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@ Complexity is related to the holographic description of black
holes

@ Growth of complexity = growth of black hole interiors

@ Thermofield double is a famous example of this

[Chapman et al, 1810.05151]
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Motivation

@ Complexity is related to the holographic description of black
holes

@ Growth of complexity = growth of black hole interiors

@ Thermofield double is a famous example of this

[Chapman et al, 1810.05151]

@ Complexity can be used as a diagnostic of quantum chaos

[Chapman, Pelicastro, 2110.14672]

@ Supplements diagnostics such as SFF, OTOC, Loschmidt
echo...
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[Balasubramanian, DeCross, Kar, Li, Parrikar, 2101.02209]
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@ Central question: How hard is it to synthesize a desired target
state with the gates at your disposal?

° Need' |¢r>' |¢t>' {Ula U27"' 7Un}v g(U17 U27"' 7Un)
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@ Central question: How hard is it to synthesize a desired target
state with the gates at your disposal?

° Need' |¢r>' |¢t>' {Ula U27"' 7Un}v g(U17 U27"' 7Un)

o E.g. UiUyUyUs(Uy)3Us|g,) = UsUpUa Uy Us(Up )3 Un Us |, ),
"complexity = 8"

@ Discrete notion of complexity closely related to quantum
computational setups

@ We will, however, be interested in a continuous notion of
complexity
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Nielsen Complexity

@ Accessible gates are taken to be from some symmetry group

[Nielsen, quant-ph/0502070]
o E.g. SU(2): Gates U = e/(st/its2htssls)

o Target states: |p:(s1,2,...,5n)) = U(s1,- -+, Sn)|®r)
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Nielsen Complexity

@ Accessible gates are taken to be from some symmetry group

[Nielsen, quant-ph/0502070]

E.g. SU(2): Gates U = ef(sthts2hts3h)

Target states: |¢t(s1,52,...,50)) = U(s1,- -+, Sn)|®r)

@ We have a manifold of target states on which one can define a

metric
@ Complexity = shortest distance connecting points
e Can introduce a circuit parameter s; = s;(0)
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e Two examples of metrics (assuming all transformations
equally hard)

e F cost function: Fido = |(¢,|UTdU|¢,)



Background
[e]e] e}

Nielsen Complexity

e Two examples of metrics (assuming all transformations
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Group symmetries are encoded as metric isometries
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Nielsen Complexity

e Two examples of metrics (assuming all transformations
equally hard)

F1 cost function: Fido = |(¢,|UTdU|¢,)

ds,2:5 = <¢r|dUTdU‘¢r> - <¢r’dUTU|¢r>‘<¢r’UTdU|¢r>
Group symmetries are encoded as metric isometries
Fi: Fi=0; ((d’t(si_vsév T asz)‘¢t(sla 52, "'75n)>)|5’:5

FS metric:
8ij = 8181, log (<¢t(5:/h Sé? T 75;7)’¢t(517 52y s Sn)>)

s'=s
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o The overlap (¢,|UT(s')U(s)|#,) is thus a key quantity

@ The states U(s)|¢,) are generalized coherent states
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o The overlap (¢,|UT(s')U(s)|#,) is thus a key quantity
@ The states U(s)|¢,) are generalized coherent states
o Stability subgroup H C G such that Up|¢,) = e'®|¢,)

@ Bigger stability subgroup leads to simpler expressions
(especially for FS metric)
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Nielsen Complexity

o The overlap (¢,|UT(s')U(s)|#,) is thus a key quantity
@ The states U(s)|¢,) are generalized coherent states
o Stability subgroup H C G such that Up|¢,) = e'®|¢,)

@ Bigger stability subgroup leads to simpler expressions
(especially for FS metric)

e Manifold of states < group elements of G/H
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o Baker-Campbell-Hausdorff formulas can be used as powerful
computational tools for the coherent state overlaps

e S0O(d,2), (Euclidean) conformal group, Pl = K, LL,, =Ly,
[Dv’Dﬂ]:Pm [D7K#]:_K#
[Luw Pp] = 0upPu — 0upPu, [L,W, Kp] = 0upKy — 0ppKy

Ky, Pl =26,D —2L,,
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o Baker-Campbell-Hausdorff formulas can be used as powerful
computational tools for the coherent state overlaps

e S0O(d,2), (Euclidean) conformal group, Pl = K, LL,, =Ly,
[Dv’Dﬂ]:Pm [D7K#]:_K#
[Luw Pp] = 0upPu — 0upPu, [L,W, Kp] = 0upKy — 0ppKy

Ky, Pl =26,D —2L,,

@ Spinless conformal primary, |A),
DIA) = AIA) , Lu|A) =0, K,A)=0
[Chagnet, Chapman, De Boer, Zukowski, 2103.06920]



BCH formulas
(o] le}

BCH formulas

o Consider the overlap (Ale® Ke™P|A)
o With BCH identities we can exchange

* . * . * * U/L * * .
R Kea P _ eB(a ,a) Ped(a ,oz)De()\(a ,a)) L‘“’eﬁ (a*,a)-K
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BCH formulas

o Consider the overlap (Ale® Ke™P|A)
o With BCH identities we can exchange

* . * . * * U/L * * .
R Kea P _ eB(a ,a) Ped(a ,oz)De()\(a ,a)) L‘“’eﬁ (a*,a)-K

o Thus (Ale® KeaP|A) = ed(@MA(A|A) = edla")A
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BCH formulas

e Conjecture: C; =[A,B] , GChy1 =][[A G, B]
0 Api1=[A G, Bap1 =[Gy, B
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e Conjecture: C; =[A,B] , GChy1 =][[A G, B]
° An+1 [A Cn] ) Bn+1 [Cn, B]
o If [A,’,Aj] = [B,’, Bj] = [C,', CJ] =0 then
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BCH formulas

e Conjecture: C; =[A,B] , GChy1 =][[A G, B]
° n+1 [A Cn] ) Bn+1 [Cﬂ, B]
o If [A,’,Aj] = [B,’, Bj] = [C,', C] = 0 then

A

el = [[;%, 7 T [[}2, e I [[2y e

Spoiler: We (roughly) have in mind reference kets annihilated
by the A; operators and that transform trivially under the C;
operators
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D, w rotations L, d translations P, and d special

conformal transformations K,
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Spinor notation

The conformal algebra consists of the generators of dilatation

D, d(d2_1) rotations L, d translations P, and d special

conformal transformations K,

4d bi-spinor notation: (0#)as = (il, ), (6")as = (il, 7)

Repackages the generators P, K4, L./, [dﬂ-

The rotations repackage as SO(4) — SU(2) x SU(2)
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Supercharges

o Additionally, we have supercharges and conformal
supercharges

° {Q(;, de} = %5}Pad , {gidjij} _ %5J{Kda

@ The Latin index runs over i = 1,2,--- N
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Supercharges

Additionally, we have supercharges and conformal
supercharges

{Q Qua} = 30iPas . {5757} = JaiKee

@ The Latin index runs over i = 1,2,--- N

The R-charge generators transform the Latin indices Rf as

UW)

Taken together, the superconformal group is su(2,2|\)
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Supercharges

Additionally, we have supercharges and conformal
supercharges

{Q Qua} = 30iPas . {5757} = JaiKee

@ The Latin index runs over i = 1,2,--- N

The R-charge generators transform the Latin indices Rf as

UW)
Taken together, the superconformal group is su(2,2|\)
[D,Ql1=3Q, . [D,Qul=3Qa
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Supercharges

Additionally, we have supercharges and conformal
supercharges

{Q Qua} = 30iPas . {5757} = JaiKee

@ The Latin index runs over i = 1,2,--- N

The R-charge generators transform the Latin indices Rf as

UW)
e Taken together, the superconformal group is su(2,2|\)
o [D,Q\]=3Q, , [D,Qal=30a
0 Q) =S* . Gu=5% . (R) =R
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Circuits

By _ &1 i
e We have [D,L,’]=0 [D,LB]_O , [D,Rj]_O

@ We can specify the scaling dimension, spin and R-charges of
the reference state independently
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By _ &1 i
e We have [D,L,’]=0 [D,LB]_O , [D,Rj]_O

@ We can specify the scaling dimension, spin and R-charges of
the reference state independently

° Dlgr) = Algy) ,  K|or) = SPlor) = 5 dy) =0
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Circuits

By _ &1 i
e We have [D,L,’]=0 [D,LB]_O , [D,Rj]_O

@ We can specify the scaling dimension, spin and R-charges of
the reference state independently

o Dig,) = Alpr) , K*or) = 51a|¢r> = 5%¢,) =0
@ The rotations are SU(2)’s,

L2\ér) = hlor)  Ly|ér) = Blor)
L21|¢r> =0 L2i|¢r> 0
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Circuit

@ For this choice of reference state we obtain the following from
a general group action of SU(2,2|\)

0 [01(0)) = N eF""Poc o %" Qi iti? el s o7/, )
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Circuit

For this choice of reference state we obtain the following from
a general group action of SU(2,2|\)

be(0)) = N P Paa gdf Qu o7 Qia L2 R, r{/?j’¢r>

The overlap we are interested in computing is

R

i i pad agi gidg . 212 PIL R
Q (¢, |e’RJeZ 1 Lo 56 5 S ki a KOY PPy (0 QL (8 Qi FL% 5 o % 1y )

@ We have several pairs of exponentials that satisfy

o eef =12, o1 [172, ¥ 7T J]_[ o714

I'OEASLAE



Circuits
[e]e]e]e] lelele)

,:2

R 1 3
by b B, Ble® Koo K

2 ) Gox
ie/ily ekaa PP

12 Pl o
ai et it 2 A b, b B, B
: : N\ —(AthtR)
2 2 1
( (1 — 4k, 57 ) (1 — akypP2) — 16k, 507 ks p 7 ) x
BL ., 41 B2, 21 52, 2"
(1—4kmp )+ 4k 0™+ 41k 0P+ BB — 4y )) x

. - . . 2h
7 28 2 18 72 13
( (1- 4p kﬁ2 +4lyp k[ii +4lp kﬁQ +1 Ii(l —4p k/ii))

@ Note the product structure of terms - this leads to a sum of
terms when taking the logarithm

o K =log((¢cl¢r))
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@ There is a single R-charge generator, Rl1

o We choose Ri|#,) = R|¢")
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There is a single R-charge generator, Rl1

o We choose Ri|#,) = R|¢")

) gid i ga ko yda i, L2 PRI
<w0\62 1e’1L2 5ias' " ¢SaSi gkaa K™ g Paaeq/ Qu Q:aE’ZL1 el 2|4g)

1 - 4kmp6 —s1gM)(1 — 4k2[;PE2 - 94¢°) - (4k1[;pm + 51q2)(4k2[;P51 + squ)> X

2h

(- 4k1Bp —sigY) + 112(4k2Bp51 +s5qY) + 121(4k1B-pB2 +519%) + BB — 4k2B-p52 — 54?)

1 - 4klﬁp31 —s1gt)(1 — 4k2ﬂpﬁ2 — $9?) — (4kIBP52 + 51172)(4k25/351 + s2q1)
(1 — 4p2Bk 53— 53) + B 457 ki +53) + (45 P kgy + 53") + LE(L — 45" kg — 53")

\/ (1 — 4pPkg; — 5,31)(1 — 4P ks — 5,8°) — (452P ki + 5,82 (461 P kg + 551)

( (1 — 4ky 5pPT — 510" )(1 — 4k 5pP? — $6%) — (4ky 3PP + 510%)(4ky 5 pPT + 52q1)>

(1 = 4k 3PPY)(L — 4k, pP2) — (4K 5 pP2)(ky 5 pPT) ) (14 2% Ko §%) (1 + 254 pie0se) ~1

. . . ) N

LR

N _ (- ‘fpwkgi)(_l — 4p®f koa) (4p2.3k51)(4plﬁ.kgé) _ . 2 _
(1—4ptBhgi — 551 )(1 — 4p*Pkgs — 5,3%) — (4p*P kg + 5;52)(4p P kg5 + 553)
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e An instructive limit is §'* — 0,54 — 0

i
2Ll
172 4o)

o jdap a2
(wo\ez 1e’1L2 oSh 5P kaa KEY pY Y Po g 0 QL 3L

. . . . h
1 1 2 1 1 1 2 2 2,1 2 2
= ((1 - 4lepB —s519)+ Il(4k2Bp5 +s2q7) + 12(4lepB +s519°) + k(1 — 4k25pﬁ — 5q )) X

. P L B
((1 —4,52’3kB2-)+/21(4,52’3kﬁi)+/f(4,515 33) + 5 72(1—4 5kﬁ )) x

B2y _ (4kmp )(4k25pB )+2(4 —R+h—1)(4 — R+ h)sisnq’q"

(1 — 4k 5p7)(1 — 4ky5p
)A+h+h+l

(1 — aky 5 PP — dky3pP2) — (8K, 5pP2)(4hypPY)

(1 — aky5p7)516" + 4y 0Pl 516 + 4k 5pP2 520" + (1 — 4k 5PN 5207
)A+h+i'1+1

+ (A +h—R)
5 : : : _
(1 = 4k PPN — 4k, pP2) — (4K 5 pP2)(3k,y 5 pPT)
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@ The R-charge generators form a u(2)

@ The reference state can be chosen such that
R11|¢r> =r—-R | R22|¢r> =r+R , R12|¢r> =0

@ An explicity (though bulky) expression can be found for the
relevant overlap

152 12 2,1 o cig o ca . ; v api sids . 1,2 PIL 2p1
@ (yole2Rfie2 ielle 5iaS' e%a S ekaa K™ P Paa e Qo e “ Qia 21" el 26172 1)
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Outlook

@ BCH techniques provide powerful tools. These may be applied
in other circuits (or Krylov complexity computations)

e N =4 is an important symmetry group for the AdS/CFT
correspondence

@ Do the manifolds give rise to conjugate points? What is the
role played by spin and supersymmetry? How do the small
and large scaling dimensions compare?



Outlook
[ le]

Outlook

@ BCH techniques provide powerful tools. These may be applied
in other circuits (or Krylov complexity computations)

e N =4 is an important symmetry group for the AdS/CFT
correspondence

@ Do the manifolds give rise to conjugate points? What is the
role played by spin and supersymmetry? How do the small
and large scaling dimensions compare?

@ ...note that the relevant manifolds have a constant scalar
curvature...
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Thank you for your attention!
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