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Introduction and motivation



Goal

Unraveling (quantum thermodynamic) bounds on critical many-body

systems using the quantum null energy condition
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Quantum Thermodynamics

This is an emerging field with widespread applications.

• The one shot work cost of creating a state and the extractable work

from a state is bounded by the hypothesis testing relative entropy

[Yunger Halpern and Renes, 2016])

• Quantum entanglement can lead to anomalous heat flows

[Bera et al., 2017]

• Few results for quantum many-body systems
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Irreversible entropy production

• ∆S = ∆Srev +∆Sirr

• The classical Clausius inequality bounds the irreversible entropy

production as ∆Sirr ≥ 0
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Quantum irreversible entropy production has two contributions

∆Sirr = S(ρE ||ρ(0)E ) + IρSE
(S : E ),

where

IρSE
(S : E ) = S(ρSE ||ρS ⊗ ρE )

1. S(ρE ||ρ(0)E ) → the loss of information contained purely in the

environment

2. IρSE
(S : E ) → loss of information in system-environment correlations

6



For system-environment couplings with a global fixed point ρ∗S

U
(
ρ∗S ⊗ ρ

(0)
E

)
U† = ρ∗S ⊗ ρ

(0)
E

∆Sirr = S(ρ
(0)
S ||ρ∗S)− S(ρS ||ρ∗S).

ρ
(0)
S - initial system state

ρ∗S - equilibrium state (fixed point of quantum channel)

∆Sirr is manifestly positive due to monotonicity of relative entropy
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Quantum bounds on irreversible entropy production

• Quantum thermodynamics → lower bound on ∆Sirr in terms of the

Bures distance between the out-of-equilibrium state and the final

equilibrium state [Deffner and Lutz, 2010]

• Also an upper bound related to the Bremermann-Bekenstein bound

[Bekenstein, 1981] on the maximum rate of information transfer

with a given amount of energy

• Can we find similar bounds for critical many-body systems described

by conformal field theory?
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QNEC: the key tool

Setup: Quenches in a 1+1 d CFT

Which quenches are physically allowed?

Quantum Null Energy Condition (QNEC)

Q± := 2π⟨t±±⟩ −
(
∂2±S − 6

c
(∂±S)

2

)
≥ 0,

Any quench that violates QNEC is not physical
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Q± := 2π⟨t±±⟩ −
(
∂2±S − 6

c
(∂±S)

2

)
Derivatives are with respect to left and right null deformations of the end

point of the interval

QNEC can also be written as [Leichenauer et al., 2018]

δ2

δx±
Srel(ρR |σR) ≥ 0
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QNEC has been proven for

• Free QFTs [Bousso et al., 2016, Malik and Lopez-Mobilia, 2020]

• Holographic QFTs assuming entanglement wedge nesting

[Koeller and Leichenauer, 2016]

• Two-dimensional CFTs assuming the state is cyclic

[Balakrishnan et al., 2019]

• General Poincaré-invariant QFTs for states with

finite averaged null energy and relative entropy with respect to the

vacuum [Ceyhan and Faulkner, 2020]
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Holographic global quench



Holographic model for quenches

• Instantaneous transition between momentum carrying thermal states

at time u = 0

• Holographic dual is two BTZ geometries glued across a null shock

The energy momentum tensor of the CFT is

⟨t±±⟩ =
c

12π
(Θ(−u)Li±(x

±) + Θ(u)Lf±(x
±)), ⟨t+−⟩ = 0,

Constant L± = µ2
± correspond to a BTZ black brane
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Bulk spacetime

ds2 =
−2du dz + (−1 + 2m(u, y)z2)du2 + 2j(u, y)z2du dy + dy2

z2
,

with

m(u) = θ(−u)(µi
+

2
+ µi

−
2
) + θ(u)(µf

+

2
+ µf

−
2
),

j(u) = θ(−u)(µi
+

2 − µi
−
2
) + θ(u)(µf

+

2 − µf
−
2
)
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Einstein equations are satisfied with a bulk stress tensor with non-zero

components:

Tuu = q(u)z + p(u)j(u)z3, Tuy = p(u)z ,

where

8πGq(u) = δ(u)(µf
+

2 − µi
+

2
+ µf

−
2 − µi

−
2
),

8πGp(u) = δ(u)(µf
+

2 − µi
+

2 − µf
−
2
+ µi

−
2
).
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Cut and glue method to compute entropy

• Map the pre and post quench geometries to Poincaré AdS via two

separate diffeomorphisms (uniformization maps)

• the quench surface (u=0) maps to two separate surfaces which are

glued by identifying coordinates

• Compute geodesic lengths to obtain entanglement entropy

[Ryu and Takayanagi, 2006, Hubeny et al., 2007] 15



• Intersection points are solved using extremization conditions for the

geodesic at the shock

• These are algebraic equations for qL,R

• Lots of technical subtleties
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Post-quench entanglement entropy growth

1. Early time quadratic growth: entropy grows as u2 for small times

∆S =
c

6

(
µf
+

2
+ µf

−
2 − µi

+

2 − µi
−
2
)
u2

2. Intermediate time linear growth: for

ℓ→ ∞, u → ∞, 0 < u
ℓ ≤ 1

2

∆S =
c

6

(
2(s f − s i )u

)
3. Approach to equilibrium: For times u ≈ ℓ

2 the entropy behaves as

Sf − S ∼
(
ℓ

2
− u

)3/2

Generalize earlier results from [Liu and Suh, 2014, Hubeny et al., 2013]

for non-rotating to non-rotating BTZ quenches.
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Generalized Clausius inequality

Keep pR fixed at (z = ϵ, u, ℓ) and evaluate Q± by deforming

pL = (ϵ, u, 0)
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• It is enough to check Q+ at u → 0

• Q− should be checked at all times
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Early time

Analytics possible when µf
±u ≪ 1

Q+ =
c

6

1

4

(
3µf

+

2 − µf
−
2 − 3µi

+

2
+ µi

−
2
)
,

Q− =
c

6

1

4

(
3µf

−
2 − µf

+

2 − 3µi
−
2
+ µi

+

2
)
.
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The white region in the figure below is allowed by QNEC.

T i,f =
2

π

µi,f
+ µi,f

−

µi,f
+ + µi,f

−
, s i,f =

c

6

(
µi,f
+ + µi,f

−

)
Bounds are stronger than the classical Clausius inequality (NEC)
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Why is QNEC violated?

Holographic proof of QNEC [Koeller and Leichenauer, 2016]:

• Assumes the NEC is satisfied in the bulk (true for us)

• Bulk is a smooth classical geometry which is the solution of a

two-derivative gravitational theory

In our case

• Likely that the bulk null shock cannot be realized as a limit of a

smooth solution of Einstein’s gravity minimally coupled to matter

fields.

• ∆J = 0 is always allowed.

• Consistent with [Bhattacharyya and Minwalla, 2009] where the

Vaidya spacetime is realized using a massless scalar field
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A question

• These holographic global quenches are different from the more

standard Cardy-Calabrese CFT quenches

• Do we find similar QNEC bounds in those setups?
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Global and local quenches in

CFTs



Global quench [Calabrese and Cardy, 2005]

• Prepare system in the translation invariant eigenstate |ψ0⟩ of H0

• Regulate: e−ϵH |ψ0⟩
• Quench: evolve with critical CFT Hamiltonian H: e−itH−ϵH |ψ0⟩
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For an interval A

S
(n)
A = Tr(ρnA) = cn ⟨Φn(z1)Φ−n(z2)⟩UHP

= cn

(
|z1 − z̄2||z2 − z̄1|

|z1 − z2||z̄1 − z̄2||z1 − z̄1||z2 − z̄2|

)2n∆n

Fn(η)

Φn,−n are twist fields with ∆n = c
24 (1−

1
n2 )

Fn(η) ≈ 1 when η ≈ 0, 1 [Calabrese and Cardy, 2007b]
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w =
2ϵ

π
log z ,

maps the UHP to the strip with width 2ϵ.
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The entanglement entropy is:

SA = −∂nS (n)
A

∣∣∣
n=1

The stress tensor can be computed using the Schwarzian and is

⟨T (w)⟩ = ⟨T̄ (w̄)⟩ = cπ

192ϵ2

The averaged null energy diverges

ANE =

∫
dw ⟨T (w)⟩ → ∞

QNEC has been proven only for states with finite ANE and relative

entropy with respect to the vacuum
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We choose an interval from x1 = 0 to x2 = ℓ and evaluate QNEC by

deforming the first point

QNEC is satisfied for this global quench,

unlike the holographic case

Q+ =
cπ2 sech

(
π(ℓ−2t)

4ϵ

)2

48ϵ2
≥ 0,

Q− =
cπ2 sech

(
π(ℓ+2t)

4ϵ

)2

48ϵ2
≥ 0
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Local joining quench [Calabrese and Cardy, 2007a]

• Cut a CFT into two half lines A and Ā

• Prepare a state that is the vacuum on each of the half lines:

|0⟩A ⊗ |0⟩Ā
• Join the two halves at t = 0 and evolve with CFT Hamiltonian of

the full line H

29



z(w) =
w

ϵ
+

√
w2

ϵ2
+ 1
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The entanglement entropy can be computed as a correlation function as

before

The stress tensor is

⟨T (w)⟩ = c

12π

ϵ2

(w2 + ϵ2)2

ANE =

∫
dw ⟨T (w)⟩ = 3π

2ϵ
→ ∞
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At least one QNEC is violated for any choice of an equal time interval

For x±1 , x
±
2 > 0 and x2 > x1, in the t, x1, x2 ≫ ϵ limit

Q+(1) =
c

6

(x1 − t)(x2 − t)(x21 − 5x1x2 + x22 − 3(x1 + x2)t − 3t2)

2(x1 − x2)2(x1 + t)(x2 + t)ϵ2
< 0
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• General proof of QNEC [Ceyhan and Faulkner, 2020] assumes: finite

ANE and finite relative entropy with respect to the vacuum

• This state has finite relative entropy since it is in the identity sector

(fusion of two identities can only produce identity and descendants)

[Stéphan and Dubail, 2011]

• The local joining quench is a counter example to the QNEC when

the ANE is not finite
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Floquet CFT on a circle [Jiang and Mezei, 2024]

• 1+1-d CFT on a circle of circumference 2π

• For time T0 evolve with

H0 =

∫ 2π

0

dxT00(x) = L0 + L̄0 −
c

12

• Then for time T1 evolve with

H1 =

∫ 2π

0

dx sin2
(x
2

)
T00(x) = L0−

L1 + L−1

2
+L̄0−

L̄1 + L̄−1

2
− c

12

• Time reversal symmetric case: start with the vacuum at the

midpoint of H0 evolution

• Time evolution in Heisenberg picture→ time dependent SL(2,R)
transformation
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• Entanglement entropy computed as a two point function using the

time dependent SL(2,R)

• Energy momentum tensor calculated by mapping to the UHP

vacuum and using the Schwarzian

System has three phases depending on T0,1 [Wen and Wu, 2018]:

1. Heating phase (entropy grows linearly in time)

2. Non-heating phase (entropy oscillates in time)

3. Phase transition (entropy is logarithmic in time)
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Heating phase QNEC

With x1 = 0, x2 = 2 and T0 = 1,T1 = 8
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Non-Heating phase QNEC

With x1 = 0, x2 = 2 and T0 = 1,T1 = 6
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QNEC at Phase transition

With x1 = 0, x2 = 2 and T0 = 1,T1 = 7.8326
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• ANE has to be evaluated numerically by integrating upto some

cutoff null coordinate x±c

• Find that ANE → ∞ as x±c → ∞
• Another counter example to QNEC when the ANE is not finite
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Outroduction



Conclusion

• QNEC in holographic quenches → bounds on entropy production

• Likely due to bulk not being a limit of a solution to Einstein gravity

coupled to matter

• NEC need not imply entanglement wedge nesting in discontinuous

spacetimes

• CFT QNECs → counter examples to possible generalizations of

Faulker and Ceyhan’s proof
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Outlook

• Can we place bounds on slower holographic quenches?

• [Almheiri et al., 2019] setup is an interesting model for quenches

• possible relaxations of the assumptions in Faulkner and Ceyhan’s

proof

• Implications of QNEC for spin chains via Temperley-Lieb algebra

• Bounds from Rènyi QNEC [Moosa et al., 2021]
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Thank you.
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