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1 Introduction

We now turn our attention to Schur polynomials and restricted Schur poly-
nomials, their properties and correlation functions in the context of quantum
field theory. The first question we address is: why study these polynomials?

• Schur polynomial and Restricted Schur polynomial technology brings
together a number of aspects of symmetric group representation theory
and as such their study will deepen ones understanding of these aspects.

• Both Schur polynomials and restricted Schur polynomials encapsulate
some very interesting physics. They are relevant in the study of the
AdS/CFT correspondence from the quantum field theory perspective.
We elaborate on this in section 5.

We begin with a brief review of Schur polynomials.

2 Schur Polynomials

The Schur polynomial is defined as follows:

χR(Z) =
1

n!

∑
σ∈Sn

χR(σ)Zi1
iσ(1)Z

i2
iσ(2) . . . Z

in−1

iσ(n−1)Z
in
iσ(n).

The label R is a Young diagram of n boxes. Young diagrams of n boxes
are in one-to-one correspondence with the irreducible representations of the
symmetric group Sn and thus a Schur polynomial labeled by R is associated
with a particular irreducible representation of the symmetric group. For
this general definition, Z is an arbitrary matrix (note that if Z ∈ SU(N),
then Schur polynomials also have an interpretation in Unitary group theory,
χR(Z) gives the character of Z in the SU(N) irreducible representation spec-
ified by the Young diagram R). The factor χR(σ) is the character of σ ∈ Sn
in the irreducible representation R. Here the indices ik, k = 1, . . . , n range
over 1, . . . ,m where m sets the size of the matrix Z, i.e. Z is an m×m ma-
trix. Z l

m represents the matrix element in the lth row and mth column of the
matrix Z. Note that in accordance with the Einstein summation convention
repeated indices are summed, for example Zm

m would represent the trace of
the matrix Z, TrZ. In the Schur polynomial definition, the lower indices
of the matrices in each term of the sum are a particular permutation of the
indices i1 . . . in specified by σ.

Consider the following multi-trace factors for n = 4 for example:
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1. σ = 1.

Zi1
iσ(1)Z

i2
iσ(2)Z

i3
iσ(3)Z

i4
iσ(4) = Zi1

i1Z
i2
i2Z

i3
i3Z

i4
i4

= (TrZ)4 .

2. σ = (123).

Zi1
iσ(1)Z

i2
iσ(2)Z

i3
iσ(3)Z

i4
iσ(4) = Zi1

i2Z
i2
i3Z

i3
i1Z

i4
i4

=
(
TrZ3

)
(TrZ) .

3. σ = (1234).

Zi1
iσ(1)Z

i2
iσ(2)Z

i3
iσ(3)Z

i4
iσ(4) = Zi1

i2Z
i2
i3Z

i3
i4Z

i4
i1

= TrZ4.

Clearly, obtaining the explicit form of a Schur polynomial involves deter-
mining the character of each group element in irreducible representation R
as well as the associated multi-trace factor appearing in each term of the
Schur polynomial. The procedure can be considerably simplified in realizing
that all group elements with a certain cycle structure (a cycle of a particular
length or products of cycles of particular lengths) belong to the same conju-
gacy class and have the same character for a given irreducible representation.
Moreover it is clear that all multi-trace factors are equal for group elements
belonging to a particular conjugacy class. As you have learnt, the number of
conjugacy classes matches the number of irreducible representations of Sn.
The number of conjugacy classes is vastly smaller than the number of ele-
ments in Sn (the order of Sn is n!) even when n is only moderately large.
For example the number of conjugacy classes for n = 6 is 11 whereas the
number of elements in S6 is 6! = 720. To explicitly obtain the required
characters one can construct the matrices representing the group elements
of Sn in irreducible representation R and then take the trace. For this, the
method of constructing representations in the Yamanouchi basis presented
previously can be utilized. Alternatively, the strand diagram technology fur-
nishes a neat, graphical way to determine the characters. There are also
recursive formulae that can be applied to calculate characters which will not
be presented here.
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2.1 Examples of Schur Polynomials

Explicit expressions for all the possible Schur polynomials for n=1, 2, 3 are:

χ (Z) = TrZ,

χ (Z) =
1

2

(
(TrZ)2 + TrZ2

)
,

χ (Z) =
1

2

(
(TrZ)2 − TrZ2

)
,

χ (Z) =
1

6

(
(TrZ)3 − 3 (TrZ)

(
TrZ2

)
+ 2TrZ3

)
,

χ (Z) =
1

3

(
(TrZ)3 − TrZ3

)
,

χ (Z) =
1

6

(
(TrZ)3 + 3 (TrZ)

(
TrZ2

)
+ 2TrZ3

)
.
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3 Restricted Schur Polynomials:

Distinguishable Matrix Words

Restricted Schur polynomials are the multi-matrix generalization of the sin-
gle matrix Schur polynomials described previously. Restricted Schur poly-
nomials are constructed from more than one type of matrix, individually or
combined into matrix words. These matrix words are simply products of
matrices, which we term letters. In the case of distinguishable matrix words,
these matrix words are all distinct. This is the case we consider presently.

The definition of a restricted Schur polynomial is as follows:

χ
(k)
R,R1

(Z,W (1), . . . ,W (k)) =
1

(n− k)!

∑
σ∈Sn

Tr R1(ΓR(σ))Tr (σZ⊗n−kW (k) . . .W (1)).

(1)
In this definition, R1 is an irreducible representation of Sn−k × (S1)

k and we
therefore associate it with a Young diagram with n-k boxes. W (1) . . .W (k) are
all distinct. Tr R1(ΓR(σ)) is the restricted character where the trace is taken
over the indices belonging to the subspace specified by R1. These restricted
characters could be calculated using projection operators built from Casimirs
or by utilizing strand diagrams as you have learnt about previously. The
following notation

Tr (σZ⊗n−kW (k) . . .W (1)) = Zi1
iσ(1)Z

i2
iσ(2) . . . Z

in−k
iσ(n−k)(W

(k))
in−k+1

iσ(n−k+1) . . . (W
(1))iniσ(n),

expresses the multi-trace factor obtained for a given permutation, σ, of
the lower indices, i1 . . . in.

Consider for example (n = 4, k = 1):

1. σ = 1.

Tr (σZ⊗3W (1)) = Zi1
iσ(1)Z

i2
iσ(2)Z

i3
iσ(3)(W

(1))i4iσ(4)

= Zi1
i1Z

i2
i2Z

i3
i3 (W (1))i4i4

= (TrZ)3
(
TrW (1)

)
.

2. σ = (123).
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Tr (σZ⊗3W (1)) = Zi1
iσ(1)Z

i2
iσ(2)Z

i3
iσ(3)(W

(1))i4iσ(4)

= Zi1
i2Z

i2
i3Z

i3
i1 (W (1))i4i4

=
(
TrZ3

) (
TrW (1)

)
.

3. σ = (1234).

Tr (σZ⊗3W (1)) = Zi1
iσ(1)Z

i2
iσ(2)Z

i3
iσ(3)(W

(1))i4iσ(4)

= Zi1
i2Z

i2
i3Z

i3
i4 (W (1))i4i1

= TrZ3W (1).

3.1 Examples of Restricted Schur Polynomials

χ 1

(
Z,W (1)

)
= TrZTrW (1) + TrZW (1),

χ
1

(
Z,W (1)

)
= TrZTrW (1) − TrZW (1),

χ 1
2

(
Z,W (1),W (2)

)
= TrZTrW (1)TrW (2) − TrZW (2)TrW (1) +

1

2
TrZW (1)TrW (2)

+
1

2
TrZTrW (1)W (2) − 1

2
TrZW (2)W (1) − 1

2
TrZW (1)W (2).

3.2 Reduction Rule

In this section we will consider the action of

Tr

(
d

dZ

)
≡ DZ , and Tr

(
d

dW (k)

)
≡ DW (k) ,

on restricted Schur polynomials. These operations are important in evaluat-
ing quantum field theory theory correlators of restricted Schur polynomials.
We call these “reductions” of the restricted Schur polynomial because the
action of the operators removes boxes from the Young diagram label of the
polynomial. The action of DW (k) is very simply stated (provided we are re-
ducing with respect to the word associated with the index to be fixed first in
restriction). It removes the box associated with W (k) (the box labeled by k
in the Young diagram) and multiplies the resultant polynomial by something
called the weight of the removed box (the weight of the box in the ith row
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and jth column of the Young diagram is defined as N − i+ j), provided the
matrices from which the restricted Schur polynomials are built are rank N .
We will henceforth assume this to be the case. The reduction rule can be
stated as:

DW (1)χR,R′ = cR,R′χR′ ,

where cR,R′ is the weight of the removed box.

For example:

DW (1)χ
1

(
Z,W (1)

)
= (N + 2)χ (Z) .

One subtlety to consider is that if we have a restricted Schur with an
off-diagonal restricted trace involving the matrix word with the smallest la-
bel and we reduce with respect to that matrix word then the result of the
reduction vanishes i.e.

DW (1)χ 1
2

2
1

(
Z,W (1),W (2)

)
= 0.

However, it is not true in general that:

DW (2)χ 1
2

2
1

(
Z,W (1),W (2)

)
= 0.

Correctly evaluating the result of this reduction requires the application
of the subgroup swap rule, discussed in the section 3.3.

Upon acting DZ on an ordinary Schur polynomial, all Schur polynomials
that can be obtained by removing a single box from the Schur polynomial it
acts on are produced. Each of the polynomials produced are multiplied by
the weight of the removed box. For example:

DZχ = (N + 2)χ + (N − 1)χ

Finally, we will evaluate the result of acting DZ on a restricted Schur
polynomial. By explicitly evaluating the derivative, we have

d

dZa
a

χ
(1)
R,R1

(Z,W ) =
1

(n− 2)!

∑
σ∈Sn

Tr (ΓR(σ))Zi1
iσ(1)
· · ·Zin−2

iσ(n−2)
δ
in−1

iσ(n−1)
W in
iσ(n)
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= DX

∑
α

χ
(2)
R,Tα(Z,X,W ), (2)

where in the restricted Schur polynomial χ
(2)
R,Tα(Z,X,W ), W is associated

with the box that must be removed from R to obtain R1 and X is associated
with the box that must be removed from R1 to obtain Tα. The δij appearing
in the above expression is the usual Kronecker delta with definition δij =
1 if i = j and 0 otherwise. In this last formula, the representations Tα are
all representations that can be obtained by removing a single box from R1,
so that

R1 = ⊕αTα.

The reduction with respect to X in (2) is now easily computed using the
subgroup swap rule (section 3.3).

3.2.1 General Proof of Reduction Rule for one matrix word

We will now discuss the general proof of the reduction rule (acting on a re-
stricted Schur polynomial with one matrix word) since it is a good example
of the concrete application of cosets and Casimirs of Sn.

For the case of a single matrix word, the result can be proved as follows:

Consider the matrix-valued function

χ̂R(Z,W ) =
1

(n− 1)!

∑
σ∈Sn

Zi1
iσ(1)
· · ·Zin−1

iσ(n−1)
W in
iσ(n)

ΓR(σ),

where ΓR(σ) is the matrix representing σ in irreducible representation R.
There is a simple relation between this function and all the restricted Schur
polynomials that can be obtained by restricting R to Sn−1 × S1. Denote the
possible irreducible representations which arise upon restriction by Rα. Then

Tr Rα (χ̂R(Z,W )) =
1

(n− 1)!

∑
σ∈Sn

Zi1
iσ(1)
· · ·Zin−1

iσ(n−1)
W in
iσ(n)

Tr RαΓR(σ) = χ
(1)
R,Rα(Z,W ).

The sum over Sn can be reorganized into a sum over an Sn−1 subgroup and
cosets of this subgroup. Let us digress for a moment to refresh our memory on
cosets with a concrete example. Consider the set of permutations comprising
S3 (in what follows we use the cycle notation for permutations):

σ = 1, (12), (13), (23), (123), (132),

and the S2 subgroup obtained by leaving n = 3 inert:
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τ = 1, (12).

Now, σ can be obtained by composing the elements in τ with the identity
1 and the two cycles (n, i) where i = 1, . . . , n− 1 (in this case the two cycles
(13) and (23)). It would be a good idea to explicitly convince yourself that
this is true. The set of permutations thus obtained is said to be a coset of
the particular S2 subgroup we considered in S3.

Now if f is some function of σ:

∑
σ∈Sn

f(σ) =
∑

τ∈Sn−1

(
f(τ) +

n−1∑
i=1

f((n, i)τ)

)
.

Returning to the proof, we reorganize our sum as follows:

χ̂R(Z,W ) =
1

(n− 1)!

∑
σ∈Sn−1

[
Zi1
iσ(1)
· · ·Zin−1

iσ(n−1)
Tr (W )ΓR(σ)

+ (WZ)i1iσ(1)
· · ·Zin−1

iσ(n−1)
ΓR((1, n)σ) + Zi1

iσ(1)
(WZ)i2iσ(2)

· · ·Zin−1

iσ(n−1)
ΓR((2, n)σ)

+ ...+ Zi1
iσ(1)
· · · (WZ)

in−1

iσ(n−1)
ΓR((n− 1, n)σ)

]
.

The Sn−1 subgroup is the subgroup of Sn comprising of the permutations σ
that leave n inert, i.e. σ(n) = n. We will also need the definition of matrix
differentiation

d

dM i
j

Mk
l = δjl δ

k
i .

It is now straight forward to compute the reduction

DW χ̂R(Z,W ) =
d

dW i
i

χ̂R(Z,W )

=
1

(n− 1)!

∑
σ∈Sn−1

[
NZi1

iσ(1)
· · ·Zin−1

iσ(n−1)
ΓR(σ)

+ (Z)i1iσ(1)
· · ·Zin−1

iσ(n−1)
ΓR((1, n)σ) + Zi1

iσ(1)
(Z)i2iσ(2)

· · ·Zin−1

iσ(n−1)
ΓR((2, n)σ)

+ ...+ Zi1
iσ(1)
· · · (Z)

in−1

iσ(n−1)
ΓR((n− 1, n)σ)

]
=

1

(n− 1)!

∑
σ∈Sn−1

Zi1
iσ(1)
· · ·Zin−1

iσ(n−1)

[
N +

n−1∑
i=1

ΓR ((i, n))

]
ΓR(σ)

.

Note that the following Casimirs for Sn and the Sn−1 subgroup can be
defined:

OSn(2) =
∑
i 6=j

ΓR ((i, j)) , i, j = 1 . . . n,
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OSn−1(2) =
∑
l 6=m

ΓR ((l,m)) , l,m = 1 . . . n− 1,

note that

n−1∑
i=1

ΓR ((i, n)) = OSn(2)−OSn−1(2) ≡ OSn/Sn−1(2).

Tracing over the subspace of R corresponding to representation Rα we find

DWχ
(1)
R,Rα(Z,W ) =

1

(n− 1)!

∑
σ∈Sn−1

Zi1
iσ(1)
· · ·Zin−1

iσ(n−1)
Tr Rα

([
N +OSn/Sn−1(2)

]
ΓR(σ)

)
.

The Young diagram labeling Rα is obtained from R by removing a single
box. Assume that the removed box lies in th ath row and the bth column. If
R has rRi boxes in the ith row and cRj boxes in the jth column, then Rα will
have

rRαi = rRi − δia
boxes in the ith row and

cRαj = cRj − δjb
boxes in the jth column. Consequently, when acting on those states of irre-
ducible representation R that span the Rα subspace, we obtain

OSn(2) =
∑
i

rRi (rRi − 1)

2
−
∑
j

cRj (cRj − 1)

2
,

OSn−1(2) =
∑
i

rRαi (rRαi − 1)

2
−
∑
j

cRαj (cRαj − 1)

2
,

OSn/Sn−1(2) = OSn(2)−OSn−1(2) = rRa − cRb .

Thus,

DWχ
(1)
R,Rα(Z,W ) =

[
N + rRa − cRb

] 1

(n− 1)!

∑
σ∈Sn−1

Zi1
iσ(1)
· · ·Zin−1

iσ(n−1)
Tr Rα (ΓR(σ))

=
[
N + rRa − cRb

]
χRα(Z).

Note that
[
N + rRa − cRb

]
is the weight of the box that must be removed from

R to obtain Rα. This proves that the reduction DWχ
(1)
R,Rα(Z,W ) is computed

by removing the box associated with W and multiplying by the weight of the
removed box.
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3.3 Subgroup Swap Rule

Consider the definition provided previously for a restricted Schur polynomial
with k distinguishable matrix words, W (1)...W (k). In order to reduce with
respect to the word which does not have the smallest label we need to apply
the subgroup swap rule. Thus far, we have assumed that in restricting to the
Sn−k ⊗ (S1)

k subgroup we have first restricted to the Sn−1 ⊗ (S1) subgroup
that leaves the index of W (1) (i.e. n) inert, then further restricted to the
Sn−2 ⊗ (S1)

2 subgroup that leaves the index of W (2) (i.e. n-1) inert and so
forth. This is denoted as:

χR,R(k) |1|2...|k.

If however, we were to first restrict to the subgroup that leaves the index
of W (2) inert and then further restrict to the subgroup that leaves the index
of W (1) inert, we would in general obtain a different polynomial which is
denoted:

χR,R(k) |2|1...|k.

These two polynomials are related through the subgroup swap rule. In
general, the subgroup swap rule relates any two restricted Schur polynomials
that differ in the interchange of two adjacent indices indicating the order of
restriction. Of course any ordering of the indices can be related to any other
ordering by successive applications of the subgroup swap rule.

Returning to the importance of the subgroup swap rule to the reduction
rule, note that the reduction rule only yields the particularly simple result of
removing the appropriate box of the Young diagram labeling the restricted
Schur polynomial and multiplying by the weight of the removed box if we are
reducing with respect to the index that appears first in the order of restric-
tions. If not, we must apply the subgroup swap rule until the appropriate
index appears first.

To state the rule we utilize the graphical notation introduced previously
(in specifying the restricted character). Note that:

χ

1
2

|1|2 ≡ χ
1
1

2
2

|1|2.

Now, we denote the weight of the box with the index that is fixed first
(before the swap) in the upper left hand corner as cU1 . We denote the weight
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of the box with the index that is fixed first (before the swap) in the lower
right hand corner as cL1 . The weight of the box with the index that is fixed
second (before the swap) in the upper left hand corner is denoted as cU2 . The
weight of the box with the index that is fixed second (before the swap) in
the lower right hand corner is denoted as cU2 . We define the following swap
factors associated with swapping a pair of upper or lower indices:

SU =
1

cU1 − cU2
, SL =

1

cL1 − cL2
.

We define the following no swap factors associated with leaving a pair of
upper or lower indices inert:

NU =

√
1− 1

(cU1 − cU2 )2
, NL =

√
1− 1

(cL1 − cL2 )2
.

The subgroup swap rule states that the result of swapping the order
of two adjacent indices indicating the order of restriction is captured by
implementing all possible swaps of the upper and lower labels corresponding
to those indices and including the appropriate swap or no swap factors. For
example:

χ 1
2
3

3
2

|1|3|2 = NUNLχ 1
2
3

3
2

|3|1|2 +NUSLχ 1
3

2
1

3
2

|3|1|2

+ SUNLχ 3
1

2
3

1
2

|3|1|2 + SUSLχ 3
2
1

1
2

|3|1|2

=
3
√

2

5
χ 1

2
3

3
2

|3|1|2 +

√
6

5
χ 1

3
2
1

3
2

|3|1|2

+

√
3

10
χ 3

1
2
3

1
2

|3|1|2 +
1

10
χ 3

2
1

1
2

|3|1|2.

Where:

NU =

√
1− 1

(cU1 − cU3 )2
=

2
√

6

5
, NL =

√
1− 1

(cL1 − cL3 )2
=

√
3

2
,
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SU =
1

(cU1 − cU3 )
=

1

5
, SL =

1

(cL1 − cL3 )
=

1

2
.

An example of a reduction operation requiring the application of the
subgroup swap rule is:

DW (3)χ 1
2
3

3
2

|1|3|2 =
3
√

2

5
DW (3)χ 1

2
3

3
2

|3|1|2 +

√
6

5
DW (3)χ 1

3
2
1

3
2

|3|1|2

+

√
3

10
DW (3)χ 3

1
2
3

1
2

|3|1|2 +
1

10
DW (3)χ 3

2
1

1
2

|3|1|2

= 0 + 0 + 0 +
1

10
(N + 3)χ

2
1

1
2

|1|2

=
1

10
(N + 3)χ

2
1

1
2

|1|2.
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4 Restricted Schur Polynomials:

Indistinguishable Matrix Words

We now consider the case where the matrix words comprising the restricted
Schur polynomial are indistinguishable. For example we could have a poly-
nomial constructed from two matrices, Z and X say. The definition of the
restricted Schur polynomial in this case is:

χR,Rα(Z,X) =
1

n!m!

∑
σ∈Sn+m

TrRα(ΓR(σ))Tr(σZ⊗n ⊗X⊗m),

Tr(σZ⊗n ⊗X⊗m) = Zi1
iσ(1)Z

i2
iσ(2) . . . Z

in
iσ(n)X

in+1

iσ(n+1) . . . X
in+m

iσ(n+m).

In this definition, R is an irreducible representation of Sn+m and is associ-
ated with a Young diagram of n+m boxes. Rα is an irreducible representation
of Sn×Sm and is therefore specified by two Young diagrams, one comprised of
n boxes and the other of m boxes (Rα ≡ (rα1, rα2)). The Sn×Sm subgroup is
the subgroup for which Sn acts on the n indices of the Z’s and Sm acts on the
m indices of the X’s. Again, TrRα(ΓR(σ)) indicates taking a restricted trace
of the group element σ ∈ Sn+m in the irreducible representation R. Under
restricting to the Sn × Sm subgroup, R will in general be reducible. We can
decompose the carrier space of irreducible representation R according to the
irreducible Sn × Sm representations that are subduced. The restricted trace
corresponds to only tracing over the subspace corresponding to Rα. The
restricted trace can be calculated by constructing projectors in a manner
analogous to the previous algorithm, or via other techniques not presented
here. Note that this definition is easily generalized to more than two types
of indistinguishable matrices comprising the restricted Schur polynomial.

4.1 Examples

The construction of

χ ; ⊗ = Tr (Z)Tr (X) + Tr (ZX), χ
; ⊗

= Tr (Z)Tr (X)−Tr (ZX),

is particularly simple because we do not need a projector to implement the
restricted trace. This follows because ⊗ is the only S1 × S1 irreducible

representation subduced from either or .
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Consider next

χ ; ⊗ =
1

2

[
Tr (Z)2Tr (X) + Tr (Z2)Tr (X) + 2Tr (ZX)Tr (Z) + 2Tr (Z2X)

]
,

χ

; ⊗

=
1

2

[
Tr (Z)2Tr (X)− Tr (Z2)Tr (X)− 2Tr (ZX)Tr (Z) + 2Tr (Z2X)

]
.

For these two restricted Schur polynomials we again do not need a projector
to implement the restricted trace.
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5 The Physics of Schur Polynomials and Re-

stricted Schur Polynomials

5.1 Role in the AdS/CFT correspondence

The AdS/CFT correspondence is a duality between a theory that incorpo-
rates gravity in its description and a theory that does not incorporate gravity.
It is a concrete realization of the holographic principle which posits that the
physical description of a volume of space is encoded on the boundary of the
region. As such, the dimensionality of the theory on the boundary is one
dimension less than the theory on the interior of the space. The AdS/CFT
correspondence is a conjecture that a string theory (a theory of quantum
gravity) defined on a d+1 dimensional Anti-de Sitter space (a space with
constant negative scalar curvature) is dual to a quantum field theory (which
does not incorporate gravity) defined on the d-dimensional boundary of this
space. The word “dual” here is a statement about the full dynamical equiv-
alence between the two theories. In other words, the theories are different
languages in which to describe the same dynamics. Some processes are easier
to describe and solve in the string theory, others in the quantum field the-
ory. In fact the particular usefulness of the correspondence is that in general
(aside from some special cases which are useful for testing the correspon-
dence) calculations in the string theory are easy when the calculations in the
field theory are hard and vice versa. We thus need a dictionary allowing us
to translate from the one language to the other when desired.

Schur polynomials and restricted Schur polynomials are part of this dic-
tionary. The Schur polynomials and restricted Schur polynomials are gauge
invariant field theory operators. Gauge invariant operators are those opera-
tors which have a physical interpretation in the quantum field theory. The
matrices from which they are built are complex linear combinations of scalar
fields present in the quantum field theory. The Schur polynomials are dual
to different objects in the string theory depending on how many matrix fields
comprise the polynomial. If they are comprised of O(N) matrix fields (here
N is a parameter of the quantum field theory matching the rank of the ma-
trix fields) then the Schur polynomials are dual to what are termed giant
gravitons (extended higher dimensional membranes). If they are comprised
of O(N2) matrix fields then they are dual to new background geometries on
the string theory side of the correspondence. Restricted Schur polynomials
with O(N) of one type of field are dual to excited giant gravitons (giant
gravitons with open strings attached).
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5.2 A Short Digression on Field Theory Correlators

The correlation functions of operators in quantum field theory fully capture
the dynamics of the theory. Correlation functions (correlators) can be uti-
lized to learn about a number of different aspects of the quantum field theory.
For one thing, a suitably normalized correlator of a given product of oper-
ators gives the interaction strength / amplitude for those operators. In the
context of the AdS/CFT correspondence studying the gauge theory corre-
lators of operators identified with certain degrees of freedom in the string
theory gives us information about the string theory dynamics.

The correlators that we will study are those of the quantum field theory
known as N = 4 Super Yang-Mills theory (SYM), a four dimensional super-
symmetric quantum field theory with gauge group U(N). It is sufficient for
our purposes to note that in this theory, there are six real (space-time) scalar
fields transforming in the adjoint of U(N) and as such can be regarded as
N × N matrices. We combine these six real scalar fields into the following
complex matrix fields:

Z = Φ1 + iΦ2, Y = Φ3 + iΦ4, X = Φ5 + iΦ6

These matrix fields constitute the matrices from which we build the Schur
and restricted Schur polynomials. We define the contractions (two point
functions) of these fields as follows:〈

ZijZ
†
kl

〉
= δilδjk,

〈
YijY

†
kl

〉
= δilδjk,

〈
XijX

†
kl

〉
= δilδjk. (3)

Note that we have dropped spacetime dependence of these two point
functions which plays no role in our discussions. Correlators of operators
built from these fields are obtained by contracting all the fields present in all
possible ways. As a very simple example:

〈χ (Z)χ† (Z)〉 = 〈TrZ TrZ†〉

= 〈ZiiZ†jj〉
= δijδij

= δii

= N
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5.3 Two Point Functions

We will now state, without proof, the two point functions of Schur and re-
stricted Schur polynomials.

5.3.1 Schur Polynomials

The exact two point correlation function of Schur polynomials is as follows:

〈χR (Z)χ†S (Z)〉 = δRSfR.

The correlator is diagonal in the young diagram labels and is only non-zero
when R = S. In this result, the quantity fR denotes the product of weights
of the boxes of the Young diagram labeling the Schur polynomial (these are
not Dynkin weights). The weight of a box in the ith row and jth column is
given by N−i+j and thus the product of weights of all the boxes comprising
the young diagram is:

fR =
∏
i,j

(N − i+ j).

Figure 1: Example of the product of weights of the boxes of a Young diagram.

An example of the application of this result is:

〈χ (Z)χ† (Z)〉 = N(N2 − 1)(N + 2).

5.3.2 Restricted Schur polynomials: Distinguishable Matrix Words

We will now present the result of evaluating the two point correlators of
restricted Schur polynomials with distinguishable matrix words. From this
point forward we will specialize to the case where the matrix words are iden-
tified with open string excitations of giant gravitons on the string theory side
of the AdS/CFT correspondence. To be identified with open string excita-
tions, the matrix words must be comprised of O(

√
N) letters each of which
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could in principle be any of the fields in N = 4 SYM or covariant derivatives
of these fields (we restrict ourselves to the complex scalar fields above though
i.e. Z,X,Y). Henceforth we refer to these matrix words as open string words.
An example of an open string word comprised of two of the three complex
scalar fields defined in the previous section is:

W i
j = (Y ZZZY )ij

In the definition (1) of the restricted Schur polynomial presented previ-
ously, the identification with an excited giant graviton (a giant graviton with
open strings attached) is only sensible if n is O(N) and the number of open
string words, k is O(1).

The correlator result presented below is valid as long as the number of
Z’s comprising the restricted Schur polynomial operator is less than O(N2)
and the number of Z’s in any open string word is O(1). In this regime con-
tractions between the open string word and the rest of the operator can be
neglected. In the case where the number of Z’s comprising the restricted
Schur polynomial operator is O(N2), these contractions can no longer be
neglected. Indeed, the interpretation of the restricted Schur polynomial op-
erators changes and they are now identified with new classical backgrounds
with string excitations on the string theory side of the AdS/CFT correspon-
dence.

For each open string word the most general form that the two point function
can take is:

〈(W a)ij(W
a†)kl 〉 = F a

0 δ
i
lδ
k
j + F a

1 δ
i
jδ
k
l . (4)

Where F a
0 and F a

1 are dependent on the precise composition of the open
string word. In evaluating the result of correlators involving multiple open
string words, contractions which mix four or more words (corresponding to
string interactions) are dropped and only pairwise contractions are consid-
ered. Moreover, it is assumed that:

〈(W a)ij(W
b†)kl 〉 ∝ δab

which will mean that only a single pairing contributes.

Now, given the form of the open string two point function (4), it is easy
to see that upon contracting a particular open string word, the correlator can
be split into a sum of terms, one with a coefficient of F a

0 and the other with a
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coefficient of F a
1 . The first of these contributions corresponds to implement-

ing the delta function index structure associated with F a
0 in the open string

two point function. The latter contribution corresponds to implementing
the delta function index structure associated with F a

1 in the open string two
point function. We will now discuss an algorithm for keeping track of and ul-
timately evaluating the resultant contributions of both types for one or more
open string words. The F a

0 contribution is said to correspond to the case
where the open string word W a has been ‘glued’. The F a

1 contribution turns
out to correspond to taking a reduction with respect to the open string word
W a. For restricted Schur correlators involving multiple open string words,
the F0 and F1 type contributions from each open string must be evaluated, in
what is essentially a recursive procedure that is applied until we are left with
correlators in which all strings are glued or no strings remain after successive
reductions. In the latter case, the two point correlator result for ordinary
Schur polynomials can be applied. In the case of correlators involving one or
more glued strings, the following result is applied:

For restricted Schur polynomials involving restricted traces where we
trace over the row and column indices of a particular subspace:

〈χR,R(n)χ
†
S,S(n)〉|glued =

(Hooks)R
(Hooks)R(n)

fRδR→R(n),S→S(n) .

For restricted Schur polynomials involving restricted traces where we
trace over row and column indices of different subspaces:

〈χR,R(n)T (n)χ
†
S,S(n)U(n)〉|glued =

(Hooks)R
(Hooks)R(n)

fRδR→(R(n)T (n)),S→(S(n)U(n)).

These results are applicable for n glued strings. The delta function
δR→R(n),S→S(n) indicates that, in addition to R matching S and R(n) matching

S(n), all the irreducible representations appearing in intermediate stages of
subducing R(n) from R must precisely match the irreducible representations
appearing in intermediate stages of subducing S(n) from S. Similarly for
δR→(R(n)T (n)),S→(S(n)U(n)).

For example, bringing it all together (note that if an open string is glued
it is denoted graphically by an arrow above the associated open string label
in the Young diagram) :
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〈χ
1

2

χ†
1

2

〉 = F 1
0 〈χ →

1

2

χ† →
1

2

〉+ F 1
1 〈DW (1)χ

1

2

(DW (1)χ
1

2

)†〉

= F 1
0F

2
0 〈χ →

1

→
2

χ† →
1

→
2

〉+ F 1
0F

2
1 〈DW (2)χ →

1

2

(DW (2)χ →
1

2

)†〉

+ F 1
1F

2
0 〈DW (1)χ

1

→
2

(DW (1)χ
1

→
2

)†〉

+ F 1
1F

2
1 〈DW (2)DW (1)χ

1

2

(DW (2)DW (1)χ
1

2

)†〉

= F 1
0F

2
0 (4N(N2 − 1)(N − 2))

+ F 1
0F

2
1 (

4

3
N(N − 2)2(N2 − 1) +

1

3
N(N2 − 1)(N + 1)(N − 2))

+ F 1
1F

2
0 (3N(N2 − 1)(N + 1)(N − 2))

+ F 1
1F

2
1 (N(N2 − 1)(N − 2)).

5.3.3 Restricted Schur polynomials: Indistinguishable Matrix Words

The two point correlation function of restricted Schur polynomials with in-
distinguishable matrix words is as follows:

〈χR,(rα1 ,rα2 )χ
†
S,(sβ1 ,sβ2 )〉 = δRSδrα1sβ1

δrα2sβ2

(hooks)R
(hooks)Rα

fR

= δRSδrα1sβ1
δrα2sβ2

(hooks)R
(hooks)rα1

(hooks)rα2

fR .

For example:

〈χ
; ⊗

(Z,X)χ†

; ⊗

(Z,X)〉 = 2N(N2 − 1)(N − 2)
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