Non-perturbative Phase Diagram of $2d \mathcal{N} = (2,2)$ Super Yang-Mills Theory

ANOSH JOSEPH

University of the Witwatersrand

1st Joint India/South Africa String Meeting 14th Joburg Workshop on String Theory University of the Witwatersrand December 15 - 20, 2024

Based on

Phys. Rev. D **110** (2024) 5, 054507 2312.04980 [hep-lat]

PHYSICAL REVIEW D 110, 054507 (2024)

Nonperturbative phase diagram of two-dimensional $\mathcal{N} = (2,2)$ super-Yang-Mills theory

Navdeep Singh Dhindsa, 1,2,* Raghav G. Jha, Anosh Joseph, 4,‡ and David Schaich

Lattice as a Machinery for Non-perturbative Physics

Holographic conjecture has non-perturbative physics in it

A version of the conjecture:

Weakly coupled gravitational theories in D+1 dimensions

Strongly coupled $\mathrm{SU}(N)$ super Yang-Mills in D dimensions

Lattice as a Machinery for Non-perturbative Physics

How to study strongly coupled SYM?

At large and finite N?

Really hard!

Use spacetime lattice as a tool

Use lattice gauge theory

Lattice and SUSY

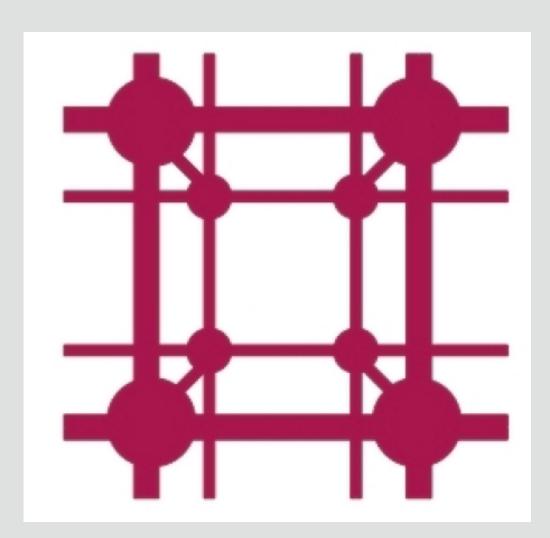
Naive discretization breaks SUSY

$$\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}$$

Appears that SUSY and lattice are not compatible

There exists a clever way to bring them together

Combine internal symmetry with spacetime symmetry [Witten 1988]



Lattice and SUSY

Resulting lattice is supersymmetric

Can preserve a subset of SUSY at finite lattice spacing

Requires 2^d supercharges in d spacetime dimensions

This condition is satisfied for many interesting theories:

$$\mathcal{N} = 4$$
 SYM in $4d$

Dimensional reductions of this theory

Includes
$$\mathcal{N} = (8,8)$$
 in $2d$

$$\mathcal{N} = (8,8) \text{ SYM in } 2d$$

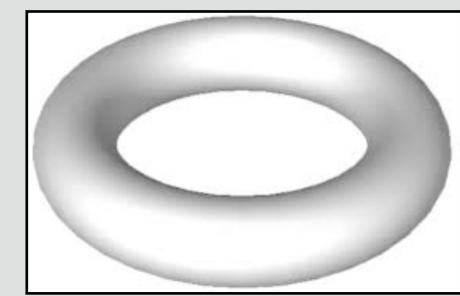
Has a well defined holographic dual

Can consider holography at finite T

Homogeneous D1 (black string) solutions

They wrap around spatial circle

Localized D0 (black hole) solutions



$$\mathcal{N} = (8,8) \text{ SYM in } 2d$$

At low T

First-order Gregory-Laflamme phase transition between two solutions

Transition is captured in the dual gauge theory

A "spatial deconfinement" transition

Magnitude of spatial Wilson line serves as order parameter

$$\mathcal{N} = (2,2) \text{ SYM in } 2d$$

This work

Focus on a gauge theory system with lower number of supercharges

Holographic dual has not been constructed yet

How much does it resemble to its 16 supercharge counterpart?

How does reduction in SUSY affect holographic features?

$$\mathcal{N} = (2,2) \text{ SYM in } 2d$$

Obtained from $\mathcal{N}=1$ SYM in 4d

$$S = \int d^4x \, \mathcal{L} = \int d^4x \, \text{Tr} \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{i}{2} \bar{\lambda} \gamma^{\mu} D_{\mu} \lambda \right)$$

$$\mathcal{N} = (2,2) \text{ SYM in } 2d$$

Symmetries of the 4d theory:

$$SO(4)_E \times U(1)$$

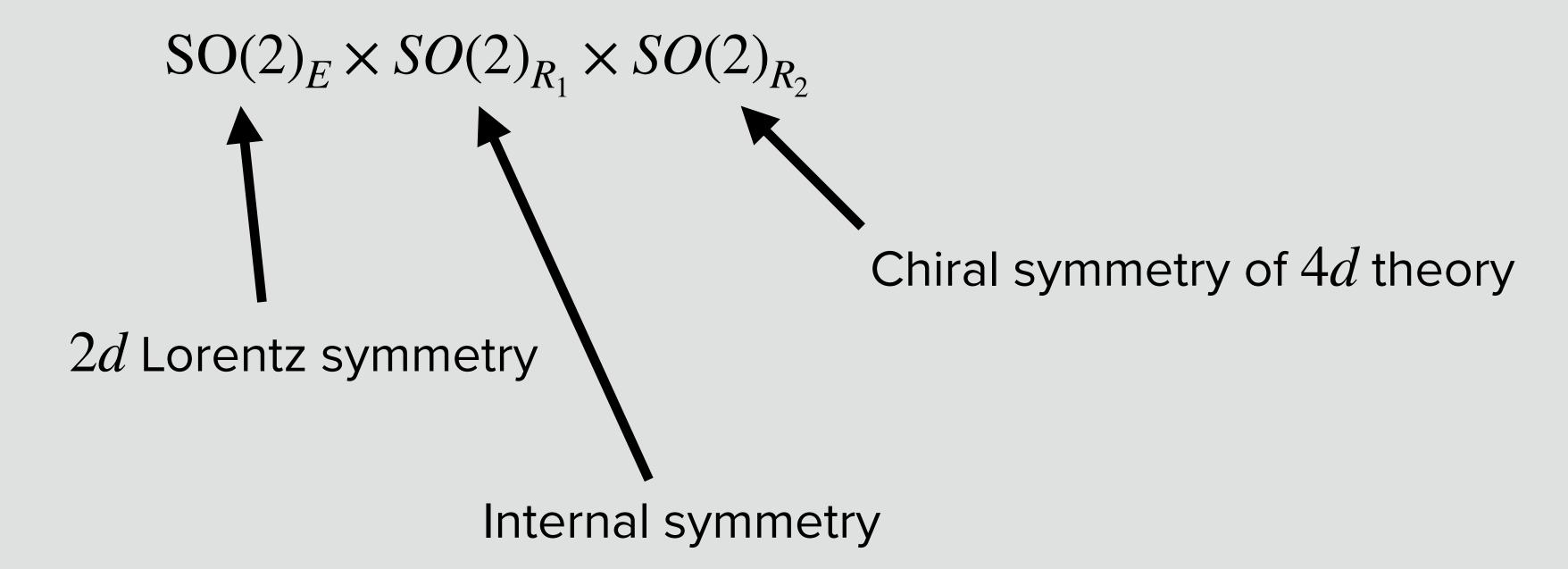
Euclidean rotational symmetry

Chiral U(1) R symmetry: $\lambda \rightarrow e^{-i\theta\gamma_5}\lambda$

$$\mathcal{N} = (2,2) \text{ SYM in } 2d$$

Dimensionally reduce the 4d theory to 2d

Symmetry group becomes



$$\mathcal{N} = (2,2) \text{ SYM in } 2d$$

Twist the theory

Just a change of variables in flat Euclidean spacetime

Define a **new rotation group**

$$SO(2)' \equiv \operatorname{diag}\left(SO(2)_E \times SO(2)_{R_1}\right)$$

Twisted rotation group

$$\mathcal{N} = (2,2)$$
 SYM in $2d$

Supercharges of the theory decomposes into

$$Q, Q_a, Q_{ab}$$

Fermions

$$\eta$$
, ψ_a , χ_{ab}

Bosons

$$A_a$$
, X_1 , $X_2 \rightarrow \mathcal{A}_a = A_a + iX_a$

$$\mathcal{N} = (2,2) \text{ SYM in } 2d$$

After the twist, action can be written as

$$S = Q\Psi$$

$$\Psi = \frac{N}{4\lambda} \int d^2x \operatorname{Tr} \left(\chi_{ab} \mathcal{F}_{ab} + \eta [\bar{\mathcal{D}}_a, \mathcal{D}_a] - \frac{1}{2} \eta d \right)$$

$$\mathcal{N} = (2,2) \text{ SYM in } 2d$$

SUSY transformations:

$$Q\mathcal{A}_a = \psi_a$$

$$Q\psi_a=0$$

$$Q\chi_{ab} = -\bar{\mathcal{F}}_{ab}$$

$$Q\bar{\mathcal{A}}_a = 0$$

$$Q\eta = d$$

$$Qd = 0$$

d: Auxiliary field

$$d = \sum_{a} [\bar{\mathcal{D}}_a, \mathcal{D}_a]$$

$$\mathcal{N} = (2,2) \text{ SYM in } 2d$$

Action:

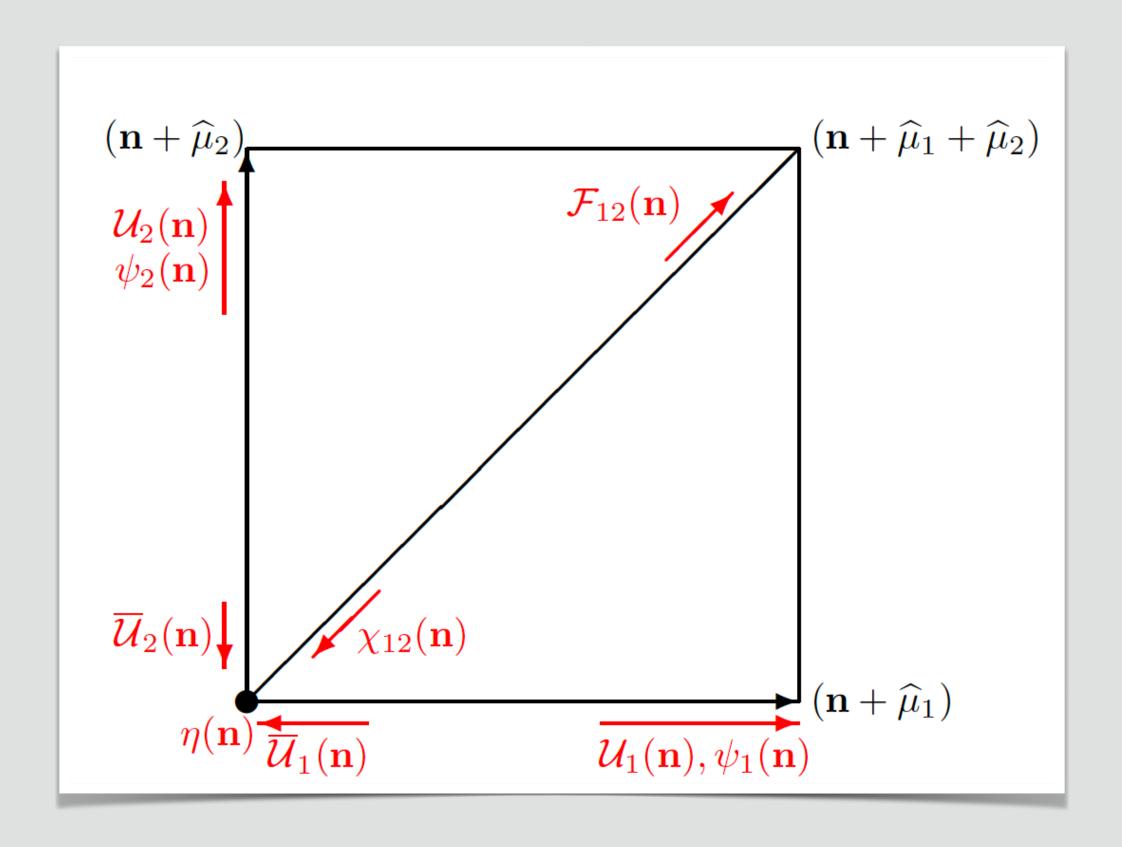
$$S = \frac{N}{4\lambda} \int d^2x \operatorname{Tr} \left(-\bar{\mathcal{F}}_{ab} \mathcal{F}_{ab} + \frac{1}{2} [\bar{\mathcal{D}}_a, \mathcal{D}_a]^2 - \chi_{ab} \mathcal{D}_{[a} \psi_{b]} - \eta \bar{\mathcal{D}}_a \psi_a \right)$$

Action is invariant under Q

$$QS = Q^2\Psi = 0$$

Discretize on a square lattice

$$\mathcal{A}_a \rightarrow \mathcal{U}_a$$



Discretize on a square lattice

$$S = \frac{N}{4\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[-\bar{\mathcal{F}}_{ab}(n)\mathcal{F}_{ab}(n) + \frac{1}{2} \left(\bar{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) \right)^{2} - \chi_{ab}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n) - \eta(n) \bar{\mathcal{D}}_{a}^{(-)} \psi_{a}(n) \right]$$

Supersymmetric

Local

Gauge invariant

Free from fermion doublers

All nice properties!

Impose periodic/anti-periodic boundary conditions

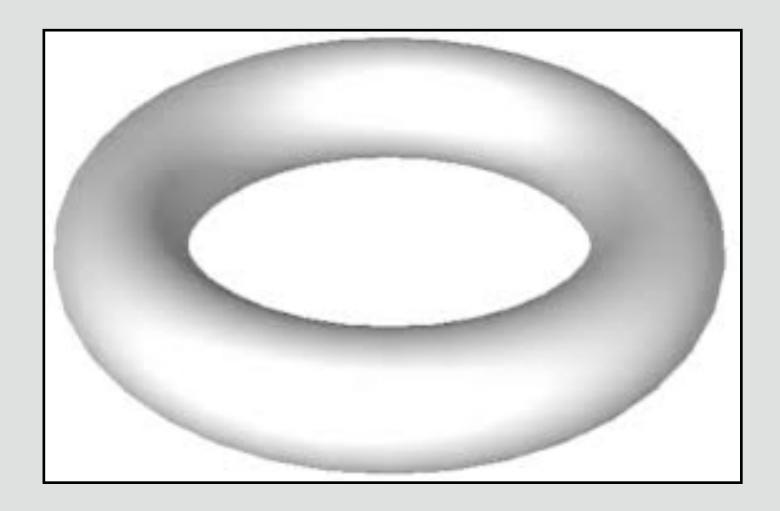
Periodic on spatial circle

Anti-periodic on temporal circle

Two extents:

$$L = aN_x \qquad \beta = aN_\tau$$

a: Lattice spacing



Dimensionless couplings:

$$r_{\tau} \equiv \beta \sqrt{\lambda} = N_{\tau} \sqrt{\lambda_{\text{lat}}} = 1/t$$
 $r_{x} \equiv L \sqrt{\lambda} = N_{x} \sqrt{\lambda_{\text{lat}}}$

$$\lambda_{\text{lat}} = \lambda a^2$$

Another parameter: aspect ratio lpha

$$\alpha = \frac{L}{\beta} = \frac{r_{\chi}}{r_{\tau}} = \frac{N_{\chi}}{N_{\tau}}$$

Perform simulations at fixed r_{τ} and r_{χ}

How Do We Simulate This Theory?

Use path integral Monte Carlo

$$\langle O \rangle = \int [D \text{ all fields}] O e^{-S}$$

This integral has a large dimensionality

Implement this integral on a lattice

How Do We Simulate This Theory?

A simple example:

Consider path integral of pure Yang-Mills with SU(3) gauge group

$$Z = \int DU \ e^{-\beta S[U]}$$

On a hyper-cubic lattice with 10 lattice sites in each direction

4 links field U_{μ} per site

Each link field is determined by 8 parameters of SU(3)

Dimensionality of the integral will be:

$$(10 \times 10 \times 10 \times 10) \times 4 \times 8 = 320,000$$

How Do We Simulate This Theory?

Large numbers!

They are telling us that

We need some kind of statistical / sampling method

Use **Monte Carlo** sampling

We will use a sophisticated version of this:

Rational Hybrid Monte Carlo (RHMC) algorithm

Our code is publicly available on **GitHub**

Coming back to our theory, $\mathcal{N}=(2,2)$ SYM ...

Spatial deconfinement transition signals topology changing transition

Between **black-string** and **black-hole** geometries

Observable: Unitarized spatial Wilson line

$$W^{u} \equiv \frac{1}{NN_{\tau}} \sum_{t=0}^{N_{\tau}-1} \operatorname{Tr} \left[\prod_{x=0}^{N_{x}-1} U_{x}(x,t) \right]$$

Unitarized link field $U_a(n)$ is extracted from

$$\mathcal{U}_a(n) = e^{X_a(n)} U_a(n)$$

Also monitor unitarized Polyakov loop

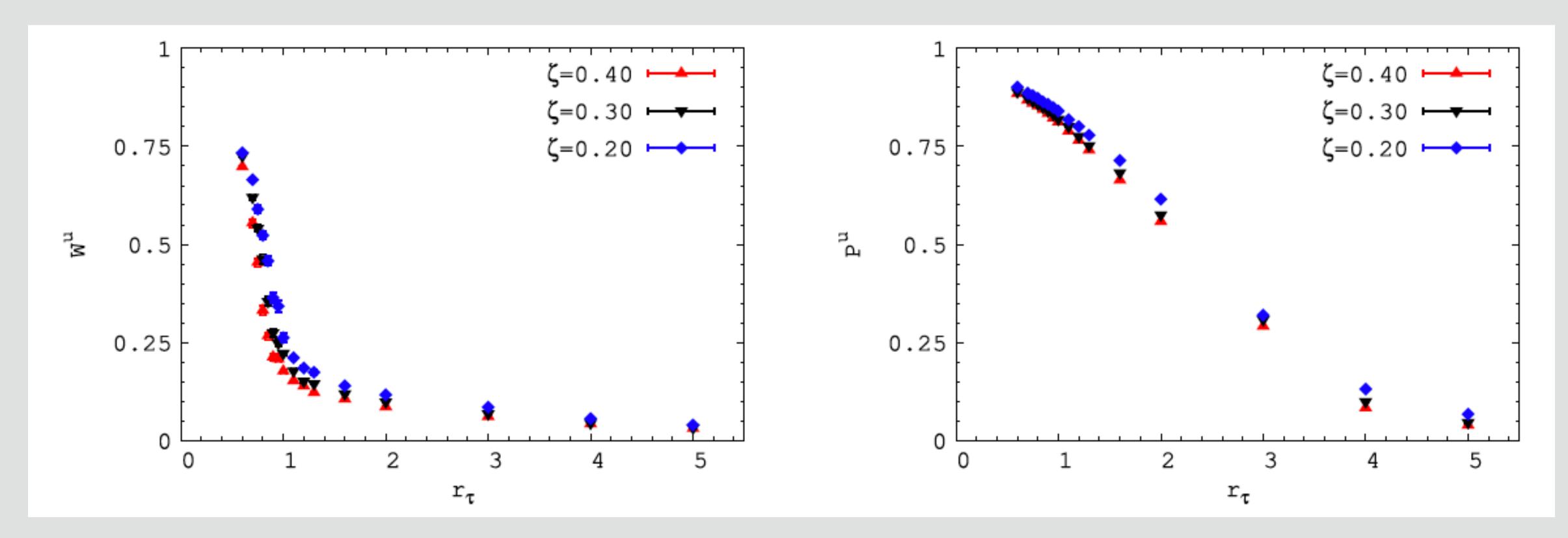
$$P^{u} \equiv \frac{1}{NN_{x}} \sum_{x=0}^{N_{x}-1} \operatorname{Tr} \left[\prod_{t=0}^{N_{\tau}-1} U_{t}(x,t) \right]$$

Calculations need to remain in the deconfined phase for P^u

$$0.5 \lesssim \langle |P^u| \rangle \leq 1$$

To admit a holographic dual interpretation in terms of black-hole geometry

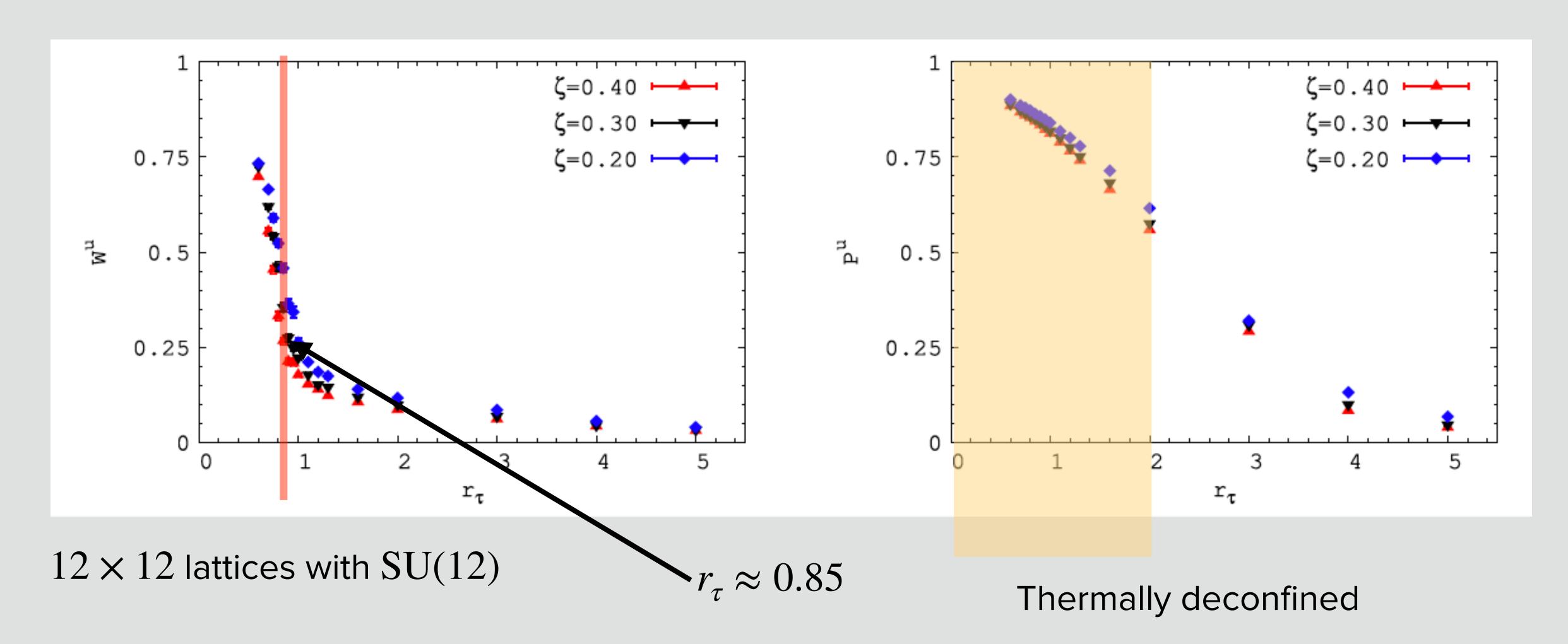
Results from our work...



 12×12 lattices with SU(12)

 ζ : a parameter To control flat directions

Results from our work...

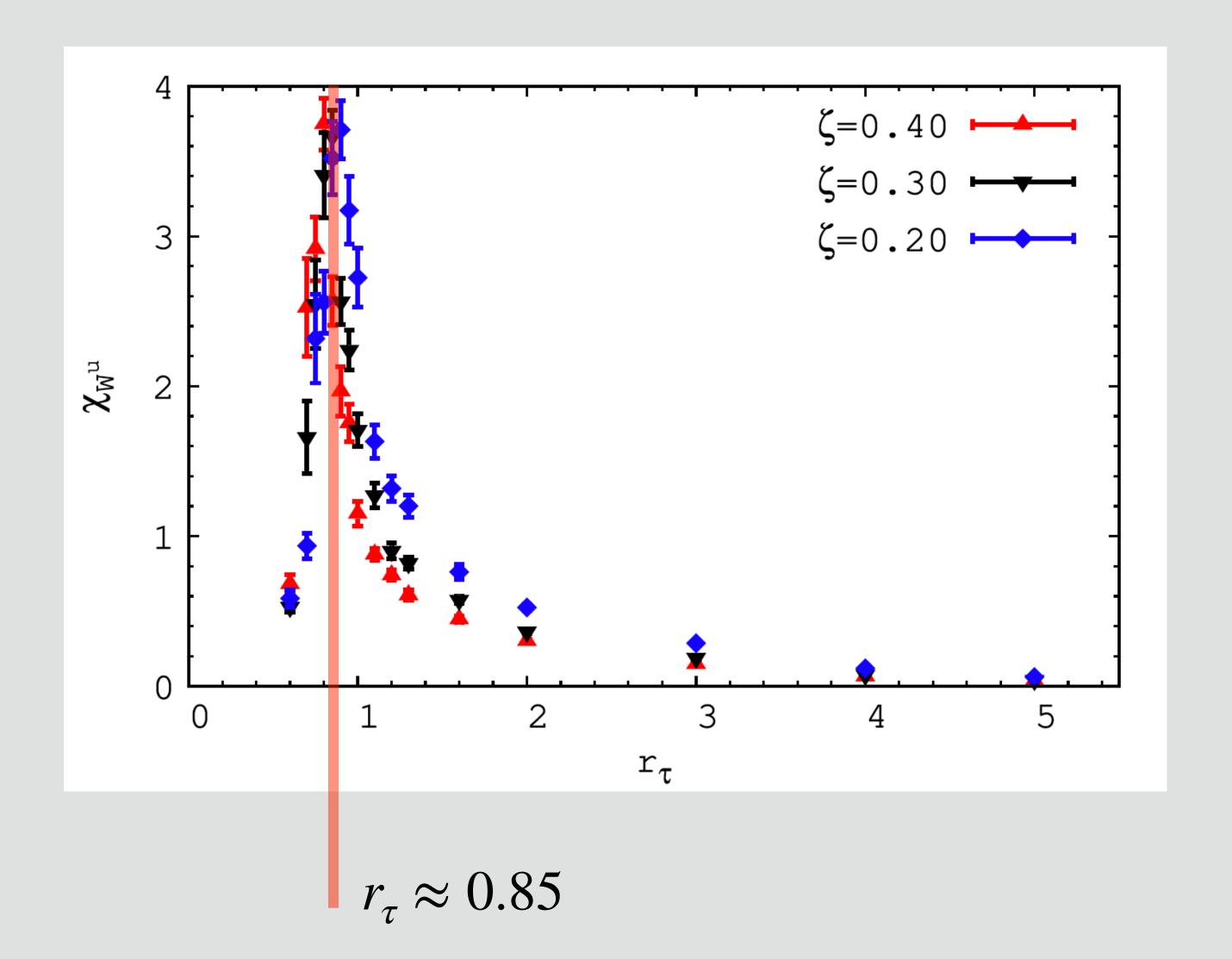


Need to pinpoint the transition

Look at Polyakov loop susceptibility

$$\chi_{w^{u}} \equiv N^{2} \left(\langle |W^{u}|^{2} \rangle - \langle |W^{u}| \rangle^{2} \right)$$

Again, clear that $r_{\tau} \approx 0.85$



How to Find Order of the Transition?

Find the N dependance of $\chi_{\rm max}$

$$\chi_{\text{max}} = CN^{2b}$$

For first order transition:

$$\chi_{\rm max} \propto N^2$$

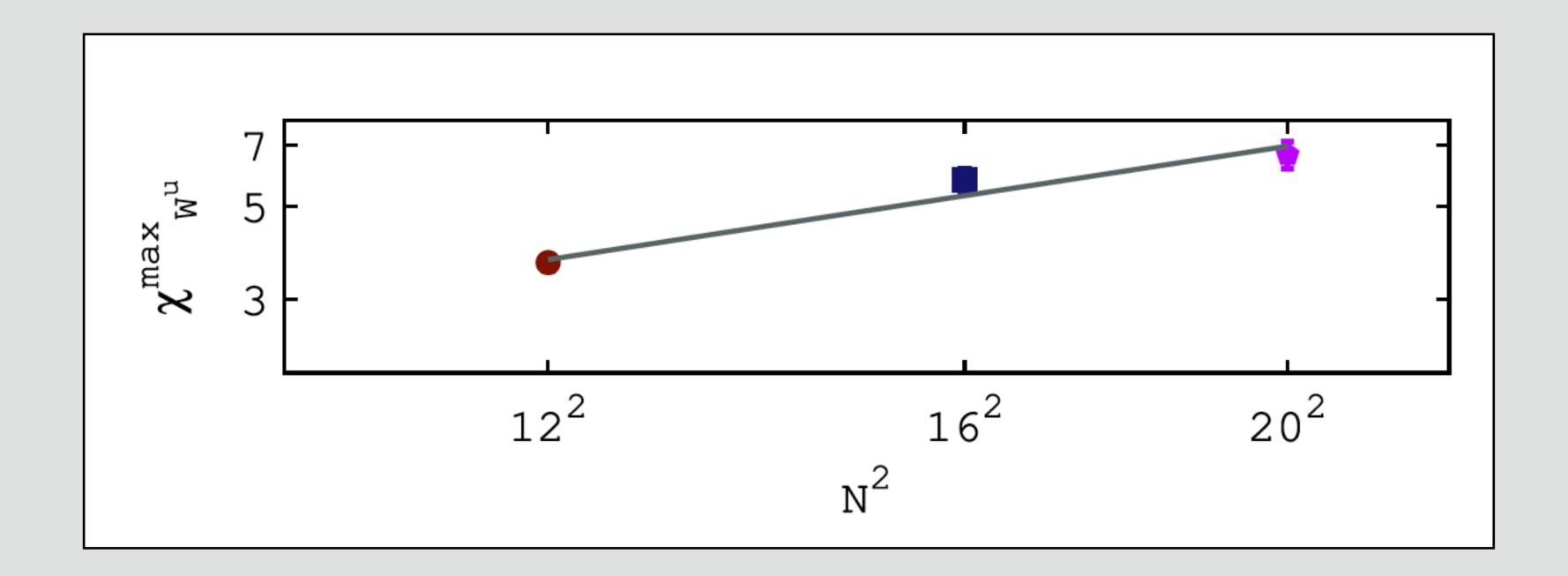
For a crossover, peak height is independent of N

For a continuous second-order transition 0 < b < 1

Order of the transition

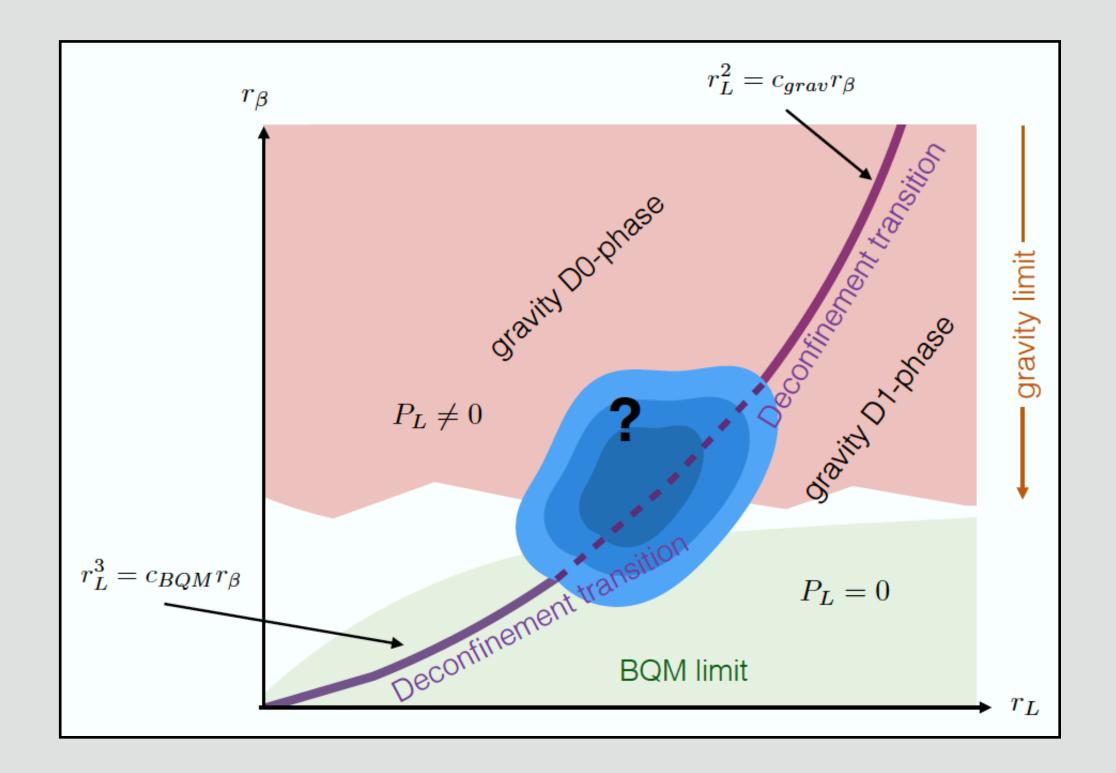
Fit gives *b*= 0.61(8)

A continuous 2nd order transition in $\mathcal{N}=(2,2)$ SYM

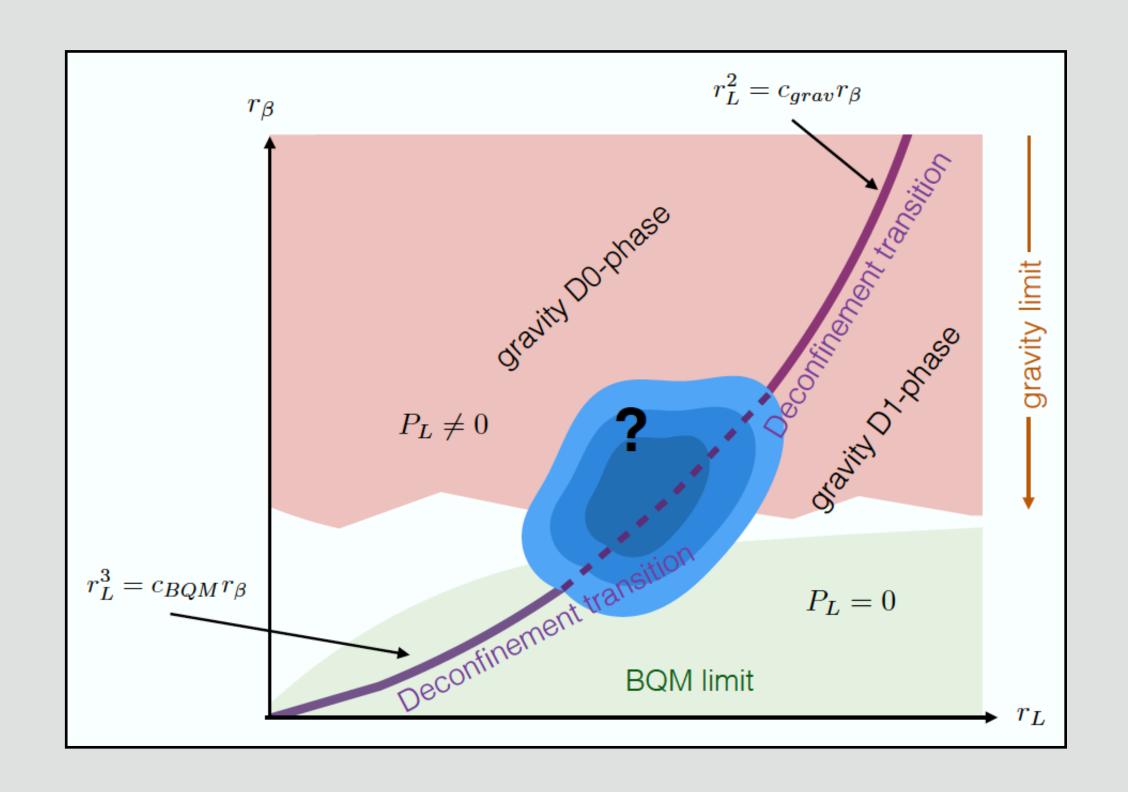


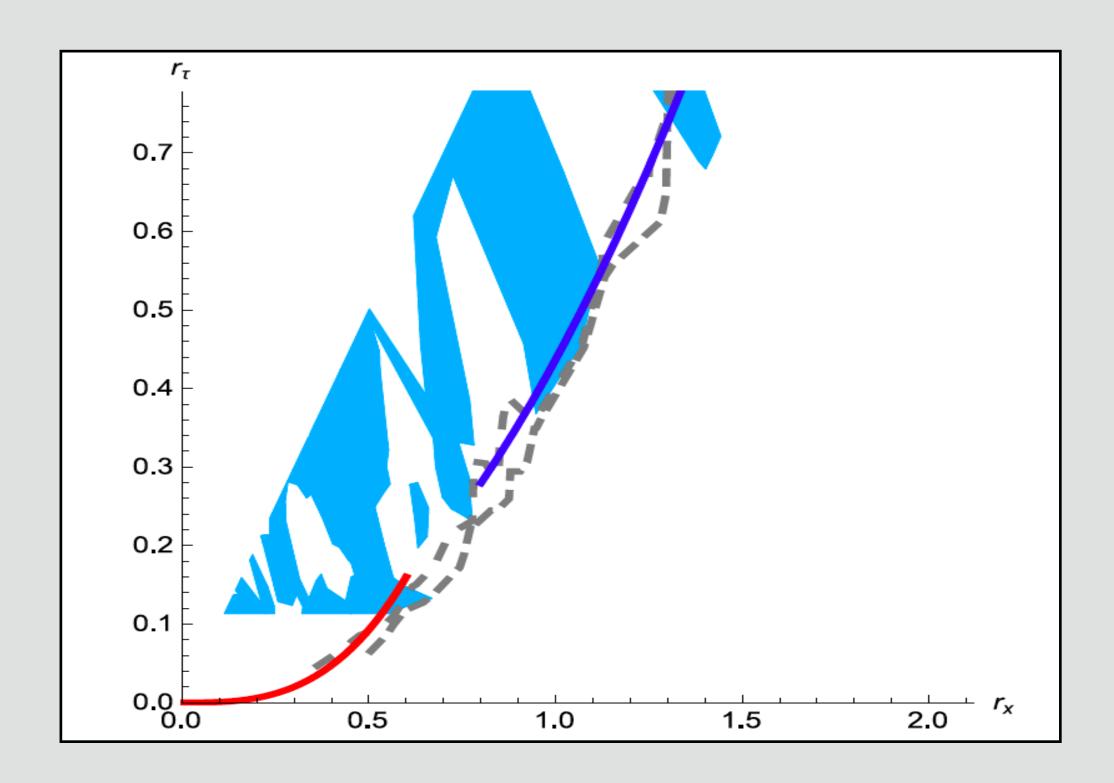
Note: In $\mathcal{N} = (8,8)$ SYM the transition is 1st order!

What is known in $2d \mathcal{N} = (8,8)$ SYM theory?



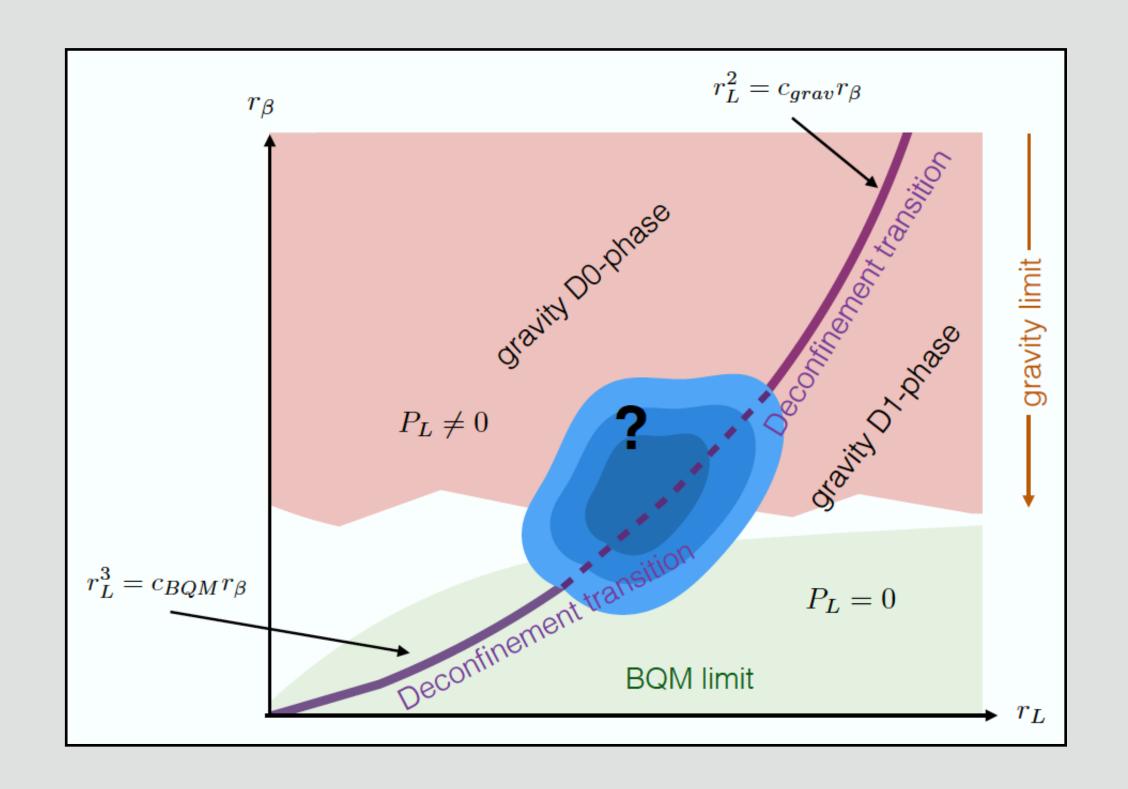
What is known in $2d \mathcal{N} = (8,8)$ SYM theory?

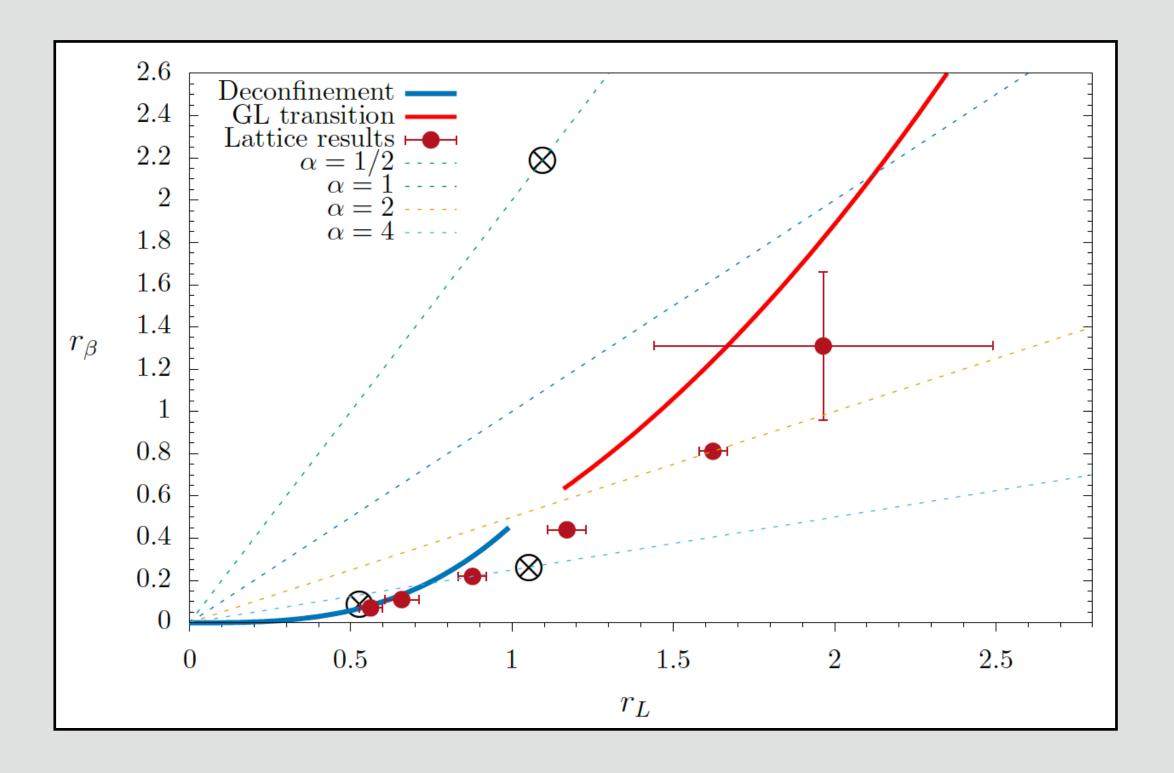




Catterall, Joseph, Wiseman JHEP 12 (2010) 022

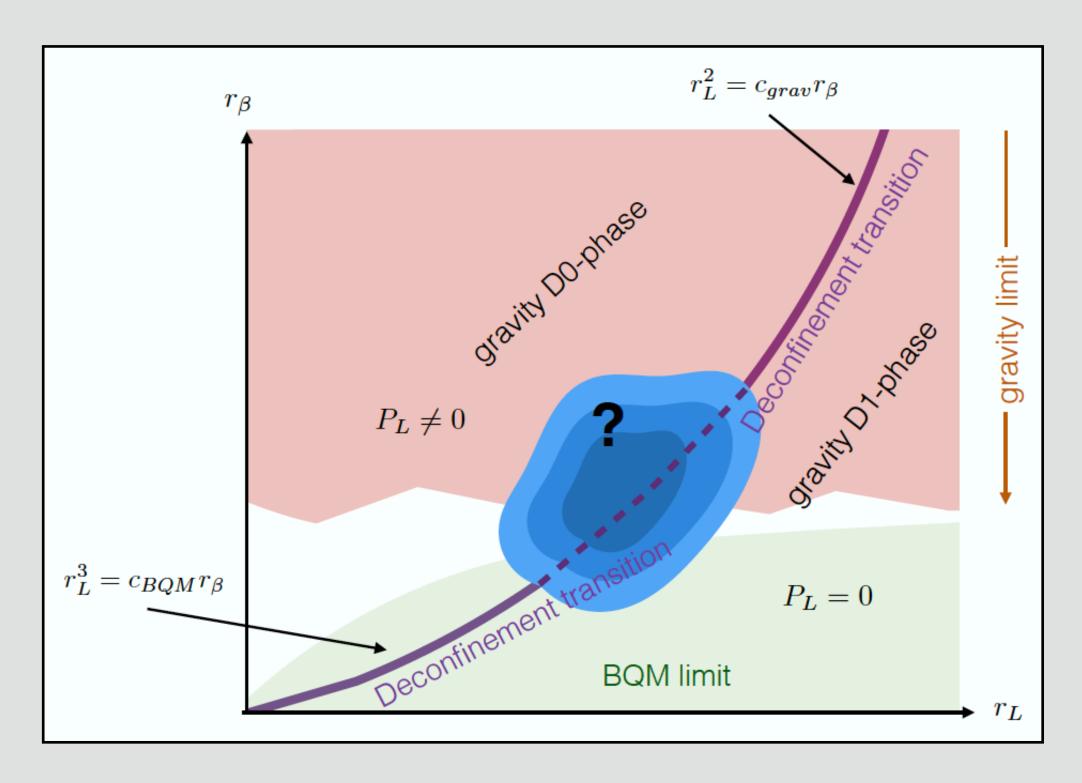
What is known in $2d \mathcal{N} = (8,8)$ SYM theory?



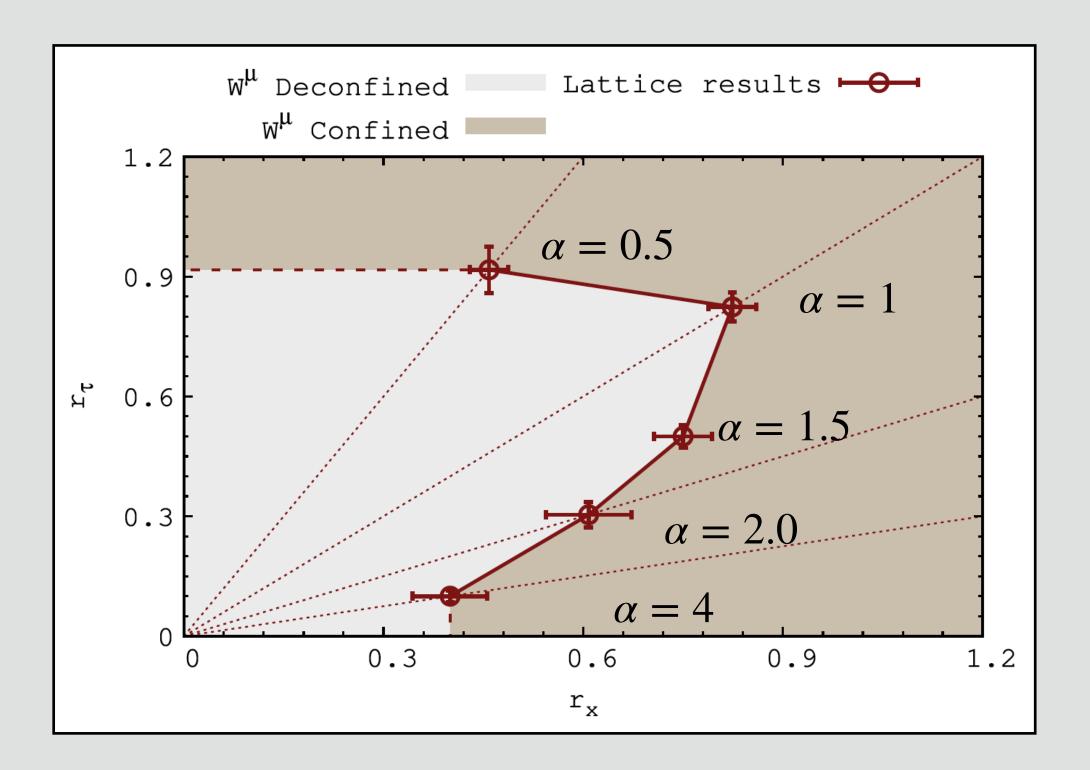


Catterall, Jha, Schaich, Wiseman Phys. Rev. D **97** (2018) 8 086020

This work: $2d \mathcal{N} = (2,2)$ SYM theory



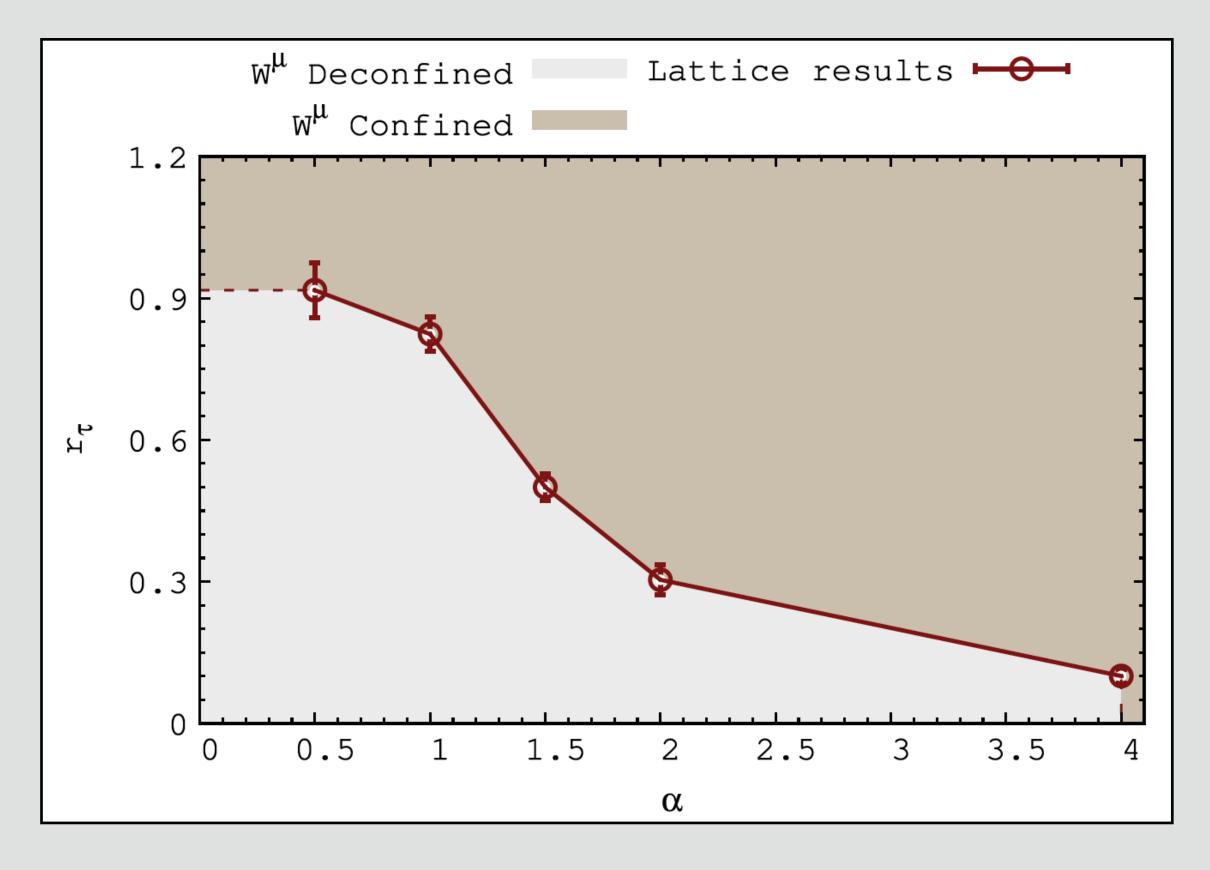
 $2d \mathcal{N} = (8,8)$ SYM theory



 $2d \mathcal{N} = (2,2)$ SYM theory This work

Phase Diagram in (α, r_x) Plane

Another look:



This work

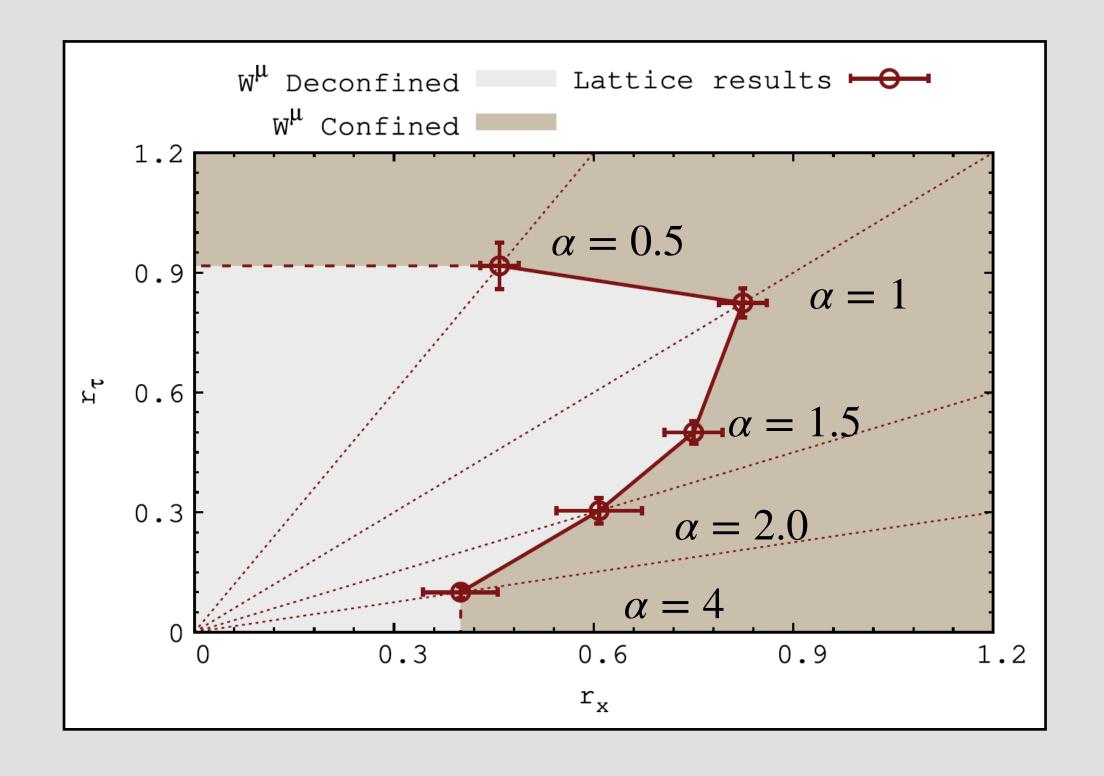
For smaller $\alpha \leq 1$, we have $r_{\tau}^{(c)}$ roughly constant, $r_{\tau}^{(c)} \approx 1$

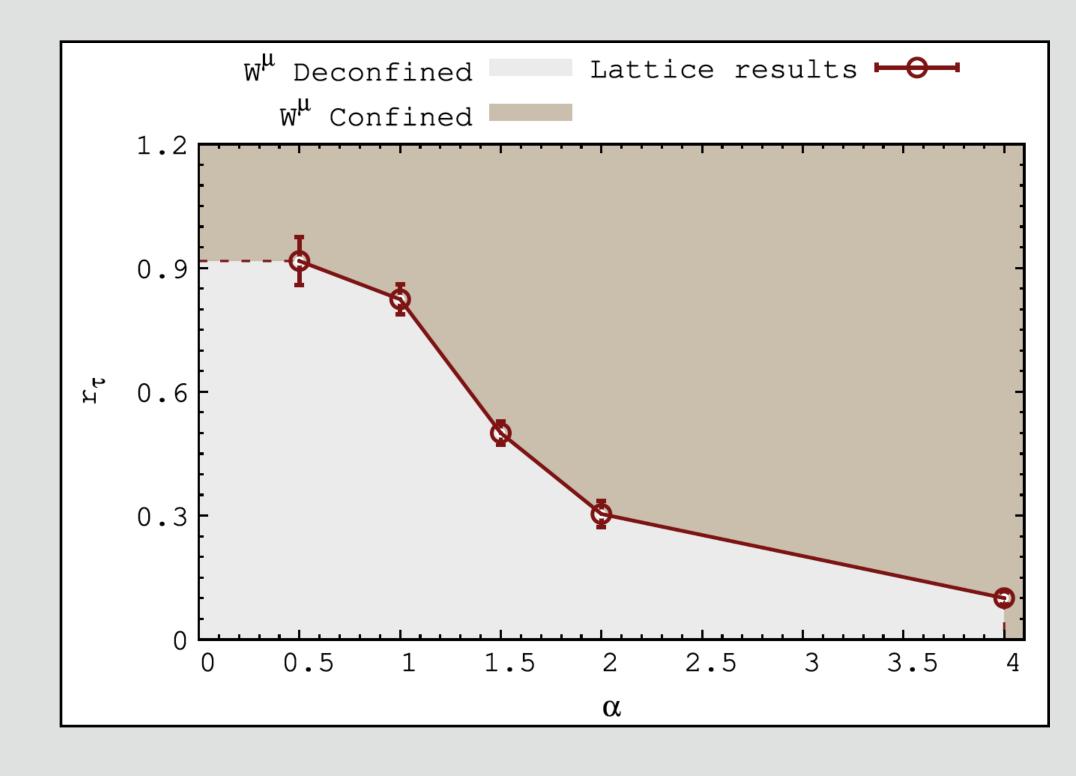
Order of the transition

Absence of spatial deconfinement transition, where holography is valid, $r_{ au}\gg 1$

Does not rule out existence of gravity dual.

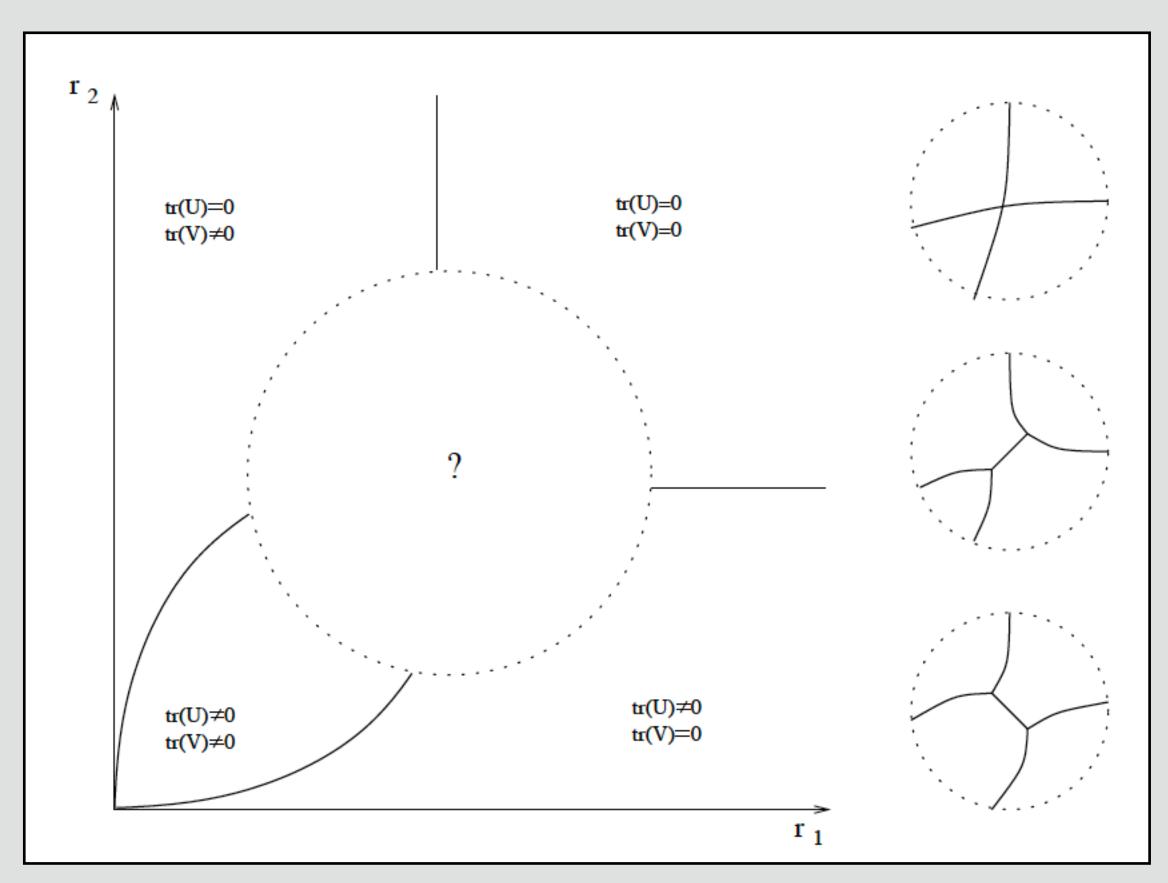
Rules out possibility of topology changing transition





Future Directions

Complete this phase diagram



Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk, Wiseman JHEP **01** (2006) 140

Future Directions

Study the "extent of scalars" $\operatorname{Tr} X_i^2$

Related to bound states of D branes

Another question:

How does the phase diagram look in $2d \mathcal{N} = (8,8)$ SYM?

END

