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Black holes

2



A black hole in a two derivative theory in asymptotically flat D
dimensional space-time can carry

– U(1) charges Qk

– angular momentum Ji in Cartan subalgebra of SO(D-1)

– mass M

The Bekenstein-Hawking entropy takes the form

Sbh =
A

4GN
= f(Q,M,J)

Q, J have multiple components in general 3



A two derivative action scales as λD−2 under

gµν → λ2gµν , Bµν → λ2Bµν , Aµ → λAµ, φ→ φ

⇒ scaling property of the entropy in D dimensions

f(λD−3Q, λD−3M, λD−2J) = λD−2 f(Q,M,J)

To take macroscopic limit, we take

M ∼ λD−3, Q ∼ λD−3, J ∼ λD−2

and take λ large

Then
Sbh ∼ λD−2

Goal: Compare the entropy with log(degeneracy) from some
microscopic counting of degeneracy of states. 4



Chemical potentials

β =
∂Sbh

∂M
, µ =

1
β

∂Sbh

∂Q
, ω =

1
β

∂Sbh

∂J

Scaling from Sbh ∼ λD−2, M,Q ∼ λD−3, J ∼ λD−2

β ∼ λ, µ ∼ 1, ω ∼ λ−1

Wald’s formula gives correction to the entropy from classical
higher derivative terms and the scaling properties are modified.

Loop corrections give additional terms of order lnλ which also
violate the scaling properties 5



While entropy=log(degeneracy) has been tested in many
examples in string theory, there remained one open issue

Strominger, Vafa; · · ·

The computation of degeneracy is done by representing the
black hole states as states of some brane system carrying the
same charge as the black hole

The dynamics of the branes is understood at weak string
coupling and that is where the counting is done

The black hole description is valid only when gravitational
coupling is strong enough so that the horizon size exceeds the
Compton radius.

How can we compare the two expressions?

Answer: Try to compare supersymmetric index of BPS black
holes which does not change as we vary the coupling constant. 6



Supersymmetric Index
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Consider a supersymmetric theory in asymptotically flat D
space-time dimensions

I ≡ TrQ,J′,k=0

[
e−βHe2πiJ0 (2J0)n

]
J0 some particular Cartan generator of SO(D-1), k: momentum

J′ represents Cartan generators other than J0

The trace is taken over states at fixed Q, J′ and k=0

The trace gets contribution from only supersymmetric states
that break 2n (or less) J′-invariant supersymmetries

Bachas, Kiritsis hep-th/9611205; Gregori, Kiritsis, Kounnas, Obers, Petropoulos, Pioline hep-th/9708062

Dabholkar, Gomes, Murthy, A.S., arXiv:1009.3226

n=0⇒Witten index

– gets contribution from only vacuum states that preserve all
supersymmetries 8



I = TrQ,J′,k=0

[
e−βHe2πiJ0 (2J0)n

]
≡ eSBPS−βMBPS

eSBPS is called the index and receives contribution from
supersymmetric (black hole) microstates

1. In D=4 the rotation group is SU(2)

J0 is the third generator of the rotation group, J′ trivial

2. In D=5 the rotation group is SO(4) = SU(2)L × SU(2)R

We can take J0 = J3R, J′ = J3L

SBPS is a function of J3L and electric charges

9



On the microscopic side we can easily compute the index but on
the black hole side we calculate the degeneracy via entropy

Assumption: Index and degeneracy are equal at generic
coupling

Can we do better by computing the index on the black hole side?
Iliesiu, Kologlu, Turiaci; Cabo-Bizet, Cassani, Martelli, Murthy

10



Gravitational path
integral for the index
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Perform a path integral over all fields, weighted by
exp[−action]× (2J0)n, with the following asymptotic conditions

1. Euclidean time τ and the azimuthal angles φ periodically
identified as

(τ, φ) ≡ (τ + β, φ− iωβ)

2. The time components of the gauge fields take asymptotic
values

Aτ = −iµ

3. Choose βω0 = −2πi, ω0: conjugate to J0

Computes Gibbons, Hawking

Z = Tr
[
e−βH−βµ.Q−βω′.J′+2πiJ0 (2J0)n

]

We shall analyze the formula from the statistical side and the
gravitational side 12



Statistical side

Z = Tr
[
e−βH−βµ.Q−βω′.J′+2πiJ0 (2J0)n

]
Use

TrQ,J′,k=0

[
e−βHe2πiJ0 (2J0)n

]
= eSBPS−βMBPS

⇓

Z =

∫
dnvQ dn′cJ′ dnTk e

[
SBPS−βMBPS−βk2/2MBPS−βω′.J′−βµ.Q

]

k: momenta invariant under ω′.J′

⇒ an nT dimensional space of momenta to integrate over

n′c: number of Cartan generators J′

nv: number of U(1) gauge fields 13



Z =

∫
dnvQ dn′cJ′ dnTk e

[
SBPS−βMBPS−βk2/2MBPS−βω′.J′−βµ.Q

]

The contribution to the integral is dominated by the saddle point
where the integrand has a maximum

Gaussian integral around the saddle point produces correction
∝ lnλ

e.g. k integration gives ∼ (MBPS/β)nT/2 ∼ e
nT
2 (D−4) lnλ

Q, J′ integrals give
(

det∂
2SBPS
∂Q2

)−1/2 (
det∂

2SBPS
∂J′2

)−1/2
∼ λ

nv(D−4)+n′c(D−2)

2

Net result:

ln Z = SBPS − βMBPS − βω′.J′ − βµ.Q− CE lnλ+ · · ·

with J′, Q evaluated at the saddle, and

CE = −1
2

[(nv + nT)(D− 4) + n′c(D− 2)]
14



Gravitational side Gibbons, Hawking

Z = Tr
[
e−βH−βµ.Q−βω′.J′+2πiJ0 (2J0)n

]
Dominant contribution to Z comes from a supersymmetric
Euclidean black hole solution with parameters (β, ω, µ)

ln Z = Srot − βMrot − βω′.J′ + 2πiJ0 − βµ.Q + C lnλ+ · · ·

(2J0)n is needed to saturate the integral over fermion zero
modes associated with broken supersymmetry

Srot: Classical entropy (including higher derivative terms)

C lnλ term is one loop quantum correction to the path integral

· · · : higher order corrections 15



Combined result

Gravity:

lnZ = Srot − βMrot − βω′.J′ + 2πiJ0 − βµ.Q + C lnλ

Statistical mechanics

ln Z = SBPS − βMBPS − βω′.J′ − βµ.Q− CE lnλ

⇒ SBPS = Srot + 2πiJ0 + β(MBPS −Mrot) + (C + CE) lnλ

Non-trivial identities:

MBPS = Mrot, SBPS = Srot + 2πiJ0 + (C + CE) lnλ

16



MBPS = Mrot, SBPS = Srot + 2πiJ0 + (C + CE) lnλ

– can be tested in various ways

rhs has to be computed using rotating, supersymmetric black
holes with βω0 = −2πi

If the microscopic result for the index is known then the lhs can
be computed as log of the index

If the microscopic result is not known, we can still compare the
rhs with the entropy of an extremal, zero temperature black hole
with near horizon AdS2 geometry

– computes degeneracy instead of index

– tests the index = degeneracy hypothesis for black holes 17



1. Classical 2-derivative theories:

MBPS = Mrot, SBPS = Srot + 2πiJ0

This has been verified in various theories

– Minimal N=2 supergravity in D=4 Iliesiu, Kologlu, Turiaci

– N=2 supergravity in D=5 Anupam, Chowdhury, A.S.

– General N=2 supergravity in D=4 Boruch, Iliesiu, Murthy,Turiaci

We compare the rhs with extremal black hole entropy with
β =∞, J0 = 0, providing a test for degeneracy=index

In special cases, degeneracy was shown to be equal to the
microscopic index earlier. 18



2. Classical theory with higher derivative terms

Prediction:
SBPS = Srot + 2πiJ0

– now rhs needs to be computed using Wald entropy

We compare this with the Wald entropy of extremal black hole

This has been checked in N=2 supergravity in D=4 with a class
of higher derivative terms Hegde, A.S., Shanmugapriya, Virmani

Wald entropy of extremal black holes is known from earlier work
on attractor mechanism Lopes Cardoso, de Wit, Mohaupt
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3. Logarithmic corrections Anupam, Athira, Chowdhury, A.S.

SBPS = Srot + 2πiJ0 + (C + CE) lnλ

CE = −1
2

[(nv + nT)(D− 4) + n′c(D− 2)]

We need to compute the C lnλ term from gravitational path
integral

Power counting⇒ such contributions come from one loop
contribution of massless fields 20



Contribution comes from two sources

1. Non-zero eigenvalues of the kinetic operator

– can be evaluated using the heat kernel method

2. Zero eigenvalues of the kinetic operator

– can be evaluated by

(a) changing variables that relates the zero modes to broken
symmetry transformation parameters

(b) then integrating over the symmetry transformation
parameters

21



Final result: Logarithmic correction (C + CE) lnλ to the index
gives the same result as · · ·

· · · logarithmic correction to the degeneracy, computed from the
near horizon geometry of an extremal, non-rotating black hole

· · · even though the intermediate steps are quite different

In particular, in the second approach there is no contribution
CElnλ due to change of ensemble

The entire contribution comes from the gravitational path
integral

The black hole index also agrees with the microscopic results
when they are known

e.g. in theories with 16, 32 supersymmetries in D=4, 5 22



4. Small black holes

Consider heterotic string theory compactified on a 10-D
dimensional torus

The spectrum of the string contains states carrying electric
charges under various U(1) gauge fields in the theory

Denote by Q the charge vector

A subset of these states are invariant under half of the
supersymmetries of the theory Dabholkar. Harvey

SBPS = log(index) of these states grows as 2
√

2π
√

Q2 + · · ·

Q2: some quadratic combination of charges

Question: Can they be described as black holes carrying the
same charge vector Q? 23



SBPS = 2
√

2π
√

Q2 + · · ·

Can we compare this with BPS black hole entropy carrying the
same charge?

– long history spanning 1995-2004 A.S.; Peet; Dabholkar; · · ·

This will not be reviewed today

Instead we shall change the question:

Can SBPS be compared with

Srot + 2πiJ0 at ω0 = −2πi/β

Chowdhury, A.S., Shanmugapriya, Virmani; Chen, Murthy, Turiaci

J0: Angular momentum in one plane 24



Recall the scaling property:

M ∼ λD−3, Q ∼ λD−3, J0 ∼ λD−2

Srot ∼ λD−2

Microscopic result:

SBPS = 2
√

2π
√

Q2 ∼ λD−3

Macroscopic result:

Srot, 2πiJ0 ∼ λD−2 >> SBPS

– apparent contradiction!

Calculate and see what we get for Srot + 2πiJ0 25



Action = CD

∫
dDx

√
− det G e−Φ

[
RG + Gµν

∂µΦ∂νΦ +
1

8
Gµν Tr(∂µML∂νML)

−
1

12
Gµµ′Gνν′Gρρ′HµνρHµ′ν′ρ′ − Gµµ′Gνν′F(j)

µν (LML)jk F(k)

µ′ν′
]
,

F(j)
µν = ∂µA(j)

ν − ∂νA(j)
µ ,

Hµνρ = ∂µBνρ + 2A(j)
µ LjkF(k)

νρ + ∂νBρµ + 2A(j)
ν LjkF(k)

ρµ + ∂ρBµν + 2A(j)
ρ LjkF(k)

µν ,

M: a (36− 2D)× (36− 2D) matrix valued scalar subject to MLMT = L, L = diag(126−D,−110−D)

CD: a constant = 1/ 16πGN

Black hole solution: Horowitz, A.S.

ds2 = (ρ2 − b2 cos2
θ)

{
∆−1(ρ2 − b2 cos2

θ)dτ2 + (ρ2 − b2)−1dρ2 + dθ2

+∆−1 sin2
θ[∆− b2 sin2

θ(ρ2 − b2 cos2
θ + 2m0ρ

5−D coshα)] dφ2

+2∆−1m0ρ
5−Db sin2

θdτdφ + ρ
2 cos2

θ(ρ2 − b2 cos2
θ)−1dΩD−4

}
,

∆ ≡ (ρ2 − b2 cos2
θ)2 + 2m0ρ

5−D coshα (ρ2 − b2 cos2
θ) + m2

0ρ
10−2D

m0, b, α : parameters, dΩD−4 : metric on unit (D-4)-sphere

A(i)
µ = · · · , Bµν = · · · , e−Φ = · · · , M = · · ·

Horizon at ρ = b

√
Q2 =

√
2 (D− 3) CD g−2

s m0 vD−2, vk : volume of unit k-sphere

Srot =
m0b vD−2

4GN
, J0 = i vD−2

8πGN
m0b, Srot + 2πiJ0 = 0

– survives inconsistency 26



Srot + 2πiJ0 = 0, SBPS ∼ λD−3

To proceed further we need to recall that string theory has
higher derivative corrections to the low energy effective action

Next order terms contain two extra derivatives

– need to contract with gµν

Since gµν ∼ λ2, the next order correction to Srot will be
suppressed by an additional power of λ−2

Since at the leading order Srot,J0 ∼ λD−2, after correction,

Srot + 2πiJ0 ∼ λD−4 << SBPS ∼ λD−3

Higher derivative corrections cannot cure this problem
if the geometry is smooth. 27



Closer inspection reveals that the metric is singular over a
subspace of the horizon

For D=4 this subspace is north and south poles

Study the solution near this subspace in the large λ limit

Result: The solution takes a universal form, independent of the
parameters of the black hole and D, except for

– some overall constant shift in the dilaton

– a factor in the metric which is an almost flat D-4 dimensional
sphere

⇒ the stringy corrections are also universal 28



A scaling argument gives the following form of Srot + 2πiJ0

CD × g−2
s b4−Dm0 × bD−4vD−4 × K, K : Unknown numerical constant√

Q2 =
√

2 (D− 3) CD g−2
s m0 vD−2

vk = Volume of unit k-sphere = 2π(k+1)/2/Γ[(k + 1)/2]

This gives

Srot + 2πiJ0 =
K

(D− 3)
√

2
1
π

Γ((D− 1)/2)

Γ((D− 3)/2)

√
Q2 =

K
2π
√

2

√
Q2

Compare with
SBPS = 2

√
2π
√

Q2

Note: Both formulæ are independent of D and asymptotic values
of Φ and M, and scale with Q in the same way

– would agree if K = 8π2.

To find K, we need to determine how higher derivative
corrections modify the near horizon geometry and Srot 29



Universal part of the solution near the singularity

ds2 ' dR2 + 4R2dΘ2 + 4R2 sin2 Θdφ2 + 4R2 cos2 Θdτ2

0 ≤ Θ ≤
π

2
, φ ≡ φ + 2π, τ ≡ τ + 2π ,

M ' I36−2D ,

A(j)
(E)τ

' 0,

A(j)
(E)φ

' 0 , for j 6= 36− 2D, (E) : Euclidean ,

A(36−2D)
(E)τ

'
√

2R cos2 Θ,

A(36−2D)
(E)φ

'
√

2R sin2 Θ ,

H(E) ' 8 R2 sin Θ cos Θ dΘ ∧ dφ ∧ dτ ,

exp[−Φ] '
1

2R
.

The solution is universal but singular at R = 0

⇒ higher derivative corrections should be universal and
produce a universal number K for the entropy 30



Summary

1. Gravitational path integral can be used to directly compute
supersymmetric index of BPS states

2. In cases that have been studied, the index agrees with the
entropy of the supersymmetric extremal black holes, leading to
the confirmation of index=degeneracy for black holes

3. This formalism produces correctly

– Bekenstein-Hawking entropy of two derivative theory

– Wald correction to the entropy

– logarithmic correction to the entropy

– small black hole entropy, up to an overall undetermined
constant 31



Lesson for microstates / fuzzballs

We have seen that the index of a supersymmetric black hole
grows in the same way as its entropy, at least to the leading and
first subleading orders

⇒ any proposal for supersymmetric black hole microstates must
produce non-vanishing index.

Otherwise there remains the possibility that these are artifacts
of working at special points in the moduli space and will
disappear once we go to a generic point.

32


