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➤ Consider a CFT with a large central charge and large gap in the spectrum 

➤ Conjecturally, it is dual to a holographic gravitational dual 

➤ By holographic state, we mean a state in such a CFT that is described by a bulk geometry.

A HOLOGRAPHIC STATE

➤ Vacuum state in 2D CFT (canonical example, can be 
generalised to higher dimensions and other states 
such as thermal state etc.) 

➤ We divide boundary into multiple regions A, B, C 

➤ The Hilbert space factorizes as  

➤ This is the holographic multi-partite state considered 
up to local unitary transformations

HA ⊗ HB ⊗ HC



A B

➤ Question: Does this multi-partite state have any special 
properties compared to a generic multi-partite 
quantum state? i.e. what makes the holographic state, 
holographic? 

➤ To explore this question, we need to first figure out the 
appropriate multi-partite invariants that admit a 
convenient i.e. geometric description for the 
holographic state. 

➤ Example:  for bi-partite state. It is evaluated by the 
action of an orbifold geometry with the orbifold 
singularity beginning and ending on the end-points of 
the region of interest

Trρn

A HOLOGRAPHIC STATE



➤ Let us review the construction  as the orbifold singularityTrρn

A QUICK REVIEW OF RENYI ENTROPY

Trρn = ∑ ψi1j1…ψin−1jn−1
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➤ Sphere with two points of cone angle . This is Weyl equivalent to a smooth sphere.2πn
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➤ The boundary manifold  is a sphere with  replica symmetry action. According to AdS/
CFT, the partition function on this manifold is computed by a gravitational solution  that 
“fills in” this sphere. 

  

➤ The  replica symmetry of the boundary extends into the bulk i.e. acts on . We quotient  
 by this action. This action has two fixed points on the boundary. After quotienting,  

turns into the the orbifold  which has a conical singularity emanating at a boundary point 
and ending at another. As a result, 

 

ℳ ℤn
ℬ

Zℳ = e−Sgrav(ℬ)

ℤn ℬ
ℬ ℬ

ℬ̃

ℰ ≡ (Trρn)1/n = e−Sgrav(ℬ̃)

 REPLICA SYMMETRYℤn



➤ We are interested in characterizing multi-partite entanglement invariants that admit a similar 
sort of description viz. it is computed by an orbifold geometry whose boundary is the 
“original” sphere. 

➤ There are two key conditions that must hold for this: 

1. The replica symmetry  must act freely and transitively on all the replicas. This will 
ensure that after quotienting by , the boundary  will become . 

2. The action of replica symmetry on  must extend to the bulk solution  that fills it in. 
This ensure that the bulk solution  can be quotiented by  to produce the orbifold  

➤ It turns out that the first condition can be satisfied for any replica symmetry . It is the 
second condition that is non-trivial to impose. When it is satisfied, we say that the replica 
symmetry is preserved in the bulk. When it is not, we say that the bulk replica symmetry is 
broken.

R
R ℳ S2

ℳ ℬ
ℬ R ℬ̃
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KEY PROPERTIES



➤ The question of whether the bulk replica symmetry is preserved or broken not only depends 
on the multi-partite invariant but also on the configuration of the boundary regions. Two 
types of questions can be asked. 

A. Given a configuration of boundary regions, which multi-partite invariants preserve bulk 
replica symmetry? 

B. Which multi-partite invariants preserve bulk replica symmetry for any configuration of 
boundary regions? 

➤ We answer both these questions.

KEY PROPERTIES



➤ In general the replicated boundary  is a genus  surface and the bulk solution  is a 
handlebody that fills it in. When the  preserves replica symmetry, the orbifold  is a 
topologically a ball with a tri-valent network of singularities. Each edge of the network is 
labeled by the order of the element that it is fixed under. Some examples of the orbifolds is 
given below.

ℳ g ℬ
ℬ ℬ̃

HOW DOES THE ORBIFOLD LOOK LIKE?
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➤ The density matrix is defined with respect to a bi-partition of parties. Therefore it is a bi-
partite object even if it is defined for multi-partite states. 

➤ Local unitary invariants computed from a density matrix such as entanglement entropy and 
Renyi entropy are therefore bi-partite 

➤ The key to construct genuine multi-partite invariants is to use the full tensorial structure of 
the state. 

  

  

➤ Both  and  are constructed out of 3 copies of  and . But  can be expressed in terms 
of a matrix while  can not. We get different values of  for the previous example of 
isopectral states.

I1 ≡ ψi1j1k1
ψ̄ i2 j1k1ψi2 j2k2

ψ̄ i3 j2k2ψi3 j3k3
ψ̄ i1j3k3 = Trρ3

A

I2 ≡ ψi1j1k1
ψ̄ i1j2k3ψi2 j2k2

ψ̄ i2 j3k1ψi3 j3k3
ψ̄ i3 j1k2

I1 I2 ψ′ s ψ̄′ s I1
I2 I2

BI-PARTITE VS MULTI-PARTITE



➤ Index contractions can be cumbersome. It is convenient to 
have a graphical language for the same.  

➤ The wave function  is denoted with a white dot and  with a 
black do. Assign each party a colour and indices of of a given 
party are represented as edges of appropriate colour.  

  

  

➤ With this notation,  is a necklace. That is why it can be 
interpreted as a trace of a power of a matrix. However,  is 
not a necklace and can’t be constructed using matrices. 

➤ Any graph that is not a necklace is a multi-partite invariant.

ψ ψ̄

I1 ≡ ψi1j1k1
ψ̄ i2 j1k1ψi2 j2k2

ψ̄ i3 j2k2ψi3 j3k3
ψ̄ i1j3k3 = Trρ3

A

I2 ≡ ψi1j1k1
ψ̄ i1j2k3ψi2 j2k2

ψ̄ i2 j3k1ψi3 j3k3
ψ̄ i3 j1k2

I1
I2

MULTI-PARTITE MEASURES
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➤ Any multi-partite measure can equivalently be described in terms of permutation tuple.  

➤ Index each replica with a number . The index contraction is described by assigning a 
permutation element  to a party . The party  index of  bra is contracted with that 
of the  ket.

1,…, n
σa ∈ Sn a a ith

(σa ⋅ i)th

DESCRIPTION IN TERMS OF PERMUTATIONS

ℰ2 =

➤ This labelling by permutation tuple had redundancy . This 
corresponds to relabelling of kets once the bra labelling is fixed.

(σ1, σ2, σ3) ∼ (σ1 ⋅ h, σ2 ⋅ h, σ3 ⋅ h)

1 2 3

1 2 3

σblue = (1)(2)(3)

σgreen = (123)

σblue = (321)



➤ Let us see how to formulate any multi-partite measure in quantum field theory as a path 
integral. Let us take the example of .ℰ2

MULTIPARTITE MEASURES IN QFT

ℰ2 =

➤ Genus of the resulting surface can be computed using Riemann-Hurwitz formula. In this 
case, the genus of the glued surface is 1. It is tessellated by “bra hemispheres” and “ket 
hemispheres”. The hemispheres appear as -gon, each side corresponding to a region.n

➤  is computed by path integral 
over the glued surface, 
appropriately normalized.

ℰ2



➤ Computing path integral over glued surface is a difficult task and depends on the details of the 
theory but if the theory is holographic a universality emerges due to the geometric dual description

MULTIPARTITE MEASURES IN HOLOGRAPHY

ℰ2 =

➤ If the measure  has a symmetry  that acts freely and transitively on the replicas then 
 is the original manifold which is . 

ℰ 𝒢
ℳ/𝒢 S2

➤ The partition function is  where 
 is the action of the dominant 

bulk solution  such that 

e−Sℬ

Sℬ
ℬ ∂ℬ = ℳ



➤ If the replica symmetry is also enjoyed by the bulk solution  then we can quotient it by  
then because  ,

ℬ 𝒢
ℳ/𝒢 = S2

REPLICA SYMMETRY

➤ This motivates the construction of multipartite measures with a replica symmetry that acts 
freely and transitively on replicas. Of course, this does not guarantee that  is replica 
symmetric. e.g. the bulk solution for measure  does does not preserve replica symmetry.

ℬ
ℰ2

➤ The conical singularities appear 
because, the action of  on  may 
have fixed points. 

𝒢 ℬ

we get a hyperbolic geometry with 
 boundary and possible conical 

singularities in the interior
S2



➤ The problem of constructing measures with desired replica symmetry can be readily solved. 
The non-trivial problem is to analyse whether the replica symmetry is preserved by the bulk 

.  

➤ Let us first look at the problem of having a replica symmetry action that is free and 
transitive. Take a finite group  and take worth of replicas. Index each replica by a group 
element. Assign each party  a generator  of the group. 

➤ We specify that the party  index of  bra is contracted with that of the  ket. The 
difference with the general case is that  and  stands for right-multiplication in  

➤ The advantage of this is that the action of the group on replicas by left-multiplication 
commutes with the right-action and gives rise the the replica symmetry. In this way, a 
measure with any given replica symmetry can be constructed. We further need to specify a 
generator of  for each party. 

ℬ

𝒢 |𝒢 |
a ga

a hth (ga ⋅ h)th

h, ga ∈ 𝒢 ⋅ 𝒢

𝒢

REPLICA SYMMETRY



➤ Finite groups acting on the spheres are finite subgroups of  

➤ These are symmetry groups of regular polytopes.

SO(3)

THE CASE OF GENUS 0 ℳ

(2,2,2) (2,2,n) (2,3,3) (2,3,4) (2,3,5)

Wikipedia: 

Triangle groups,  

Regular polytopes



➤ Action of each of these symmetry groups on  extends into the hyperbolic ball. 

➤ After quotienting, we get a geometry that is topologically a ball with a tri-valent vertex of 
singularities as below.

S2

QUOTIENTING THE BULK

➤ Each edge with label  represents a singularity with cone 

angle  

➤ The trivalent vertices ( ) are 

(2,2,n)         (2,3,3)         (2,3,4)         (2,3,5)  

n
2π
n

n1, n2, n3

n1
n2

n3



➤ Starting with the symmetry (2,2,2), we can reverse engineer the multi-invariant.

REPLICA PRESERVING MEASURES: 3-PARTY EXAMPLE

3d - cube
Genus 0 surface

Replica symmetry ℤ2 × ℤ2

ℰ3 =



➤ In general, a multi-invariant gives rise to the replicated manifold  of higher genus. It is 
filled in by a handlebody . We are interested in characterizing the handlebodies that have 
the replica symmetry  as their symmetry. 

➤ To characterize symmetric handlebodies, it is useful to think of them as quotients of 
hypebolic space by a free subgroup of isometry group . This is the so-called 
Schottkey construction of handlebodies.

ℳ
ℬ

R

SO(3,1)

WHAT ABOUT HIGHER GENUS ?ℳ

C1 C′ 1

C′ 2C2

L1

L2

➤ A free group with  
generators is called a 
Schottkey group  

➤  is a genus  
handlebody.

g

Sg

H3/Sg g



➤ Consider a discrete subgroup  of the bulk isometry group . Let it have a free 
normal subgroup  of finite index i.e. such that the group  is finite. 

➤ Consider the quotient  in two steps. First quotient by . Because  is free, it is a 
Schottkey group and hence the quotient  is a genus  handlebody . 

➤ By construction,  enjoys the action of “remaining” symmetry . This is exactly what we 
were looking for. The quotient  is the orbifold dual that we are after! 

➤ This construction has an interesting upshot. There are multiple multi-invariants that have 
the same dual description. This tells us that the holographic state is a very special type of 
multi-partite state. It satisfies equalities that a general multi-partite state doesn’t!

𝒦 SO(3,1)
𝒮g 𝒦/𝒮g ≡ ℛ

H3/𝒦 H3/𝒮g 𝒮g

H3/𝒮g g ℬ

ℬ ℛ
ℬ̃ = ℬ/ℛ = H3/𝒦

SYMMETRIC HANDLEBODIES



UPSHOT

H3

/𝒦

H3/𝒦 ≡ ℬ̃

/𝒮1 /𝒮2 /𝒮3

H3/𝒮1
≡ ℬ1

H3/𝒮2
≡ ℬ2

H3/𝒮3
≡ ℬ3

/ℛ1
/ℛ2

/ℛ3

ℛi = 𝒦/𝒮i

ℰ1 ℰ2 ℰ3 …



➤ The discussion establishes the 
importance of discrete 
subgroups of  that 
have free normal subgroup of 
finite index. Such groups are 
called Virtually-free Kleinian 
groups 

➤ They are constructed using a 
beautiful mathematical tool 
called Klein-Maskit 
recombination theorem.

SO(3,1)

VIRTUALLY FREE KLEINIAN GROUPS
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Figure 13. In the first figure, we have indicated the fundamental regions for the action of two dihedral
groups. For each side, we have indicated the reflection that it is fixed under. We have also denoted the
curve � appearing in Maskit’s theorem. In the second figure we have shown how the amalgamation
procedure translates for the orbifold geometry H3/K. We show how to “glue” the singular loci of the
two dihedral actions to produce the singular locus of the Kleinian group D2n ⇤Zn D2n. The reflections
associated to each party have been marked in the bottom right figure. They satisfy the relations given
in (5.12).

to the four sides can be readily found. Two sides of the quadrilateral fundamental region are

common with the two sides of each of the triangular fundamental regions of K̂1 and K̂2 and

each of the other two is shared with that of the triangular fundamental regions of K̂1 and K̂2

separately. If the the reflections for K̂1 and K̂2 are r(1)i and r(2)i with i = 1, 2, 3 respectively

then it follows that the reflections for K̂1 ⇤J K̂2 are r1 = r(1)
1

= r(2)
1

, r3 = r(1)
3

= r(2)
3

, r2 = r(1)
2

and r4 = r(2)
2

. These reflections obey the relations,

(r2r1)
2 = 1, (r3r1)

n = 1, (r4r1)
2 = 1, (r2r3)

2 = 1, (r3r4)
2 = 1, (5.12)

all of which follow from the relations obeyed by the reflections of K̂1 and K̂2. The only

product of generators that has no relation is r2r4. This is the group that is obtained by

amalgamating two dihedral groups along the common cyclic subgroup Zn. Because the order

of r2r4 is infinite, the resulting Kleinian group K̂ is infinite. See figure 14:

– 31 –



➤ The Klein-Maskit recombination can be carried out successively to create bulk replica 
symmetry preserving multi-invaraints for higher and higher number of parties. 

➤ The orbifold geometries that are dual to them are topologically a ball with singularities 
forming a trivalent tree. Each vertex of the tree has to be one of the following types 

  (2,2,n), (2,3,3), (2,3,4), (2,3,5)

A GENERAL REPLICA SYMMETRY PRESERVING MULTI-INVARIANT
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➤ If we want to preserve the replica symmetry for all 
configurations of boundary regions then, as the sizes of 
regions are varied, the singularities have to undergo a 
“crossing” transition from one admissible graph to 
another 

➤ This implies that the multi-invariants must be based on 
finite Coxeter groups!



➤ We consider the problem of multi-partite invariants that preserve bulk replica symmetry. 

➤ We solved this problem using the theory of virtually free Kleinian groups. This construction gave us 
infinitely many equalities of multi-invariants that the holographic state has to satisfy. 

➤ We solved the problem of replica symmetry preserving invariants as Coxeter invariants. 

➤ Although I didn’t talk about it, we have checked the bulk predictions from conformal field theory in a 
number of cases.  

➤ Interestingly Coxeter invariants also made an appearance in our earlier work that classified multi-
invariants that are entanglement monotones. Why? 

➤ Bulk replica symmetry in higher dimensions? Almost all our arguments generalize to higher 
dimensions. The one element that one has to worry about the is uniformization. 

➤ Equalities of multi-invariants only depend on the fact that it is computed by a saddle point. In 
particular, they are robust against higher derivative corrections. It would be interesting to check them 
for large  vector models and/or large  symmetric product orbifolds.N N

SUMMARY


