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Introduction
Motivation I
▶ Observations from LIGO and EHT

▶ Considering the observed precession, one might ask: Could this be the result
of a black hole, or perhaps an extremely compact object?

▶ To what extent can an extremely compact object mimic the properties of a
true black hole?
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Introduction

Motivation II
▶ Black holes are chaotic objects, but demonstrating this property is very

challenging for black holes in dimensions d > 2.
▶ Lower-dimensional gravity (dual to the SYK model) provides hints by

analyzing the spectrum. The spectrum reveals a linear ramp in the Spectral
Form Factor (SFF), and the level spacing distribution (LSD) follows
Wigner-Dyson statistics.

▶ On the boundary side, to demonstrate this in higher dimensions (e.g., 4 + 1
dimensions), one must solve 4-dim N = 4 super Yang-Mills theory, which is
a difficult task.

▶ On the bulk side, it is necessary to solve quantum gravity to determine the
spectrum and perform spectral analysis—an extremely challenging!!
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Introduction
Simpler question: Is there any evidence of chaos in the probe sector?

▶ OTOC computation shows that black holes are chaotic but it is a measure of
early time chaos.

▶ How can chaos be observed at late times? One probe of late-time chaos is
the Spectral Form Factor (SFF), where a linear ramp in the SFF serves as a
measure of late-time chaos.

▶ The quantization of a probe scalar in black hole geometry leads to
complex-valued quasi-normal modes, resulting in a decaying SFF at late
times—no linear ramp is observed.

▶ Is there an alternative approach?

We quantized a probe scalar field by introducing a brick wall in the geometry,
resulting in real-valued normal modes. The Spectral Form Factor (SFF)
constructed from these modes exhibits a linear ramp.
While this does not solve the main problem, it is an interesting result. Let us focus
on this aspect.
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Introduction
▶ Our measuring tool is the correlation functions. Basically we focus on

Spectral form factor (SFF), Level Spacing Distribution (LSD) and Green’s
function.

▶ Let’s define SFF as:
g(𝛽, t) = |Z(𝛽, t) |2

|Z(𝛽, 0) |2
. (1)

For a given quantum mechanical system, Z(𝛽, t) = Tr
[
e−(𝛽−it)H]

, where 𝛽, t,
and H represent the inverse temperature, time, and Hamiltonian of the
system, respectively.

▶ SFF measures correlations among all the energy levels.
▶ Properties of SFF

Smooth density of states =⇒ vanishing SFF at late time.
discreate spectra =⇒ non vanishing SFF at late time

▶ Poisson distribution of energy levels =⇒ NO ramp
Wigner-Dyson distribution =⇒ ramp of slope 1
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The brick wall model

▶ Consider a BTZ black hole
geometry

▶ Instesd of the full geometry,
consider a brickwall at some
r0 > rH

▶ Our region of interest is
r0 < r < ∞

▶ This model do not have any
horizon.

▶ We will quantize a probe scalar
field in this region.

<latexit sha1_base64="cJi+fTBUAxDWtpIWBv1zQ+RfBJo=">AAAB+nicbVDLTsMwENyUVymvFI5cLCokTlWCEHAscOFYBH1ITVQ5jttadZzIdkBV6Kdw4QBCXPkSbvwNTpsDFEZaaTSza+9OkHCmtON8WaWl5ZXVtfJ6ZWNza3vHru62VZxKQlsk5rHsBlhRzgRtaaY57SaS4ijgtBOMr3K/c0+lYrG405OE+hEeCjZgBGsj9e2ql2CpGeaZJyN0Ed5O+3bNqTszoL/ELUgNCjT79qcXxiSNqNCEY6V6rpNoP8ufJZxOK16qaILJGA9pz1CBI6r8bLb6FB0aJUSDWJoSGs3UnxMZjpSaRIHpjLAeqUUvF//zeqkenPsZE0mqqSDzjwYpRzpGeQ4oZJISzSeGYCKZ2RWREZaYaJNWxYTgLp78l7SP6+5p3b05qTUuizjKsA8HcAQunEEDrqEJLSDwAE/wAq/Wo/VsvVnv89aSVczswS9YH98o/5Pv</latexit>

@AdS

Dirichlet Brick-wall

Black Hole(Non-dynamical & ad-hoc)
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Quantization of a probe scalar

Let us consider the BTZ metric,

ds2 = −(r2 − r2H )dt2 + dr2

(r2 − r2H )
+ r2d𝜓2

where r = rH is the position of the horizon an 𝜓 is a compact direction. We will quantize a scalar field
Φ =

∑
𝜔,m e−i𝜔teim𝜓𝜙𝜔,m (r) in this geometry.

□Φ = 𝜇2Φ

with the following boundary conditions:

𝜙 (r) =
{

r−
1
2 −

√
1+𝜇2 at r → ∞

0 at r = r0 (instead of usual ingoing bdry condition)

This gives rise to normal modes as opposed to quasi-normal modes. These normal modes are real
numbers and charaterized by two quantum numbers m (due to periodicity in 𝜓) and n (pricipal
quantum number).
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Spectrum, SFF and LSD along n and m
Here we have separately plotted SFF and LSD along the both directions.

▶ along n direction
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▶ along m direction
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▶ Non trivial Dip-Ramp-Plateau structure is coming from the modes along the
compact direction so compact direction is necessary.

Suman (WITS) Brick wall, Normal Modes and Emerging ThermalityDecember, 2024 9 / 33



Averaging decreases fluctuation

β=0
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Annealed SFF of BTZ normal modes with Jcut = 300, 𝛽 = 0 and n = 1. Averaging
is done over hundred randomly chosen z0 from a normal distribution with mean
𝜇 = 20 and variance 𝜎 = 0.1. The equation of yellow straight line is
log gann (t) = log t+constant.
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Analytic Approximation
▶ In the limit of small 𝜔 and rH/L ∼ O(1), the modes are given by,

𝜔n,m = − 2n𝜋rH

L2
(
log( 2𝜖rH

) + log( mL
rH
)2

)
This clearly demonstrates the aforementioned behavior of the modes along
m and n direction.

▶ In the limit 𝜖 → 0, this can be approximated as,

𝜔n,m = − 2n𝜋rH

L2 log( 2𝜖rH
)

which implies that the spectrum is approximately degenerate along the m
direction.

▶ This expression can be utilized to compute the partition function and
subsequently the entropy, which matches exactly with the BTZ black hole
entropy.

JHEP 2024 (2024) 014

Suman (WITS) Brick wall, Normal Modes and Emerging ThermalityDecember, 2024 11 / 33



Position of the brick wall is important

▶ The Dip-Ramp-Plateau structure in the SFF is very much dependent of the
position of the brick wall.

▶ These two figures show how the structure of SFF becomes empty AdS like
when the wall is far from the horizon.
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Left : SFF for BTZ black hole with with large r0. Right: SFF for empty AdS with
dispersion relation 𝜔nl = (Δ + l + 2n).
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Is this generic? (2d Rindler ×S1)
▶ Near horizon geometry of all the non-extremal black holes are described by

the 2d Rindler geometries
▶ quantization of probe scalar in 2d Rindler gives rise to the SFF of the left

figure.
▶ On the other hand, quantization of probe scalar in 2D Rindler ×S1 yields

identical features to those in BTZ (see right figure).
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▶ This implies that the previous results are not only particularly specific to the
BTZ geometry but also a generic feature of stretched horizons.
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Brickwall in rotating BTZ

We have quantized a probe scalar field in the rotating BTZ background and made
the following observations:

▶ We observe a non-trivial Dip-Ramp-Plateau structure with a ramp of slope
one in the SFF obtained from the grand canonical partition function.

▶ This behavior appears to remain stable close to extremality. However, at
extremality, we find a loss of the DRP structure, and the corresponding SFF
now resembles that of an integrable system, with normal modes appearing to
be linear and thus harmonic oscillator-like.

▶ This is in agreement with the existing literature on actual microstate
geometries.
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Brickwall in rotating BTZ
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SFF of the normal modes along m- direction of the rotating BTZ black hole with a
brick wall.
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Emerging Thermality

▶ Chaos implies thermality. How can we observe this?
▶ A black hole exhibits thermal features due to the presence of the horizon.
▶ Is it possible to observe any hint of thermality in the absence of the horizon

(but with a large redshift)?
▶ To explore this, let’s focus on the Green’s function.
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Emerging thermality

Following Son-Starients prescription, we have calculated the boundary two point
function of an operator that is dual to the scalar field in the bulk.
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▶ Figures are showing the pole Structure of G𝜔 (n,m) for fixed m = 1. Poles
are coming closer and closer as we move the position of the stretched
horizon towards the event horizon.

▶ In terms of the bulk picture, this poles corresponds to the normal modes.
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Emerging thermality
Pole accumulation along n and m as we move the brickwall:
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▶ Figures showing pole accumulation along the n (left) and m (right)
directions.

▶ The pole accumulation rate along n can be fitted with a + b log(1/z0),
whereas along m, it is a + bz−1/20 , which is exponentially higher.

▶ This may be the cause of exhibiting RMT-like behavior along the m
direction.
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Emerging Thermality

▶ When the brick wall is very close to the event horizon, the poles are so dense
that we can approximate the discrete poles as a branch cut, and the
discontinuity around the branch cut is given by the following.

G(𝜔 + i𝜖,m) − G(𝜔 − i𝜖,m) ' −1
𝜋

(
𝜔

𝜔n

)Δ
ImGbh(𝜔,m)

����
𝜔=𝜔n

(2)

▶ We can read off the black hole’s quasi-normal modes by
computing the discontinuity around the branch cut.
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Emerging thermality

▶ In the aforementioned limit, the following can be show,

ImG(𝜔,m) = −ImGbh (𝜔,m), (3)

▶ which states that in the limit when the wall is sufficiently close to the
horizon of the black hole, the imaginary part of the scalar Green’s function
is indistinguishable from that of the thermal Green’s function of the black
hole for a sufficiently low energy asymptotic observer.

▶ The equation (3) automatically ensures that the position space Green’s
function is equal to the thermal Green’s function with temperature equal to
the Hawking temperature of the black hole.
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Brickwall in AdS-Schwarzschild black hole

▶ In 3 dimensions, the degrees of freedom of the graviton are zero, so there is
no dynamical graviton.

▶ Question: Do these features remain for dimensions≥ 4?

▶ Rindler calculations suggest that this may be a generic fact, but it is
beneficial to see this explicitly.

▶ Here we will provide an explicit example for 5-dimensional
AdS-Schwarzschild black holes.
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Probe scalar in 5d AdS-Schwarzschild black hole

▶ Metric : ds2 = −f(r)dt2 + dr2
f(r) + r2 dΩ2

3 , f(r) =
(
1 − r2H

r2

)
(r2 + r2H + 1).

▶ Probe scalar:□Φ ≡ 1√
|g |
𝜕𝜈

(√
|g|𝜕𝜈Φ

)
= 𝜇2Φ.

▶ As the metric is time independent and spherically symmetric we can take the
ansatz: Φ(t, r,Ω) ∼ e−i𝜔tYl, ®m (Ω)𝜙𝜔l (r).

▶ radial equation: 1
r3

d
dr

(
r3f(r) d𝜙 (r)

dr

)
+

(
𝜔2

f(r) −
l(l+2)

r2 − 𝜇2
)
𝜙(r) = 0.

▶ This can be written as a Heun equation in a new radial coordinate(
𝜕2

z +
1
4 − a2

1
(z − 1)2

−
1
2 − a2

0 − a2
1 − a2

t + a2
∞ + u

z(z − 1) +
1
4 − a2

t

(z − t)2
+ u

z(z − t) +
1
4 − a2

0
z2

)
𝜒(z) = 0

where, z = r2
r2H+r2+1 and 𝜙(r) = 𝜒 (z)√

r3f(r) dz
dr
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▶ Near horizon : 𝜒hor (z) = c1 (t − z) 1
2+at + c2 (t − z) 1

2 −at + . . .

The first term corresponds to the outgoing mode, while the second term
corresponds to the ingoing mode near the horizon.

▶ near boundary : 𝜒bdry (z) = c3
(

1−z
1+r2H

) 1
2+a1

+ c4
(

1−z
1+r2H

) 1
2 −a1

Where the first term corresponds to the normalizable mode and second term
is non-normalizable.

▶ Boundary conditions:

𝜒hor (z0) = 0 (Dirichlet boundary condition instead of ingoing)

𝜒bdry (z) ∼ (1 − z) 1
2+a1 (Normalizable at the boundary)

▶ To find the normal modes, we need connection formulas that link the
solutions around one singular point to another. These can be determined
using techniques from Liouville CFT. [Zhiboedov, Dodelson, …]
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Normal modes and SFF
▶ Normal modes are labeled by two quantum number l and n.
▶ Spectrum along l and n (rH/L = 100):
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▶ We were not able to get sufficient number of modes for small rH/L with this
method but we can do the WKB analysis.
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WKB analysis
▶ spectrum along l and n
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▶ The SFF shows a clear dip-ramp-plateau with a ramp of slope∼ 1 for the
modes along the l direction. On the other hand, the SFF resembles that of a
simple harmonic oscillator (SHO) for the spectrum along the n direction, as
it is a linear spectrum.Suman (WITS) Brick wall, Normal Modes and Emerging ThermalityDecember, 2024 25 / 33



Analytic Structure of the Green’s function

▶ The Green’s function has poles on the real axis, and as the brickwall moves
closer to the horizon, these poles come increasingly closer.

▶ When the stretched horizon is very close to the event horizon, the poles are
so dense that we can approximate the discrete poles as a branch cut, and the
discontinuity around the branch cut is given by the following.

G(𝜔 + i𝜖,m) − G(𝜔 − i𝜖,m) ∼ −ImGbh (𝜔,m)
����
𝜔=𝜔n

▶ In this limit ImG(𝜔,m) = −ImGbh (𝜔,m),
▶ Which implies that the two point function looks like a thermal two point

function with the same Hawking temperature as the black hole.
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Probe scalar in collapsing black hole

▶ We have considered a probe scalar field in a 2 + 1 dimensional collapsing
black hole. At any instant of time, the geometry outside the shell is BTZ,
while inside it is global AdS.

▶ Due the smooth and consistent gluing, we can no longer impose a Dirichlet
boundary condition for the probe scalar at the shell. Instead, we have to use
the right junction condition.

▶ Nevertheless, we observe that the key features of pole accumulation in the
correlator persist in this model as well.
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Probe scalar in collapsing black hole

▶ metric
ds2 = −f(r)dt2 + dr2

f(r) + r2d𝜓2 , (4)

where

f(r) =
{

f1 = 1 + r2, for r < rs .

f2 = r2 − r2H, for r > rs .
(5)

▶ Let 𝜙1 and 𝜙2 represent solutions inside and outside the shell, respectively.
The matching conditions are:

𝜙1 |r=rs = 𝜙2 |r=rs ,

f1 (r)𝜕r𝜙1 |r=rs = f2 (r)𝜕r𝜙2 |r=rs . (6)
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Frame Title

We are interested in the Green’s function of the system. Following Son-Starinets
prescription and using the conditions (6), we can write the Green’s function, which
is the ratio of the normalizable mode to the non-normalizable mode, as:

G(𝜔,m) = −
𝜙1f2𝜕r𝜙

(−)
2 − 𝜙 (−)

2 f1𝜕r𝜙1

𝜙1f2𝜕r𝜙
(+)
2 − 𝜙 (+)

2 f1𝜕r𝜙1
, (7)

where everything is evaluated at r = rs. Here:

▶ 𝜙1: solution of the Klein-Gordon (K-G) equation that is regular at the origin
r = 0.

▶ 𝜙 (+)
2 : normalizable part of the solution of the Klein-Gordon equation outside

the shell which is regular at the conformal boundary, r → ∞.

▶ 𝜙 (−)
2 : non-normalizable part of the solution of the Klein-Gordon equation

outside the shell which blows up at the boundary, r → ∞.
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Green’s function
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圖 1: Plot of the Green’s function for fixed m = 1. rs = 10 for the left,
whereas rs = 1.01 for the right. This shows the poles are coming closer and
closer as the shell starts moving from the boundary towards the horizon.
Other parameters are 𝜇 = 1.1 and rH = 1.
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Modes
▶ Case I (rs → ∞):

Modes are given by:

𝜔n = ±(1 + m + 2n +
√
𝜇2 + 1) .

▶ Case II (rs → rH):
Modes are those 𝜔 where the Denominator of the Green’s function:

𝜙1f2𝜕r𝜙
(+)
2 − 𝜙 (+)

2 f1𝜕r𝜙1

���
rs
= 0 .

In the limit rs → rH, f2 → 0 which yields:

𝜙 (+)
2 𝜕r𝜙1

���
rs
= 0 .

Which implies two in-equivalent boundary conditions:
1 Dirichlet: 𝜙 (+)

2 = 0 (same as Brickwall boundary condition. )

2 Neumann: 𝜕r𝜙1 = 0. (Modes are linear along the both quantum numbers)
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Some future directions

▶ We have observed that for large rH/L, the spectrum loses its logarithmic
dependence on the angular momentum quantum number (though
quasi-degeneracy remains). As a result, the SFF does not exhibit a linear
ramp structure. However, for the high-lying part of the spectrum, it remains
logarithmic. It would be useful to have an analytic expression for the modes
when rH/L � 1. It seems that the part of the spectrum responsible for the
linear ramp changes with rH/L. Gaining a better understanding of this fact
would be valuable.

▶ For the BTZ example, it can be shown that the scrambling time can be
extracted from the slope of the 𝜔 vs. n plot. Is it possible to extract this time
for higher-dimensional black holes as well?

▶ One of the most important questions is what causes the quasi-degeneracy
along the angular quantum number direction. Perhaps the probability
computed from the WKB wavefunction can provide some insight into this
(currently under investigation).
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Thank You.
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