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1 Finite groups
A group is a set G of elements and a group operation - with the following properties.
e (G is closed under the group operation: a-b € G for each a,b € G.
e The group operation is associative: a - (b-c¢) = (a-b) - ¢ for each a,b,c € G.
e (G contains an identity element e with the property that a-e =¢e-a = a for each a € G.
e For each a € G there exists an inverse element a~' € G such that a-a ' =a"'-a =e.

The number of elements in the group is called the order of the group. We will write [G] to denote the order
of group G. A finite group is a group of finite order.

A subgroup H C G is a subset of G which itself obeys the group axioms. Clearly if H is a subgroup of G
and g € H, then g~!' € H. H must contain the identity. Associativity is inherited from G. Closure is the
main issue in determining whether a subset of a group is a subgroup.

If ¢ = h™'gh then g and ¢’ are called conjugate with respect to h. The conjugacy class of g is the set
of all elements conjugate to g.

2 Group representations

Groups are abstract objects. In order to be usefully employed in calculations, and also to help elucidate
properties of the groups themselves, we map group elements to linear operators, preserving the relationships
implied by the group operation. We can then apply the familiar tools of linear algebra. Linear operators act
on a vector space of particular dimension. Hence we must specify also the dimension of a group representation.

A representation of dimension n of the group G is a homomorphism
D:G — GL(n,C).

You should convince yourself that all of the group properties are preserved in the set {D(g)}4ec with the
group operation being usual matrix multiplication. These matrices can be thought of as acting on a vector
space V. We say that V carries the representation D. Often we will say rep instead of representation.

If T is a linear operator on vector space V', and [i) is a basis for V then the matrix D realizing the operator
T in this basis is given by
Dij = (il T'|j)

and

Di) =3 1) GID 1) = 3" Disls)-



This suggests some basis-dependence in our definition of a rep. In fact, if D@ = ¢ in the basis |i) and
D'd' = ¥ in the basis |i’), where the two bases are related by the non-singular transformation S such that
' = St and ¥ = ST, then

¥ = St = S(Di) = (SDS™ 1)@’

and hence
D' =SDs .

We would like to factor out this basis-dependence so that anything we can say about a rep in one basis is
true in all bases. The above relation suggests that we consider two n-dimensional reps, D and D’ to be
equivalent if there is an S so that

D'(g) =SD(¢9)S™' Vgea.

Henceforth I will usually say T to refer to an abstract, basis-independent linear operator and D to refer to
the related matrix in some basis.

A rep is said to be unitary if the linear operator for each element g € G is unitary. Unitarity depends on
the choice of inner product on the space V. This choice is not otherwise restricted by our notion of a rep.
Given some inner product (-,-), a linear operator is said to be unitary if

(T4, T?) = (i,7) Vi, 5€ V.
1

Convince yourself that this reduces to the usual relation DT = D~

to this inner product). Hint: write o = T~ 3.

in an orthonormal basis (with respect

Now we define the group-invariant inner product, which ensures the existence of a basis in which any

given rep is unitary:
oo 1 . q
{uav} - @ Z(T(Q)U,T(Q)’U).

geaG
With this definition we can check that, for any h € G,

{T(a,T(h)} = = > (T(9)T(h)d,T(9)T (h)7)

where in the third line we changed the sum into and equivalent sum over ¢’ = gh. This step is only possible
for finite or compact groups. Now if we use a basis orthonormal with respect to this group-invariant inner
product, then we will have a unitary matrix rep. This means that any rep is related to a unitary rep by a
change of basis, and hence all reps are unitary-equivalent.

3 Invariant subspaces and reducibility

Suppose that the space V carries an n + m-dimensional rep of G. Let’s think of V as being composed
of two subspaces U and W with respective bases {€;|i = 1,...,m} and {€}|j = m+1,...,m+n}. Uis



m-~dimensional and W is n-dimensional. Further, suppose the rep on V has the property that
D(gyieU VieU gea.

We say that the subspace U is invariant (or closed) under the action of D, and that the rep is reducible.

What do the matrices D(g) look like in this case? Considering how U and W are contained inside V' we
infer that, for U to be closed under D(g), the matrices must take the form

v =" 5]

where A ~m X m, B~n xn, C ~m xn. Note that this form only ensures that U is closed. Specifically,
it C(g) # 0 then W will not be closed.

If C(g) = 0, then W is also closed under D. All matrices D(g) are block-diagonal and we say that the rep
is completely reducible. Look closely at these matrices on the diagonal:

D(gh) = D(g9)D(h)

This implies

which means that A and B are respectively m- and n-dimensional reps of G. We have learned that if an
n-dimensional rep is completely reducible, then it can be written as a direct sum of smaller reps whose
dimensions sum to n.

If arep T on V is unitary and there is an invariant subspace U C V, then if 4 e W =V
U we have

(T'(g)w,u) = (@, T~ (9)1)
= (b, a"), @ eU

= T(g)weW.

That is, the rep T is completely reducible.

Now we can understand Maschke’s Theorem, which says that all reducible reps of a finite or compact
group are completely reducible. For a finite or compact group we can define the group-invariant inner
product. Consequently all reps are unitary equivalent. And for unitary reps, reducibility implies complete
reducibility.

4 Irreducible representations

There are no limits on the number or dimension of reducible reps of a group. Given some reducible rep on
V', we can find an invariant subspace and decompose the rep into a direct sum of two reps, on orthogonal
subspaces of V. For each of these two reps we can do the same, and so on, breaking the original rep into a
direct sum of successively smaller reps. Eventually, none of the reps on the diagonal will contain invariant



subspaces. A rep with no invariant subspace is called an irreducible representation, or irrep. We say we
have decomposed the rep on V into its irreps.

Any rep is either irreducible, or a direct sum of irreps. For this reason irreps are natural objects to study in
representation theory. From their properties, the properties of any rep can be inferred. To learn more about
irreps, we use two lemmas due to Schur.

Schur’s first lemma: Given irrep T and some linear operator B : U — U,
BT(9) =T(9)BVg e G = B = I,
for NeCand 1: 4 — .

Proof: Consider an eigenvector b of B: Bb = Ab. Then

— —

BT(9)b = T(9)Bb = \[T(g)b],

which means that T(g)g is also an eigenvector of B, with eigenvalue A\. So the eigenspace of B is closed
under 7. But T is an irrep and contains no invariant subspaces. Therefore, the eigenspace of B must be U
itself. Similarly, all eigenvectors of B must have the same eigenvalue: subspaces with different eigenvalues
closed under 7" would violate the irrep condition. If all the eigenvalues of B are equal, and B spans U, then
one can see from the form of the characteristic equation that B = Al

Schur’s second lemma: Consider two inequivalent irreps T on U, and R on W, of dimension m and n,
respectively. If B: U — W is a linear operator, then

BT(g) = R(9)BVge G = B =0.
Proof: Consider m < n. For « € U,
R(g)(Bu) = BT (g)u € BU Vg € G.

So BU, the image of B, is an invariant subspace of W under R. But R is an irrep, so either BU = W or
BU = 0. The dimension of BU must be less than or equal to m, since U has only m basis vectors. By
agssumption, m < n = dimW. So BU # W and hence BU = 0.

Now consider n > m. The kernel of B is

K = {k € U|Bk = 0}.
For k € K, . =
BT(g)k = R(9)Bk =0,

so T(g)K = K. Hence K C U is closed under 7. But T is an irrep, so K = Oor K=U. Our assumption
implies dimBU < dimU and so B must kill some non-zero vectors: K # 0. Thus, K = U and B = 0.
Finally consider m = n, again thinking about the kernel K of B. If K = 0 then

Bi=Bi =id—4 cK=1=1,

so B is one-to-one and hence invertible. Then T(g) = B~'R(g)B, which contradicts the inequivalence pred-
icate. Hence K = U and B = 0.

We're going to change notation now. We’ll use I'r(g) to denote the matrix corresponding to group element
g in irrep R. The corresponding space carrying this irrep R will be denoted Ug. This will be useful to make
our statements more compact. We’ll use the symbol drg as a Kronecker-delta analogue, equal to 1 if R and



S are equivalent as irreps, and 0 otherwise. dimpg is the dimension of irrep R.
In terms of this new notation we can combine Schur’s lemmas into a single statement. Given two reps, R
and S, of G and a linear operator B : U — Ug,

BFR(g):Fs(g)BVgEG — B = Agrdgrsl, XeC.

The matrix elements of irreps have a special property. Let Ur and Ug carry irreps of G, and let A : Ug — Ug.
Consider the operator

B=) Tgr(g)ATs(g™").

g€eG
B satisfies the condition for Schur’s lemma:
Tr(h)B = Y Tr(hg)ATs(g™")

geG

= > Ta(@)ATs(¢'h), ¢ =hg, g =g 'h
g'eG

= > Trl(g)Als(g " )Is(h)
g'eG

= BTgs(h).

So B = /\%A)dRS]I.

We will choose Ang = 04,700, s for some r,s. Check that this gives

> Tr(9)iTs(g™ s = N80
geG

To calculate )\gs) set R =5 and trace over ¢ = j. Convince yourself that this gives

(G0, = dimpA®).

This condition on the matrix elements of an irrep is called the fundamental orthogonality relation,
_ G
E Tr(9)iTs(g")sj = 701[ ] 0ij0rsORS-
1mpg
geG

We can use this relation to understand how many irreps there can be for some group G. Since we can think
of the I's as unitary we can write the relation as

E FR 1TFS ) [G] 61]5r55RS
dm
geG

For some particular R = S we can look at this as an inner product between two [G]-dimensional vectors.
The vectors are labelled by two indices, each of which can take dimp values. For each choice of indices, the
vectors are orthogonal, so they can be thought of as a basis spanning this [G]-dimensional space. There can
be at most [G] such vectors, and hence
> (dimg)® < [G].
R

From this we learn that the number of irreps is bounded. To find out exactly how many there are we need
to turn to one of the most powerful notions in group representation theory.



5 Characters

If I'r(g) is a rep of G, then the character of g in R is

xr(g) = tr (I'r(g)) -

Try to prove these simple properties of characters:
e Equivalent reps have the same characters.
e Conjugate elements have the same characters.
o If T =T! then x(¢g~!) = x*(g). This is always true for finite or compact group reps.
By appropriately tracing the fundamental orthogonality relation, show that for irreps we have
ZXR 9)xs(g™") = Ors,
gEG

or, for finite or compact groups,

Z xr(9)x5(9) = drs = (xs:XR)-
gGG

This second relation looks like an inner product between [G]-dimensional vectors. Viewed in this way, group
characters of irreps are orthonormal.

Let’s work out how many irreps there are of a group G. As noted, the characters of all elements within a
conjugacy class are equal. Suppose there are k conjugacy classes in G, each with k; elements. Then

Z kX xS = s,

which expresses the orthogonality of k-dimensional vectors v/k;x R) But there are most k such vectors, and
so the number of irreps r is bounded by r» < k. We also can prove the orthogonality relation

Z\fx%)fx(”*— i

which describes k orthogonal r-dimensional vectors. There can be at most r such vectors, so £ < r. Hence
r = k. The number of irreps of a group is equal to the number of conjugacy classes of the group.

6 Decomposition into irreducible representations
Finite and compact groups have the property that any reducible rep can be brought to block diagonal form,
with irreps on the diagonal. For example, some 5-dimensional rep might have a single 1-dimensional irrep

and two copies of the same 2-dimensional irrep on.

For an arbitrary rep I', we can write a direct sum over irreps:

g) = @FR(Q)@QR7
R



where ap is the multiplicity of the irrep R in the decomposition. The multiplicity can be determined by
using the orthogonality property of characters. Trace both sides of the equation above to get

= Z arXr(9)
R

The character of a general rep is a sum over characters of its constituent irreps times a multiplicity factor.

For any particular irrep,
boxs) = g X an 3 xalonil
g

Characters can also tell us when a rep is irreducible. For any rep with character x(g),

(0 x) ZZGRGSZXR 9xs(9) =Y ak.
R

geaG

If x is an irrep, then only a single ag is non-zero, and it is equal to one. For a reducible representation, this
inner product would be greater than 1. This is a much easier condition to check than looking for a change
of basis which diagonalizes all of the I's, or ruling one out.

7 The regular representation

We can create a vector space V of dimension [G] by using group elements to label orthonormal basis vectors.
That is, V is spanned by the basis
lg;) fori=1,2,...,[G].

This basis admits a natural action for group elements, terms of [G] x [G] matrices:

T(g9) lg:) = l9gi) = > T(9)jilg;) Vg € G.
J
The basis vectors are orthonormal, so I'(g);; is non-zero only for a single j which satisfies gg; = g;. So for
each column 4, only a single row j has a non-zero entry, and that entry is one. For each i, gg; is a unique

element, so each row has exactly one non-zero entry. Since gg; = g; only for the identity element e, no matrix
will have diagonal entries except for I'(e). This rep is called the regular representation.

Consider the vector v € V' such that ¢ =}, |g;). For any g € G,
I'(g)7 = Z l9gi) = sum; |g;) = U,
i

so U defines an 1-dimensional invariant subspace of V. This is an irrep called the symmetric rep. Clearly the
regular rep is reducible. What lives on the other subspace? Certainly at least one more irrep. Consider that
the regular rep includes a basis vector for every possible action of a group element. Hence every possible
irrep must be some subspace of V. Since we know that this rep can be block-diagonalized these must be
orthogonal subspaces. We can explore this using characters. Consider a decomposition of I" into all possible

irreps of G,
I(g) = PTr(g)®*.
R
From the form of T" we know that all characters are zero, except x(e) = [G]. Furthermore

= (X, Xr) Z Xr(g = xr(e) = dimg,
gEG



so in the decomposition of the regular rep, each possible irrep of G appears with multiplicity equal to its
dimension. From this we can also refine a previous result:

> dimg = [G].

This property of the regular rep, that it contains all possible irreps, is not all that useful in practice for
groups of larger order. It becomes quite difficult to perform the decomposition. We’ll look at an example
later, after studying the symmetric group.

8 The symmetric group

The symmetric group S, is the group of permutations of n objects. We’ll think of these objects as the
numbers {1,2,...,n}. We'll write particular elements of the symmetric group in cycle notation. Look at
some examples in Sy:

(13) : {1,2,3,4} — {3,2,1,4}
(143) : {1,2,3,4} — {4,2,1,4}
(1234) : {1,2,3,4} — {2,3,4,1}

(13)(24) : {1,2,3,4} — {3,4,1,2}
(12)(13) : {1,2,3,4} — {3,1,2,4}

Note in the second last example that (13)(24) = (24)(13). (13) and (24) are called disjoint cycles. Disjoint
cycles commute. Cycles which are not disjoint can be rewritten. In the last example, (12)(13) = (132).
As a further example, (123)(234) = (12)(34). The 2-cycles are also called transpositions. Note that
(12) = (21) and that any transposition squares to the identity. A neighbouring transposition is one that
can be written in the form (k, k + 1). Any element o € S, can be written as a product of neighbouring
transpositions, for example,

(13) = (12)(23)(12)
(123) = (12)(23).

Try some operations with cycles for yourself, to become familiar with the patterns. What does the inverse
of an element look like?

When written in terms of disjoint cycles, every element of of S, has a particular cycle structure; the
number of 1-, 2-, 3-, ... cycles that make up the element. Numbers which don’t appear to 2- or longer cycles
can be thought of as sitting in 1-cycles. For example, in Sy you can think of (12) = (12)(3)(4) as being an
element comprised of one 2-cycle and two 1-cycles.

Conjugation in S, preserves cycle structure, and permutes the labels inside the conjugated elements by the
action of the conjugating element. For example, in S5 with o = (123) and 0! = (132),

o(15)(234)0 " = (25)(314)
o(45)(12)0~t = (45)(23).
So conjugacy classes in S, are defined by cycle structure. Note that for any o € .S,, the sum of the lengths of

cycles in ¢ equals n. Hence conjugacy classes, and therefore irreps, of S, are in one-to-one correspondence
with partitions of n.

We can associate with each o € S, a signature which is 1 if 0 can be written as the product of an even
number of neighbouring transpositions and -1 otherwise. We’ll denote it sgn(o). Then we can form a simple



1-dimensional irrep by the map I'(c) = sgn(co). This is called the alternating representation. The trivial
representation has I'(c) = 1.

Sy, subgroups are collections of permutations which hold some subset of {1,2,...,n} fixed, or only permute
some elements amongst themselves. For example, there are several possible subgroups S3 C Sg or even
Sy X Sy C Sg. Try to count how many possible subgroups there are of each form. Can you generalize your
reasoning?

The symmetric group is the most important finite group. Cayley’s theorem states that every finite group
G is isomorphic to a subgroup of S|g. So if we understand the representation theory of the symmetric group
and its subgroups, we can apply our understanding to any other finite group.

9 Example: S,

Sy has 2 elements, o7 = (1)(2) and oo = (12). Its regular rep is therefore 2-dimensional. We’ll take as

orthonormal basis vectors
1

o = o] 1o = [9]-

The group structure is simply o10; = 0,01 = 0; and 0302 = 1. From this the representation matrices follow
trivially: )
10 0 1
F(Jl) = |:O 1_ s F(UQ) = |:1 0:| .
We simply need to diagonalize T'(o2) in order to block-diagonalize the rep and obtain the irreps. The
characteristic equation for I'(sg) is A2 — 1 = 0 which has eigenvalues A = 1. We then find normalized
eigenvectors, which we’ll label by the eigenvalue:

)= [“15] , [=1) = Fﬂ :
V2 V2

So the diagonalizing similarity transformation is

1 =1 11
S=|w 2|85t =g 2|
V2 V2 VZ V2
Then compute the transformed matrices:

ST(01)S~! = B (1)] . ST(02)S ' = E _OJ .

On the top diagonal we see the trivial rep, and on the second we see the alternating rep. Each appears once,
as expected, since each has dim=1.

Look closely at the space carrying the trivial rep. Its single basis vector is % lo1) + % |o2), a sum over
each element with equal coefficients. For this reason it is also called the symmetric rep.

Now consider the space carrying the alternating rep. It has a single basis vector

% o) - % jo2) = Sgn(ol)\% jo1) + sgn(aa% j02),

and is therefore called the antisymmetric rep.



You should construct the regular rep for S3. Think about how to decompose it. Can you easily find an
appropriate similarity transformation? What about S4?7 Clearly the applicability of the regular rep to
finding irreps is of limited value. We will now turn our attention to some powerful tools of symmetric group
representation theory which will allow us, among other nifty things, to write down representations matrix
element by matrix element.

10 Young diagrams

As discussed, irreps of S, are in one-to-one correspondence with conjugacy classes and hence with partitions
of n. Let’s describe a partition of n by drawing rows of boxes. The total number of boxes is n. The number
of rows is the size of the partition. The number of boxes in each row gives a set of integers which sum to n
and describe the partition. In order to avoid over-counting, enforce the restriction that the number of boxes
in a row is nonincreasing from top to bottom. For example, consider the partitions of 5:

|
Emnmn|SEEEIRER] S

From this we conclude that there are seven possible irreps of S5. These diagrams are called Young dia-
grams. They are more than a convenient means of labelling irreps. Many properties of irreps are encoded
in the structure of Young diagrams, and they can be used to construct a natural basis in which it becomes
easier to construct the irreps explicitly.

A useful way to gain more insight into the rep theory of the symmetric group is the process of subduction.
When we restrict an irrep of some group to a subgroup, then the irrep subduces a rep on the subgroup.
More precisely, if H C G is a subgroup, and we have an irrep R of G, then we can subduce a rep R|y on H:

gy, (h) =Tr(h) ¥ h € H.

A natural question is whether this subduced rep is reducible. If R is an irrep, then there is no transfor-
mation S such that STr(g)S~! has the same block-diagonal structure for each g € G. That does not
preclude the possibility of finding S such that ST'r(g)S~! is block-diagonal for each g € H. So in general
we must assume that the subduced rep is reducible. In that case the natural question is, which irreps of
the subgroup H appear in the decomposition of R|x? We’ll answer this for the symmetric group in particular.

Suppose R is an irrep of S, 4,,. R is a Young diagram with n + m boxes. Consider a general S, x S,
subgroup of S, ,,. What does an irrep of S;, x S, look like? We can pick any irrep of .S,, for that factor,
and any irrep of S,,. Suppose we choose S and T as irreps, respectively. S is a Young diagram with n boxes
and T is a Young diagram with m boxes. We write the irrep of S,, X S,,, as S x T

If we restrict the rep R of Sy, to S, X Spy C Sntm, the subduced rep is reducible. That is, the rep can be
written as a direct sum of irreps of S,, X S;,, each irrep appearing with some multiplicity:

Tp = @(F(SXT))@JCRST.
S, T

The multiplicity factors frsr are called Littlewood-Richardson numbers. They can be determined by
the Littlewood-Richardson rule.

We begin by studying the Littlewood-Richardson rule for S,_; x S; C S, subgroups. S; is trivial and
obviously S,—1 x S1 & S,,_1. The only conjugacy class, and hence irrep, of Sy is O, so that is the only

10



possible choice for T" in the decomposition of the subduced rep. Convince yourself that (1 is a 1-dimensional
irrep that must map the only element in S; to 1. The Littlewood-Richardson rule says that the irreps of
Sn—1 appearing in the rep subduced from R of S,, are those which can be obtained by removing a single box
from R to leave a valid Young diagram. A few examples will illustrate. I'll only draw the Young diagrams,
but you should think of them as labelling irreps, and think of the equations as describing direct sums or
matrices.

T - OxO+HxO

_ [T+ T x[]+ [ ]

_ [ ]

Convince yourself that for any subduction of a rep onto S, _1 C .S, the Littlewood-Richardson numbers can
only be 0 or 1.

We can use the Littlewood-Richardson rule to learn how the Young diagrams encode the dimension of the

irreps they label. In the second example above we have irrep of S¢. The subgroup representation
matrices can be brought to block-diagonal form with irreps of S5 on the diagonal:

0

fan)

[an)
|

0 0 |

Now imagine we restrict further, to an Sy subgroup of the S5 C Sg. The appropriate matrices (which ones
are they?) can be block-diagonalized with Sy irreps on the diagonal. Which irreps? Well, the Littlewood-
Richardson rule acts on the irreps of S5 on the diagonal. The above structure becomes

. ]
0 o 0 0 0
0 0 0 0 0
|
0o o0 [ 0 0 0
0o 0 o L1 0
o 0 o 0 0
0o 0 0 0 0 [ ]

where the first two irreps come from E}, the second two from and the last two from H}j Notice that
we're starting to see some multiplicity. Now you should continue this chain of subduction until you are left

11



with S irreps on the diagonal. Only one matrix has that form - the identity in the original Sg irrep. So if

we could count the number of s we would know the dimension of the irrep .

So how many s are there? At each restriction to a subgroup the decomposition of irreps was given by all
ways of pulling off a block to leave a valid Young diagram. Each of these irreps appeared on a diagonal block.
Convince yourself that as a result, the number of single boxes appearing is equal to the number of possible
sequences of pulling boxes off the original Young diagram to leave a single box, where at each step only valid

Young diagrams are kept. This is equal to the dimension of the irrep. Show that is 3-dimensional.

For larger Young diagrams, this isn’t a practical technique. Happily, the diagrams encode the dimension of
the irreps they label in another way. We can associate a number with each box in the diagram in several
ways. One way is to use the hook length. The hook length of a box is the sum of the number of boxes
beneath it plus the number of boxes to its right, plus one (for the box itself). This is called the hook length
because it counts the number of boxes an L-shape flipped about the horizontal axis, with its corner in the
box in question, passes through. Example diagrams with hooks filled in:

3]1]
1]

412]1]
. :

‘»—noocn

We will write hooksg for the product of hook lengths for all boxes in the diagram R. Then the dimension

of the S, rep R is
n!

di = .
R hooksgr

So far we have discussed the Littlewood-Richardson rule for the case of subducing representations on S,,_1
subgroups of S,,. Now we’ll consider subducing reps on S,, x S, C Sp4m. This is based on a procedure
called induction, which we will only touch upon, in the specific manner in which it is used here. We know
how to subduce a rep on S,, X (S1)™ C Sptm: irrep R on S, 4., decomposes into a sum over irreps S X T,

always with T" of the form
T=[|x[ |x--x[]

m boxes

where we think of the m boxes of T' as having been pulled off the diagram successively (their ordering in
T doesn’t matter since the product operation commutes). We want to induce a rep on S, from (51)™.
The irrep S x T appears in the decomposition of the subduced rep frsr times. Inducing a rep on S, X S,
involves a change of basis that mixes these frgr copies. The induced rep is reducible, and the irreps can
be found by the rule for multiplying the m boxes of T: take the first box, and attached the second in all
possible ways to form valid Young diagrams. Then take the third box, and attach it to each of the 2-box

12



Young diagrams in all possible ways that form Young diagrams, and so on. For example:

[x[Jx[]x[] induces (Dj+H> «[Ix[]

- (o) <O

= D:‘:I:l+ ‘ ‘+ ‘ ‘+ +7 + ‘ ‘

S I S| Y o,

There is one important caveat. Recall that in the irrep S x T subduced from R we think of T as a product
of boxes pulled off of R. When forming the product as in the example above, any boxes that appeared in
the same row or column in R must appear in the same row or column in the irrep of S,,. It can be useful to
label boxes when computing products, until you are used to this. Simply multiply the boxes together as in
the example above, and then keep only those diagrams whose boxes have the correct relationship. Here is
an example. Note that the constant 2 on the right hand side in the first line is absorbed during induction;
the two copies of the space mix to form irreps of S3 x Ss.

Al = o L @< [+ [T T [@ <[] x [e]

C

= | x et | +[ ] | Ix[d][b]ec] (we have dropped several invalid diagrams)

c
Lb]

- HH T

The dimension of a rep S x T is dimg X dimp. Show that the dimensions on the left and right hand side of
the example above agree. Would they agree if we did not preserve row and column relationships of boxes?
Convince yourself by trying a few examples that if S x T appears frgr times in a subduction from R, then
R appears frsr times in the product S x T'. This is called Frobenius-Schur duality.

11 Yamanouchi basis and Young tableaux

In the previous section we discovered that the number of sequences of pulling all the boxes off a Young
diagram, at each step leaving a valid Young diagram, is equal to the dimension of the irrep labelled by the
diagram. Suppose we numbered the n boxes of a diagram with 1 to n, to indicate at which step we would
remove each box, for example

412]1] 413]1]
or D) .

Such a numbered diagram is called a Young tableau. Not every numbering of a diagram is a valid tableau.
For example,

2[3]1]
2
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is invalid. For each diagram there as many valid tableaux as the dimension of the irrep. (Write down the
tableaux for S3 and compare with what you know about the dimensions of S3 irreps). We can therefore
assume that the Young tableaux for a particular diagram label a set of orthonormal basis vectors spanning
the space carrying the irrep.

If R is an irrep of S,, and o € S,, then, for some appropriate action of o, the matrix element
Lr(o)i; = (Ril o |R;),

where R; and R; are Young tableaux. For this to be useful in practice we need to things: an ordering on
the tableaux and a convenient action of a permutation on a tableau.

A suitable ordering on Young tableaux is to compare two tableaux in terms of the row in which the smallest
number occurs. The tableau with the number 1 in the lowest position comes first. If the tableaux have 1 in
the same row, then look at the position of 2, and so on. Some examples:

3[2] _[3]1]
1 “[2]

41312] [4]3]1] [4]2]1]
i <l <I3 .

There is no comparison for tableaux of different shape. Note that this ordering places all vectors in the
subspace obtained by removing a particular block together. That guarantees a block diagonal structure for
appropriate permutations when subducing reps for S,,_; x (S;)¥ C S,,. Which permutations are appropri-
ate? In other words, suppose we remove the box labelled 1 to get a rep on S,,_1 C S;,: there are n such
subgroups. The elements of all of them can’t be block-diagonal, because then all elements of S,, would be
block-diagonal. In fact, only one subgroup has the block-diagonal structure. We will establish the conven-
tion that it is the subgroup of S,, which holds n fixed. Hence, removing the box labelled 1 corresponds to
restricting the subgroup which holds n fixed. Similarly, removing the box labelled 2 restricts to .S, _o which
holds n and n — 1 fixed.

We still need an appropriate action of a permutation on a Young tableaux. To that end, we now define the
axial distance between two boxes on a tableaux. Given two boxes on the tableaux, say 1 and 3, the axial
distance between them is the number of steps which must be taken (horizontally or vertically) from box
labelled 1 to get to box labelled 3. Steps down or to the left count +1 and steps up or to the right count -1.
We will write n;; for the axial distance between box labelled i and box labelled j. Here are some examples:

3[2] .
T

m3 = —1, n2 = -2,

3‘1‘5 m3 =1, na =2, 2 =3.

4
2]

Next we define the action of an adjacent 2-cycle on a Young tableau. Because of the subgroup chain we use
in subductions, the 2-cycle (n — k,n — k — 1) acts naturally on the tableau labels k41 and k + 2. It’s action
is to map a tableau (basis vector) to the same tableau times a no-swap factor plus the tableau obtained by
swapping the two labels (only if this is valid tableau) time a swap factor. The no-swap and swap factors
are defined in terms of the axial distance between the boxes with the relevant labels on the tableau being
acted upon:

noswap;; = n—ij, swap;; = 1-— )
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The no-swap factor is antisymmetric in its labels. When calculating the no-swap factor between adjacent
labels k£ and k + 1, we use noswapy, ;. Some examples to illustrate (the permutation are implicitly in the

representation given by the shape of the tableaux):
_
(23) ‘ = noswapi, + swap;

-2

1
2|1 2

(34) ‘ ;,L 2[1 > = noswap, ;,l 2[1 > (swap factor term not a valid tableau)
_ A
3]
(23)‘ é 2‘1‘> = noswapgs ;l 21>—|—swaup23 ;l 31>

) S

N |~

With this action, a permutation can never change the shape of a tableau. Think about why that is necessary.
For general permutations, we must first express the permutation in terms of a product of adjacent 2-cycles.
Recall the relationship between the action of a linear operator on an orthonormal basis and its matrix rep-
resentation in that basis. Compute the matrices for S in both possible irreps. Compare your result with
what we obtained using the regular rep. Calculate a few Ss irrep matrices as well. This is a very convenient
way to build irreps for any finite group.

This action on the Young tableaux creates an orthogonal representation. Check that the matrices you
calculated above are indeed orthogonal (M7 = M~!). In the next section we cover a graphical notation for
summarizing calculations of matrix elements in the Yamanouchi basis.

12 Strand diagrams

We are interested in calculating matrix elements of the form (the permutation is implicitly in the rep )

1] 3]
< 3 e |1 >
3 2

in the orthogonal representation as described in the previous section. To make the calculation more conve-
nient we use a graphical notation called strand diagrams. These diagrams capture the process of acting
with successive adjacent 2-cycles on a tableau and taking the overlap of the resulting vector with another
tableau.

In the present example, (46) is not an adjacent 2-cycle. We first need to express it as a product of such.
Convince yourself that
(46) = (45)(56)(45).
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So we need to compute

1] 3]
< 21 [(45)(56)(45) | [1 >
3 2

Here’s how to draw a strand diagram. We’ll think of the 2-cycles as acting to the left on the row labels.
By the relation between the subduction chain and tableau labels, this permutation will affect the labels 1, 2
and 3. As a result, the diagram will have three columns. In the first column, write the label of the first box
to be removed, 1. In the second column the label of the second box to be removed, 2. In the third column,
3. The first 2-cycle to act on the left is (45), which acts on labels 2 and 3. So draw a box underneath the
labels which spans the columns of 2 and 3. The next 2-cycle which acts on the left is (56), which acts on
labels 1 and 2. In a row beneath the previous box, draw a box spanning the columns of 1 and 2. In the
next row draw the final 2-cycle: a box spanning the columns with labels 2 and 3. The top of the columns
carry row labels. At the bottom of the columns, write the column labels. In the first column, instead of
writing 1, write the label of the box in the bra which corresponds the box labelled 1 in the ket. Similarly
for the second and third column. Now we draw strands connecting labels at the top with the corresponding
labels at the bottom. Strands are identified by the label at the top where they originate. Strands move
down the diagram, and each time a pair of strands enters a box, they can either go straight through, or swap
columns in the box. If the mth and nth strands enter a box (reading from left to right), and don’t swap,
they contribute a factor noswap,,,,. If they do swap, they contribute a factor swap,,,,. The factors for each
diagram are multiplied together, and the matrix element is a sum over all possible diagrams (there may be
several ways to connect the strands). For our example, the only diagram is:

1 2 3

j—

2 3 1
Convince yourself that this gives 23 %% = %. Now try to compute
1] 1]
2 (46) 2 .
3] 3]
You will find two diagrams:
1 2 3 1 2 3

oJ

_/

| |
1 2 3 1 2 3

-

This powerful technique lets us calculate any matrix element of any permutation in any irrep. It is among
the most efficient ways to generate representations.
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13 Casimirs and projectors

When we restrict representations to subgroups S, _x X (Sl)’c C Sy, the subduced representation is reducible.
How do we extract the irreps of S,,_j on the diagonal? We use linear operators called projectors. As their
name suggests, projectors isolate subspaces of a linear space. For example, we know that the space carrying

Se decomposes under restriction to S5 as Eir +H§P. We want an operator that takes us to some
particular subspace, say

w ) - (el ED)-H )

How could we build such an operator? Suppose we had another operator O, which had the same eigenvalue
for any vector in the space carrying R. In other words, if we use the notation |R,¢) with ¢ running over the
dimension of R to label basis vectors,

O|R,i) = Ag |R,i) Vi.

Then we could build a projector as follows:

P@j E:\jzj\f((?—)\ﬁ) <O—)\H}j>.
Check that this operator behaves in the desired fashion. Show that the normalization must be

N 1

() )

Construct the projectors onto the other two subspaces carrying S5 irreps in this example.

The operator O is called a Casimir. For use in constructing projectors it is important that the Casimir have
a different eigenvalue for each Young diagram (why?). Note that

O|R,i) = Ag|R,i) Vi

implies
FR(U)O |R,Z> = FR(O'))\R ‘R, Z> = OFR(J) |R,Z> Vi

since I'r(0) cannot change the shape of the tableau. Consequently, O commute with the whole group S,
and by Schur’s lemma must be proportional to the identity. We can define several such operators. We will
select one with an eigenvalue that is easy to compute directly from the Young diagram. It is a sum over all

possible 2-cycles:
0=> (ij).
i<j
Show that this commutes with any element in S,,. The eigenvalue for this operator is equal to the sum of
the number of pairs of boxes in each row, minus the sum over number of pairs of boxes in each column. For

example:
O‘ ‘> = (3+1—1—1)‘ >,

o > = (1+1-3-1) >
| > | >
o = (3-3)| | .
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