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Holographic entanglement entropy formula

SCFT = Sgen = A(γ)
4GN

+ Sbulk

Bulk microscopic interpretation of the area term ?
Is black hole entropy = gravitational entanglement entropy ?
Why are euclidean gravity path integrals so effective ?
Expectation : gravity regularises entanglement entropy

I Sgen = entanglement entropy of bulk quantum gravity
I If holographic principle holds, it should be finite

What glues spacetime ? Entanglement, but
I how do we factorise the bulk Hilbert space ?
I Bulk diffeomorphism invariance ⇒ no local degrees of freedom
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Factorization of Wilson loops

Factorization ∼ embedding

i : Hphysical → HV ⊗HV

HV ⊃ entanglement edge modes charged under GS (large gauge trafos)
Hphysical ∼ projection to subspace invariant under GS

Hphysical = HV ⊗GS HV
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Factorization of Wilson loops

HV ⊗HV allows to define a reduced density matrix

ρV = trV|ψ〉〈ψ|
SV = −trρV log ρV = Sbulk + Sedge

Questions
Can we use these methods in gravity ? Analogies, differences ?
If gravitational edge modes are relevant, their existence is
independent from ∃ gravity propagating dof

I consider JT or 3d gravity ?
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Bulk gauge theory factorization problem (Harlow)

Boundary CFT factorizes, but bulk Wilson lines do not naively do so
Bulk charges must exist allowing the split of the Wilson line into gauge
invariant operators
In the low energy EFT, these are entanglement edge modes

Sedge ∼ log dim a
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The factorization problem in bulk quantum gravity

Perhaps holographic entanglement entropy is the entanglement entropy of
quantum gravity edge modes gluing spacetime together [Lin; Harlow;
Donnelly,Freidel; Donnelly, Wong;...]

Questions
Which factorisation maps ? Any relevant constraints ?
What determines GS & its spectrum of representations ?
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JT and 3d gravity : lack of factorization
1 In JT gravity [Harlow & Jafferis]

ωJT = dL ∧ dP , HJT = P2

2φb
+ 2
φb

e−L

I L ∼ regularised geodesic length connecting both boundaries [lack of
factorization]

2 In 3d gravity, perturbative quantisation around eternal BTZ BH
[Cotler & Jensen; Henneaux, Merbis & Ranjbar]

I the radial Wilson line C ≡ P exp
[
−
∫ R

L A+
r (ϕ = 0, r) dr

]
links the

holonomy on the two asymptotic boundaries

P exp
[
−
∮

R
(L−+L+(ϕ) L+) dϕ

]
= C P exp

[
−
∮

L
(L++M+(ϕ) L−) dϕ

]
C−1

3 Banados, Teitelboim & Zanelli extended the existence of such
quantum mechanical conjugate pair responsible for the lack of
factorization of the two-sided BH in arbitrary dimensions
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Factorization as a path integral
Idea : locality should constrain factorisation map i

Define i ∼ euclidean path integral

introducing an stretched entangling surface Sε
Set shrinkable boundary conditions at Sε [Donnelly, Wong]

= lim
ε→0

e V = lim
ε→0

e V
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More pragmatic approach

Given success of JT gravity : ∃ an analogue of JT/Schwarzian action
for 3d gravity (without any UV completion) ?
Classical AdS3 gravity = Chern-Simons theory with
PSL(2,R)× PSL(2,R) gauge group

I Entanglement entropy is understood in Chern-Simons theory
I Topological entanglement entropy = EE of anyon edge modes
I Anyons are collective dof described by a TQFT associated with a

modular tensor category Rep(LG) or Rep(Uq(G))
Can gravitational anyons provide an explanation for bulk factorization
and black hole entropy in 3d gravity ?
Is there a bulk TQFT ?
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3d gravity as a topological phase

McGough & Verlinde
3d gravity is a topological phase
BTZ (M,J) entropy = ”topological EE”

A(M, J)
4GN

= log Sa
0 ← Virasoro S-matrix

Puzzles
1 Standard CS edge modes give

SEE = ”Area”
ε

+ log S0
a ← Sedge = topological EE

But S0
a = 0 for the Virasoro S-matrix

2 BH entropy is finite
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McGough & Verlinde
3d gravity is a topological phase
BTZ (M,J) entropy = ”topological EE”

A(M, J)
4GN

= log Sa
0 ← Virasoro S-matrix

Puzzles ⇒ gravity must modify CS calculation, how ?
1 Standard CS edge modes give

SEE = ”Area”
ε

+ log S0
a ← Sedge = topological EE

But S0
a = 0 for the Virasoro S-matrix

2 BH entropy is finite
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Takeaway message

1 Propose an effective 3d quantum gravity ∼ theory of ”vacuum
Virasoro blocks in the dual channel”

2 Propose bulk theory ∼ extended TQFT associated to the
representation category of SL+

q (2,R)⊗ SL+
q (2,R)

3 Bulk edge modes (anyons) determined by the shrinkable b.c. are
localised on the entangling surface (event horizon)

I density of edge mode states = Plancherel measure for SL+
q (2,R)

4 Contrary to CS, no descendants exist at the entangling surface ⇒
finite EE
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Outline

Part 1 : Proposal for an effective 3d gravity theory

”Universal” high temperature description of a parent AdS3/CFT2

Main features

Part 2 : Bulk factorization

Bulk Hilbert space
Shrinkable boundary condition
SL+

q (2,R) and extended Hilbert space factorization
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Parent AdS3/CFT2

Modular invariant 2d irrational CFT with torus partition function

Z (τ) =
∑
h,h̄

Mh,h̄ χh(τ)χh̄(τ̄) =
∑
h,h̄

Mh,h̄ χh(−1/τ)χh̄(−1/τ̄)

Virasoro characters

χ0(τ) = (1− q)
η(τ) q−

c−1
24 , χh(τ) = 1

η(τ)qh− c−1
24

Modular parameters & central charge

q ≡ e2πiτ = e
β
`

(iµ−1), q̄ ≡ e−2πi τ̄ = e−
β
`

(iµ+1)

c = 3`
2GN
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Universal high T 2d CFT

2d irrational CFT with sufficiently sparsed low-energy spectrum

High temperature
[

q̃ ≡ e−2πi/τ = e−4π2 `
β

(µ+i)
(µ2+1)

]

β/`� ∆gap, with ∆gap ≡ min
{

∆ = h + h̄
}

⇒
χh(−1/τ)χh̄(−1/τ̄)
χ0(−1/τ)χ0(−1/τ̄) = 1

(1− q̃)(1− ¯̃q)
q̃h ¯̃qh̄ → 0

⇒ Z (τ) ≈ |χ0(−1/τ)|2

Our proposal
Define an effective theory by truncating to the vacuum block in the dual
channel

Z3d(τ, τ̄) ≡ |χ0(−1/τ)|2
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Grand-canonical interpretation
Using the Virasoro modular S-matrices

Z3d(τ, τ̄) = |χ0(−1/τ)|2 =
∑

p+,p−

S0
p+S0

p−χp+(τ)χp−(τ̄)

our proposal has a grand canonical partition function interpretation

Z (β, µ) ≡ Tr
[
e−βH+iµβ

`
J
]

=
∫ ∞

0

∫ ∞
0

dp+dp−
S0

p+S0
p−

|η(τ)|2
e−

β
`

(p2
++p2

−)eiµβ
`

(p2
+−p2

−)

Sp±
0 =

√
2 sinh(2πbp±) sinh(2πb−1p±)

where we used Liouville notation (though our theory is NOT)

h = p2
+ + Q2

4 , h̄ = p2
− + Q2

4 , Q = b + b−1 , c = 1 + 6Q2
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Grand-canonical interpretation

Remark 1: Sp
0 is the quantum dimension of SL+

q (2,R) in the
representation p with q = eiπb2

Sp
0 = dimqp

(
& S p̄

0 = dimqp̄
)

Remark 2: High T and large c ⇒ Sp
0 ∼ e2πbp = exp

(√
cL0
6

)

S = (1− β∂β)Z3d(τ, τ̄)→ log Sp?
0 S p̄?

0 = Area(M?, J?)
4GN

where M?` = (p?)2 + (p̄?)2 and J? = (p?)2 − (p̄?)2

This explains McGough & Verlinde’s observation
I it does not have an entanglement interpretation
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Trace interpretation in the dual channel

Interpretation : Off-shell black holes, with a non-trivial measure S0
p+S0

p−

together with a thermal bath of boundary gravitons for fixed p±
On a solid cylinder, ∃ unique classical gravity solution with hyperbolic
monodromies (p+, p−)
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Observation 3

Its spatial slice

ds2
spatial = R2 dρ2 + dϕ2

cos2(Rρ/`) , R2 = 8H`2,

For fixed p±, one finds a thermal partition function of boundary
gravitons

1
η(τ)q−1/24 = 1∏∞

m=1(1− qm) =
+∞∑
n=0

p(n)qn

p(n) = # partitions of n
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Low temperature remark

ZJT ∼ universal near-extremal sector 2d irrational CFTs
[Ghosh,Maxfield,Turiaci]
Double-scaling regime : c � 1, β/` ∼ c

Z (β, µ)
β�`
≈ (2πb2)2

(∏
±

∫ ∞
0

dp± p± sinh(2πp±) e−
b2β
`

p2
±(1±iµ)

)

= (2π3b2)2ZJT
(b2β

`
(1 + iµ)

)
ZJT

(b2β

`
(1− iµ)

)
since µ is arbitrary

I requires ∆gap ' β(1 + µ2)/`, which only holds numerically from a
microscopic perspective, since ∆gap ≤ c/12, or holds for arbitrary low
temperatures in a 3d effective gravity theory with no matter.
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Geometric actions

Cotler & Jensen identified Alekseev-Shatashvili geometric actions ∼
fluctuations around a given background

I Diff S1 reparametrization φ(τ, ϕ) satisfying

φ(τ, ϕ+ 2π) = φ(τ, ϕ) + 2π , ∂ϕφ ≥ 0 contractible spatial cycle

Swap gauge connection b.c. ⇔ same action, using a time
reparameterisation{

f (T + 2π, σ) = f (T, σ) + 2π,
f (T + 2π<(τ), σ + 2π=(τ)) = f (T, σ)

for both chiral fL,R satisfying ḟL,R ≥ 0 modulo independent SL(2,R)
Möbius transformations

I our proposal satisfies same properties : one-loop exact, single saddle, ...
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Further features

1st order formulation
I Aτ trivial monodromy ,Aϕ arbitrary monodromy
I ⇒ allows to include arbitrary defects
I ⇒ Z3d(τ, τ̄) computes a gravity partition function

NOT modular invariant
I besides fixing a boundary torus, we specify time and space cycles
I ∃ unique saddle

Global AdS3 @H3d (in our proposal)
I just as JT/Schwarzian has extremal Poincaré as vacuum
I our partition function factorises

3d pure gravity = chiral CFTL ⊗ chiral CFTR
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Part 2 : Bulk factorization

Part 1 : Proposal for an effective 3d gravity theory

”Universal” high temperature description of a parent AdS3/CFT2

Main features

Part 2 : Bulk factorization

Bulk Hilbert space
Shrinkable boundary condition
SL+

q (2,R) and extended Hilbert space factorization
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The two-sided bulk Hilbert space

Asymptotic AdS3 b.c. ⇒ Kac-Moody (WZW) → Virasoro symmetry

Aϕ = Aτ =
(

0 L(τ, ϕ)
1 0

)
& 2nd chiral sector Āϕ = Āτ

∃ 4 stress tensor components LL/R(τ, ϕ), L̄L/R(τ, ϕ), sharing the stress
tensor zero-mode

1
2π

∮
dϕL+

L = 1
2π

∮
dϕL+

R= 1
2 (M`+J) , 1

2π

∮
dϕ L̄L= 1

2π

∮
dϕ L̄R= 1

2 (M`−J)
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The two-sided bulk Hilbert space
Equivalently, the holonomy around ϕ detects the presence of a wormhole
threading Wilson line, parameterized by the (p, p̄) black hole quantum
numbers

Bulk Hilbert space of Virasoro Representations

Hbulk = H⊗ H̄
H ≡ ⊕pV L

p ⊗ V ?R
p

V L
p = span {|p, iL : mL〉 , mL descendant label}

iL labels the vector in the zero mode Kac-Moody (degenerate) subspace
[projection by AdS3 b.c.]
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Towards 3d bulk gravity factorization

Introduce an stretched entangling surface

Impose the shrinkable b.c.
[
τn = βn

2π`(µn + i)
]

Simón (Edinburgh) 3d & factorisation 2022 31 / 65



Towards 3d bulk gravity factorization
To get a bulk trace interpretation in the original channel, apply the
shrinkable boundary condition

within the extended Hilbert space that will provide a bulk factorization
map
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Spelling the shrinkable b.c. in JT gravity
1 Zdisk(β) equals the ε→ 0 limit of the full annulus

β

= lim
ε→0

β

e V

2 ε finite, annulus ∼ two boundary amplitude (“closed string” channel)

Equivalently,

Z (ε, β) =
∫

dλZinner(ε, λ) Zouter(β, λ) .

after inserting 1 =
∫

dλ |λ〉 〈λ| ∼ complete set of defect insertions
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Spelling the shrinkable b.c. out

In 3d, the annulus A → A× S1 ≡ T2 × I
Path integral ∼ amplitude between inner (entangling surface) & outer
(holographic) boundary
Insert 1 =

∫
dλ |λ〉 〈λ| ∼ inserting Wilson loops labelled by λ

Z (τ2) =
∫

dλZinner(τ1 → 0, λ) Zouter(τ2, λ)

!= 1
η(τ2)

∫
dp sinh(2πbp) sinh(2πp b−1) e−β2p2
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Solving the shrinkable b.c.
Outer boundary satisfies coset boundary conditions

Zouter(τ2, λ) = χVir
λ

(
− 1
τ2

)
= 1
η(τ2)

∫ +∞

0
dp cos(2πλp) e−β2p2

∼ a Wilson loop insertion in the interior of the solid torus
Inner boundary is an entanglement surface

Edge modes as in CS

∃ Kac-Moody edge modes ⇒ Kac-Moody character of ̂SL(2,R)

Zinner(τ1, λ) ?= χλ̂(−1/τ1) =
∫

dp cos(2πλp)χp̂(τ1)

where χp̂(τ1) ∼ 1/η(τ1)3.

this choice does not satisfy the shrinkable b.c.
Zinner →∞ as τ1 → 0 due to degeneracy of descendants localised at
entangling surface
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Solving the shrinkable b.c.

Requiring shrinkable b.c. determines

Zinner(τ1, λ) =
∫

dp sinh(2πbp) sinh(2πp b−1) cos(2πλp) e−β1p2

Interpretation
Density of states dimq(p) = sinh(2πbp) sinh(2πb−1p) counts edge
modes living on the bulk entangling surface as β1 = ε→ 0
dimq(p) is Plancherel measure on a quantum group SL+

q (2,R)
∃ connection with Ponsot &Teschner work (later)
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Physics recap : Gauge theory vs 3d gravity

Gauge theory (CS) and 3d gravity measures are different
Key : shrinkable b.c. excludes bulk geometries with conical defects in
the euclidean time direction
Gauge theory sums over these defects with gauge group
PSL(2,R)⊗ PSL(2,R)
Physically, the absence of descendants suggests BTZ entropy ∼
topological entanglement entropy [McGough, Verlinde]
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The shrinkable route to factorization

A more abstract perspective on the previous calculation

Question : Given a Hartle-Hawking state compatible with Z3d, can we
define a factorization map compatible with the bulk trace interpretation
and acknowledging the existence of GS = SL+

q (2,R)⊗ SL+
q (2,R) acting

on the gravitational edge modes ?
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Bulk Hartle-Hawking state

The bulk Hartle-Hawking state whose norm gives Z3d(τ, τ̄)

where
|p mLmR〉 ≡ |p iL : mL〉 ⊗ |p iR : mR〉

Simón (Edinburgh) 3d & factorisation 2022 39 / 65



An ansatz for the factorization map
Define subregion states

|p iL s : mL〉 s ∈ R p ∈ R+

whose projector satisfies the trace relation

TrV

(∫ ∞
−∞

ds |p iL s : mL〉〈p iL s : mL|
)

= dimqp

The factorization map is the co-product in SL+
q (2,R)

(in each chiral sector)

i : |piL : mL〉 ⊗ |piR : mR〉 →
1√

dimqp

∫ ∞
−∞

ds |piLs : mL〉V ⊗ |piRs̄ : mR〉V̄
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What is SL+
q (2,R) ?

Definition 1.

Definition 2. A quantum (semi) group G is the algebra of functions L2(G) .

Natural basis for this non-commutative algebra ∼ products of matrix
elements gi1j1 . . . ginjn

It has a product : (f1(g), f2(g))→ f1(g) · f2(g)
It has a co-product : ∆ : L2(G) → L2(G)⊗ L2(G)

I gij →
∑

k gik ⊗ gkj
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What is L2 (SL+
q (2,R)

)
?

Remark. Any square-integrable function f (g) is mapped to another one
f (hLgh−1

R ) furnishing a representation of G ⊗ G . Its decomposition into
irreps is controlled by the Peter-Weyl theorem

L2(G) = ⊕RVR ⊗ VR?

which provides a complete basis

Rab(g) a, b = 1, . . . dimR δ(g1, g2) =
∑

R,a,b
Rab(g1)R?ab(g2)

Lesson. L2(G), and consequently G, can be reconstructed from the set of
representations of G, i.e. the representation category Rep(G)
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Rep
(
SL+

q (2,R)
)

L2(SL+
q (2,R)) =

∫
⊕p≥0

dimq(p) Vp ⊗ V ∗p with q = eπib2

where Vp is a continuous series representation of SLq(2,R)
⇒ the set Vp is a complete set of representations of SL+

q (2,R)
Representation matrices Rp

ab with measure dimq(p) are known [Ip]

Ponsot, Teschner showed Rep
(
SL+

q (2,R)
)

solves the modular bootstrap
for Liouville theory (a ”universal theory” for Virasoro reps)
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Rep
(
SL+

q (2,R)
)

This equivalence allows to identify the zero mode subspace with
representation matrices of SL+

q (2,R)

〈g |p±iLiR〉 ∼ Rp±
iLiR

(g), g ∈ SL+
q (2,R)

This is a quantum deformation of the same statements established by
explicit wave function calculations in JT gravity
[Blommaert, Mertens & Verschelde]
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Co-product as a factorization map

L2(G) has a natural factorization map
given by the co-product

i : L2(G)→ L2(G)⊗ L2(G)

Rab(g)→ Rab(g1 · g2) =
dimR∑
c=1

Rac(g1)Rcb(g2)

c indices label edge modes (singlets
under the diagonal action of G)
⇒ each basis state has EE log (dim R)
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Co-product as a factorization map

For G = SL+
q (2,R),

L2(G) is the zero mode subspace of BH states
Each BH in representation (p+, p−) has EE

SV = log (dimqp+dimqp−)
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Physics recap

Within our 3d gravity proposal

BH entropy = bulk entanglement entropy

We defined a shrinkable factorization of the Hartle-Hawking state
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Physics recap

The factorization map is a co-product acting on the zero mode
subspace, while boundary gravitons are spectators

Absence of edge mode descendants ⇒ finite edge mode EE
(in 3d gravity, not in CS !!)
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Physics recap

Within our 3d quantum effective theory (no matter), the full
entanglement entropy is quantum

S = −trV (ρV log ρV) = Sgen

I its semiclassical limit reproduces Bekenstein-Hawking
Condensed matter realization. EE calculations performed by collective
(edge) modes capturing the long range entanglement structure of the
model (despite having a UV description)
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Physics recap

Modularity of the parent CFT2 theory knows about the existence of
this Plancherel measure

shrinkable b.c. ∼ modularity in the bulk using euclidean path integral
& open-closed ”duality” ⇒ ∃ edge modes when cutting opened
a co-dimension 2 surface
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Connection to extended TQFT

d-dim TQFT Attiyah’s axioms
closed d-1 manifolds ↔ Hilbert spaces
bordisms of d-1 manifolds ↔ complex linear maps
set of gluing compatibility conditions

Extended TQFT
Question : Which mathematical objects should be assigned to higher
co-dimension manifolds, i.e. entangling surfaces ?

In d=3, co-dimension 2 manifolds, i.e. entangling surfaces ↔ linear
category
CS literature and our 3d work suggest : two copies of Rep(SL+

q (2,R))
Our shrinkable b.c. determines part of the data characterising this
category of representations
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A gravitational extended TQFT ?
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Conclusions

1 JT/Schwarzian analogue for 3d gravity
I Universal high temperature sector of holographic irrational 2d CFTs
I Not a 2d CFT, not modular invariant, does not contain global AdS3
I Unique saddle (BTZ) at high temperature & (JT)2 in a double-scaled

low temperature
2 Proposal for 3d bulk factorisation

I Factorisation map (i) must satisfy a shrinkable b.c.
F solving it constrains density of edge modes localised at the entangling

surface and the spectrum of its representations
I In 3d gravity ⇒ Rep

(
SL+

q (2,R)⊗ SL+
q (2,R)

)
I i uses a quantum group generalisation of the Peter-Weyl theorem
I Our work stresses the measure differences between CS and 3d gravity

& has important links with extended TQFT
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Future directions
1 Extensions

I RT formula : vacuum/excited states, matter dof, multiple intervals
I dS3 or R1,2

2 Relation to other work
I split property (algebraic QFT) & von Neumann algebra approach
I Classical description of edge modes (covariant phase space)

3 ”Deep waters”
I Is there any microscopic interpretation of the subregion states ? EOW

branes, fuzzballs ?
I Topological strings have the same math structure : can D-branes be

the underlying dof responsible for the gravitational edge modes
discussed earlier ?

I The shrinkable b.c. attempts to ”fills holes” : can a UV complete
description of these ideas provide some ”D-brane”-like picture
analogous to the open-closed string picture that we suspect is
responsible for AdS/CFT duality ?
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Example : 2d YM on an interval [x1, x2]

”entanglement” boundary conditions At = 0 at both ends
Gauss’ law & Peter-Weyl theorem

Hphysical = L2(G) =
⊕

R
PR ⊗ P?R

provides a representation of G ⊗ G

f (g)→ f (hLgh−1
R ), f ∈ L2(G), (hL, hR) ∈ G ⊗ G .

basis of states for the interval Hilbert space{
|R, a, b〉 =

√
dim R Rab(g) , a, b = 1, 2, . . . dim R

}
.
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Example : 2d YM on an interval [x1, x2]

”Edge mode” interpretation
would-be (large) gauge trafos → physical trafos at endpoints

I physical dof ∼ edge modes of the physical boundary
For [x1, x2], large gauge trafos G × G

I acting by left and right multiplication at the left and right endpoints,
respectively

|g〉 → |h−1
L g〉 , |g〉 → |ghR〉
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Example : 2d YM on an interval [x1, x2]

Extended & Physical Hilbert spaces
Split [x1, x2] into V = [x1, y − ε] and V̄ = [y + ε, x2]
Using At = 0 at each regulated entangling surface ⇒ L2(G)⊗ L2(G)
Surface symmetry at the split entangling surface GS = G⊗ G

I with the left copy of G acting by right multiplication on V and vice
versa for V̄

Edge modes ∼ ungauged large gauge transformations acting at
entangling endpoints
Hextended = L2(G)⊗ L2(G)

I Hphysical requires quotienting by the diagonal action of GS

|g1〉 → |g1h〉 , |g2〉 → |h−1g2〉
Hphysical = L2(G)⊗GS L2(G)
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Example : 2d YM on an interval [x1, x2]

Factorisation & Fusion
L2(G) has a co-multiplication ∼ factorization map

i : L2(G)→ L2(G)⊗ L2(G),

i |g〉 = 1
|G|

∑
g1,g2∈G

δ(g1 · g2, g) |g1〉 ⊗ |g2〉 ,

I i is an isometry, since its adjoint i∗ (|g1〉 ⊗ |g2〉) = |g1g2〉 fuses back
the split intervals, i.e.

i∗ ◦ i = 1
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Example : 2d YM on an interval [x1, x2]

Factorisation & Locality
Using representation basis

i : L2(G)→ L2(G)⊗ L2(G)
〈g |R, a, b〉 → 〈g1 · g2|R, a, b〉 =

√
dim R Rab(g1 · g2)

= 1√
dim R

∑
c
〈g1|R, a, c〉〈g2|R, c, b〉

edge modes ∼ index c → entanglement in the state
Locality ∼ Wilson lines

g = P exp
(

i
∫

A
)

Factorisation ∼ splitting Wilson line in each representation R
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JT revisited

Cauchy slice ∼ wormhole connecting both asymptotic boundaries

HiLiR spanned by |k iL iR〉 , k ∈ R+

iL, iR satisfy coset boundary conditions
k ∼ momentum related to energy E = k2 (in some units)
k ∼ representation of a Wilson line crossing the wormhole

〈g |k, iLiR〉 =
√

k sinh 2πk Rk
iLiR (g), g ∈ SL(2,R)

I wave functions ∼ representation matrix elements of the gauge group
SL(2,R)
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JT revisited
Disk partition function

Zdisk(β) = ≡ 〈HHβ|HHβ〉 =
∫ ∞

0
dk (k sinh 2πk) e−β k2

Hartle-Hawking state

= |HHβ〉 =
∫ ∞

0
dk
√

k sinh 2πk e−β k2/2 |k iL iR〉

Factorization map i
HiLiR ↪→ HiLe ⊗He iR

when applied to |HHβ〉, produces a half annulus

→
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JT & shrinkable b.c.
1 Zdisk(β) equals the ε→ 0 limit of the full annulus

β

= lim
ε→0

β

e V

2 ε finite, annulus ∼ two boundary amplitude (“closed string” channel)

Equivalently,

Z (ε, β) =
∫

dλZinner(ε, λ) Zouter(β, λ) .

after inserting 1 =
∫

dλ |λ〉 〈λ| ∼ complete set of defect insertions
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Solving shrinkable b.c.

1 Using cos(2πλk) = 〈λ|k〉 : wavefunction of a boundary state |λ〉

Zouter(β2, λ) ≡
∫

dk cos(2πλk) e−β2k2

2 By definition,

Zinner(ε, λ) ≡ 〈e| exp−Hclosed |λ〉 =
∫

dk 〈e|k〉 cos(2πλk) e−εk2

3 Altogether,
Z (ε, β) =

∫
dk 〈e|k〉 e−(ε+β)k2

Zdisk = limε→0 Z (ε, β) ⇒ 〈e|k〉 = k sinh 2πk, leading to

Zinner(ε, λ) =
∫ ∞

0
dk (k sinh 2πk) cos(2πλk)e−εk2
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JT : edge mode interpretation
Comparing

Zouter(β2, λ) =
∫ ∞

0
dk cos(2πλk) e−β2k2

Zinner(ε, λ) =
∫ ∞

0
dk (k sinh 2πk) cos(2πλk)e−εk2

cos(2πλk)↔ defect insertion
the density of edge states ↔ inner entangling boundary

I counts the zero (modular) energy edge modes at fixed k, which are
localized to the entangling surface

I corresponds to the Plancherel measure for SL+(2,R) [Ponsot,
Teschner]

L2(SL+(2,R)) =
∫
⊕k≥0

(k sinh 2πk)Pk ⊗ Pk
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JT conclusion
Further lesson
Solving the shrinkable b.c. in JT ⇒

fixing GS = SL+(2,R)
edge modes localised at the inner entangling surface belong to
continuous series representations

Bulk factorisation completion : Armed with the generalization of the
Peter-Weyl theorem for SL+(2,R) & its extension in the presence of
holographic boundaries

HeiR = L2(SL+(2,R)/ ∼) ≡
∫
⊕k≥0

(k sinh 2πk)Pk ⊗ Pk,iR

define factorisation map compatible with shrinkable b.c.
entropy of bulk reduced density matrix reproduces
Hawking-Bekenstein entropy [Blommaert, Mertens, Verschelde]
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