituting the expression for dKR
dλ and performing the t

integral, and we get

dUR

dλ
(0) = aR(0)+

1

2πi

∫
dτJR(τ)

∫ ∞

−∞
ds

1(
1− e−(s+iτ)

)O(s),

O(s) = e isK
(0)
R Oe−isK

(0)
R .

▶ We can also derive a “gravitational” formula for the modular
Berry connection...



Gravity dual and the quantum extremal shock

▶ So far, we have worked out the first order change in the
unitary Rλ.

▶ From here, we can also work out the first order change in the
canonical purification Ψ⋆

λ = RλΨλ.

▶ To see the quantum extremal shock, our goal is to compute
the bulk stress tensor at first order in the state Ψ⋆

λ.

▶ We need to turn on an operator O in the Euclidean
path-integral which sources the bulk stress tensor at O(λ).

▶ For this purpose, we cannot take O to be a single-trace
operator, as single trace operators only source the bulk stress
tensor at O(λ2).

▶ Instead, we can consider a double-trace operator O = : ϕϕ :,
for some single trace operator ϕ; although the details of what
O we choose will not be relevant in the discussion below.



Gravity dual

▶ So in order to proceed, we wish to compute the bulk stress
tensor in the canonically-purified state.

▶ We will compute the one-point function of a bulk operator Φ:

⟨Φ⟩Ψ⋆
λ
= ⟨Ψλ|R†

λΦRλ|Ψλ⟩,

where we will take the bulk location xB of this operator to be
in the entanglement wedge of L⋆ in the geometry dual to Ψ⋆

λ.
Eventually, we are interested in taking the limit where xB
approaches the QES.

▶ Note that the backreaction from turning on a double-trace
operator is of O(λGN) and we can ignore this effect for now.
So, the classical bulk spacetime dual to the canonically
purified state is the undeformed, eternal black hole spacetime.
Here we are interested in computing the deformation of the
bulk quantum state.



Gravity dual

▶ We now compute the first order change in ⟨Φ⟩Ψ⋆
λ
:

d

dλ
⟨Φ⟩Ψ⋆

λ
= ⟨Ψλ|

dR†
λ

dλ
ΦRλ|Ψλ⟩+ ⟨Ψλ|R†

λΦ
dRλ

dλ
|Ψλ⟩

+ TrR

(
dρΨλ

R

dλ
R†

λΦRλ

)
.

▶ Using the flow equation for Rλ, we can rewrite this as

= i⟨Ψλ| [AR ,ΦR] |Ψλ⟩+ i⟨Ψ⋆
λ| [A⋆

L⋆ ,Φ] |Ψ⋆
λ⟩+ δJR ⟨Φ

⋆⟩,

where we have defined

ΦR = R†
λΦRλ.



Gravity dual

▶ Now we evaluate this at λ = 0. Let us focus on one of the
terms above, say, ⟨Ψ0| [AR ,Φ] |Ψ0⟩

= TrR

(
ρ
(0)
R [AR ,Φ(xB)]

)
=

1

2πi

∫
dτJR(τ)

∫ ∞

−∞

ds(
1− e−(s+iτ)

) TrR (ρ(0)R [O(s),Φ]
)

=
1

2πi

∫
dτJR(τ)

∫ ∞−iϵ

−∞−iϵ

ds(
1− e−(s+iτ)

) TrR (ρ(0)R O(s)Φ
)

− 1

2πi

∫
dτJR(τ)

∫ ∞−i(2π−ϵ)

−∞−i(2π−ϵ)

ds(
1− e−(s+iτ)

) TrR (ρ(0)R O(s)Φ
)
.

where note that the aR term has dropped out because it
commutes with ρ(0).



Gravity dual

▶ So we conclude that

⟨[AR ,Φ]⟩Ψ0 =
1

2πi

∫
dτ JR

∫
Γ

ds(
1− e−(s+iτ)

)TrR (ρ(0)R O(s)Φ
)
,

where the contour Γ is the union of the two horizontal
contours at Im(s) = −ϵ and Im(s) = −(2π − ϵ).

▶ Using Cauchy’s theorem, we can then rewrite this integral as
the sum over three contributions: the pole at s = −iτ , and
the two “vertical” contours at Re(s) = ±Λ (with Λ → ∞).



Gravity dual

▶ The pole contribution is given by

⟨[AR ,Φ]⟩Ψ0

∣∣∣
pole

= −
∫

dτJR(τ)TrR

(
ρ
(0)
R O(τ)Φ

)
= −δJR ⟨Φ⟩.

▶ This term cancels the third term above.

▶ The canonical purification does not know about the
entanglement wedge of R. The third term comes from the
change in the entanglement wedge of R; so this should cancel
out and get replaced with the appropriate contribution coming
from the change in the entanglement wedge of L.

▶ A similar calculation to the above with the AL⋆ term does
precisely this!



Vertical contours
▶ However, the vertical contours at infinity cannot simply be

dropped, especially when Φ = T
(bulk)
±± , and precisely when the

operator approaches the QES.

▶ Consider, for instance, the vertical contour at s = −Λ:

I− =
1

2π

∫
dτ JR

∫ 2π−ϵ

ϵ

dθ(
1− e(Λ−iτ)e iθ

)
× TrR

(
ρ
(0)
R Oe i(Λ+iθ)K

(0)
R T bulk

++ (x+, x−)e−i(Λ+iθ)K
(0)
R

)
▶ Naively, in the Λ → ∞ limit, it seems like this integral should

vanish. But this is too quick!



Vertical contours

▶ Using the equality between boundary modular flow and bulk
modular flow, we can write

e isK
(0)
R T bulk

++ (x+, x−)e−isK
(0)
R = e2sT bulk

++ (x+es , x−e−s).

▶ When x+ > 0, the operator gets boosted off to infinity, and so
the correlator should vanish.

▶ However, when x+ = 0, the e2s factor makes the correlator
diverge. In fact, this is a delta function divergence.

▶ It is easy to extract the coefficient of the delta function by
integrating in x+.

▶ This precisely produces the half-sided ANEC operator in the
bulk, which then precisely gives the δSbulk

δx+ contribution.



Summary

▶ The operator RΨ goes beyond standard entanglement
measures.

▶ For a one-parameter family of states Ψλ, we obtained a flow
equation for Rλ.

▶ We used this flow equation in a perturbative setting to derive
the quantum extremal shock expected in the dual bulk
geometry.

▶ Our arguments for the presence of this shock can also be
extended to finite λ, up to some mild assumptions (such as
locality of modular flow close to the entanglement cut).


