# What to do if $N$ just isn't big enough 

Robert de Mello Koch<br>University of the Witwatersrand

April 27, 2010

## The AdS/CFT Correspondence

Quantum gravity on asymptotically $\operatorname{AdS}_{5} \times S^{5}$ spacetime $\downarrow$
$\mathcal{N}=4$ super Yang-Mills theory with gauge group $U(N)$

In the 't Hooft limit of the gauge theory $(N \rightarrow \infty$ and $\lambda=g_{Y M}^{2} N=$ fixed $)$

$$
\begin{aligned}
\frac{R^{2}}{\alpha^{\prime}} & =\sqrt{\lambda} \\
g_{s} & =\frac{\lambda}{N}
\end{aligned}
$$

bosonic $S O(2,4) \times S O(6)$ symmetry matches

## Dual Map of Field Theory Parameter Space



Figure: We are most interested in finite $N$ regions of parameter space.

## $\mathcal{N}=4 \mathrm{SYM}$ theory

- Study $\mathcal{N}=4$ SYM theory on $R \times S^{3}$.
- Consider the complex combinations $X=\phi_{1}+i \phi_{2}$, $Y=\phi_{3}+i \phi_{4}, \quad Z=\phi_{5}+i \phi_{6}$, from the $s$-wave components of the 6 adjoint scalars.
- In our normalization, the free two point function is

$$
\left\langle Z^{i}{ }_{j}\left(Z^{\dagger}\right)^{k}{ }_{1}\right\rangle=\delta_{l}^{i} \delta_{j}^{k}
$$

- We will consider operators from the $\frac{1}{2}$ BPS sector (built only from $Z \mathrm{~s}$ ) or nearly $\frac{1}{2}$ BPS (built mostly from $Z \mathrm{~s}$ )
- For these $\mathcal{R}$-charge $=$ dimension


## Dual Picture of Parameter Space

- Objects polarize; velocity dependent force doing polarization (Myers)

$$
R=\sqrt{\frac{J}{N}} R_{\mathrm{AdS}}=\sqrt{\frac{J}{N}}\left(N g_{\mathrm{YM}}^{2}\right)^{\frac{1}{4}} I_{s}
$$

| $\mathcal{R}$-charge | Size $(R)$ | Interpretation |
| :--- | :--- | :--- |
| $\sim 1$ | $\sim 0$ | Graviton |
| $\sim \sqrt{N}$ | $\sim I_{s}$ | String |
| $\sim N$ | $\sim R_{\text {AdS }}$ | Brane |
| $\sim N^{2}$ | $R$ diverges | New Geometry |

Table: The size of objects in the dual string theory as a function of $\mathcal{R}$-charge

- Take Away idea: theory is organized by $\mathcal{R}$-charge


## The simplicity of $N=\infty$

- Non planar diagrams can be discarded which implies huge simplifications.


Figure: The second diagram is non-planar.

- Large $N$ is the classical limit (expectation values factorize) of $N$ eigenvalues.
- Observeables admit a double expansion

$$
O=\sum_{h} \sum_{n} o_{h, n} N^{2-2 h} \lambda^{n}
$$

## Gravitons

- Suitable operators are $O=\operatorname{Tr}\left(Z^{n}\right)$ with $n \sim O(1)$

$$
\left\langle\frac{\operatorname{Tr}\left(Z^{n}\right)}{\sqrt{n} N^{\frac{n}{2}}} \frac{\operatorname{Tr}\left(Z^{\dagger m}\right)}{\sqrt{m} N^{\frac{m}{2}}}\right\rangle=\delta_{n m}
$$

the orthogonality present here is due to conservation of $\mathcal{R}$-charge

$$
\left\langle\frac{\operatorname{Tr}\left(Z^{n}\right)}{\sqrt{n} N^{\frac{n}{2}}} \frac{\operatorname{Tr}\left(Z^{\dagger n_{1}}\right)}{\sqrt{n_{1}} N^{\frac{n_{1}}{2}}} \frac{\operatorname{Tr}\left(Z^{\dagger n-n_{1}}\right)}{\sqrt{n-n_{1}} N^{\frac{n-n_{1}}{2}}}\right\rangle=\frac{\sqrt{n n_{1}\left(n-n_{1}\right)}}{N}
$$

this correlator is not forced to vanish - $\mathcal{R}$-charge is conserved; it does vanish at large $N$

- In field theory: supression of nonplanar diagrams is responsible
- In string theory: number of traces is identified with number of gravitons; the above correlator vanishes because particle number is conserved; interactions are weak


## Strings

- Suitable operators are $O=\operatorname{Tr}\left(Z^{n_{1}} Y Z^{n_{2}} Y \cdots Y Z^{n_{l}}\right)$ with $\sum_{i} n_{i}=J \sim \sqrt{N}, L \sim 1$ (BMN)
- Non-planar diagrams are enhanced
- The large $N$ expansion can be reorganized $-\frac{1}{N}$ is replaced by $\frac{J^{2}}{N}$ (Kristjansen, Plefka, Semenoff, Staudacher)

| $\mathcal{R}$-charge | Size $(R)$ | Interpretation | Coupling |
| :--- | :--- | :--- | :--- |
| $\sim 1$ | $\sim 0$ | Graviton | $1 / N$ |
| $\sim \sqrt{ } N$ | $\sim I_{s}$ | String | $J^{2} / N$ |
| $\sim N$ | $\sim R_{\text {AdS }}$ | Brane | $? ? ?$ |
| $\sim N^{2}$ | $R$ diverges | New Geometry | ??? |

Table: The size of objects in the dual string theory as a function of $\mathcal{R}$-charge

Recall the basic contraction: $\left\langle Z_{j}^{i}\left(Z^{\dagger}\right)_{l}^{k}\right\rangle=\delta_{l}^{i} \delta_{j}^{k}$
To compute

$$
\left\langle Z_{j_{1}}^{i_{1}} Z_{j_{2}}^{i_{2}} Z_{j_{3}}^{i_{3}}\left(Z^{\dagger}\right)_{l_{1}}^{k_{1}}\left(Z^{\dagger}\right)_{l_{2}}^{k_{2}}\left(Z^{\dagger}\right)_{l_{3}}^{k_{3}}\right\rangle
$$

sum over the $3!=6$ possible contractions, each of which can be associated with an element of $S_{3}$. For example, if $\sigma=(123)$ :


Figure: One of 6 contractions

$$
\begin{aligned}
=\delta_{l_{2}}^{i_{1}} \delta_{j_{1}}^{k_{2}} \delta_{l_{3}}^{i_{2}} \delta_{j_{2}}^{k_{3}} \delta_{l_{1}}^{i_{3}} \delta_{j_{3}}^{k_{1}} & =\delta_{l_{\sigma(1)}}^{i_{1}} \delta_{j_{\sigma-1}(2)}^{k_{2}} \delta_{l_{\sigma(2)}}^{i_{2}} \delta_{j_{\sigma-1}(3)}^{k_{3}} \delta_{l_{\sigma(3)}}^{i_{3}} \delta_{j_{\sigma-1}(1)}^{k_{1}} \\
= & \langle I| \sigma|L\rangle\langle K| \sigma^{-1}|J\rangle
\end{aligned}
$$

For $n=2, \sigma=\mathbf{1}$ has $\sigma(1)=1$ and $\sigma(2)=2 ; \sigma=(12)$ has $\sigma(1)=2$ and $\sigma(2)=1$

$$
\begin{gathered}
\operatorname{Tr}\left(\sigma Z^{\otimes 2}\right)=\delta_{j_{\sigma(1)}}^{i_{1}} \delta_{j_{\sigma(2)}}^{i_{2}} Z_{i_{1}}^{j_{1}} Z_{i_{2}}^{j_{2}}=Z_{j_{\sigma(1)}}^{j_{1}} Z_{j_{\sigma(2)}}^{j_{2}} \\
\operatorname{Tr}\left(1 \cdot Z^{\otimes 2}\right)=\operatorname{Tr}(Z)^{2} \quad \operatorname{Tr}\left((12) \cdot Z^{\otimes 2}\right)=\operatorname{Tr}\left(Z^{2}\right)
\end{gathered}
$$

$$
\operatorname{Tr}\left(A Z^{\otimes 3}\right)=A_{j_{1} j_{2} j_{3}}^{i_{1} i_{2} i_{3}} Z_{i_{1}}^{j_{1}} Z_{i_{2}}^{j_{2}} Z_{i_{3}}^{j_{3}}
$$

Recall the basic contraction: $\left\langle Z_{j}^{i}\left(Z^{\dagger}\right)_{l}^{k}\right\rangle=\delta_{l}^{i} \delta_{j}^{k}$
To compute

$$
\left\langle Z_{j_{1}}^{i_{1}} Z_{j_{2}}^{i_{2}} Z_{j_{3}}^{i_{3}}\left(Z^{\dagger}\right)_{l_{1}}^{k_{1}}\left(Z^{\dagger}\right)_{l_{2}}^{k_{2}}\left(Z^{\dagger}\right)_{l_{3}}^{k_{3}}\right\rangle
$$

sum over the $3!=6$ possible contractions, each of which can be associated with an element of $S_{3}$. For example, if $\sigma=(123)$ :


Figure: One of 6 contractions

$$
\begin{aligned}
=\delta_{l_{2}}^{i_{1}} \delta_{j_{1}}^{k_{2}} \delta_{l_{3}}^{i_{2}} \delta_{j_{2}}^{k_{3}} \delta_{l_{1}}^{i_{3}} \delta_{j_{3}}^{k_{1}} & =\delta_{l_{\sigma(1)}}^{i_{1}} \delta_{j_{\sigma-1}(2)}^{k_{2}} \delta_{l_{\sigma(2)}}^{i_{2}} \delta_{j_{\sigma-1}(3)}^{k_{3}} \delta_{l_{\sigma(3)}}^{i_{3}} \delta_{j_{\sigma-1}(1)}^{k_{1}} \\
= & \langle I| \sigma|L\rangle\langle K| \sigma^{-1}|J\rangle
\end{aligned}
$$

After summing all contractions:

$$
\left\langle Z_{j_{1}}^{i_{1}} Z_{j_{2}}^{i_{2}} Z_{j_{3}}^{i_{3}}\left(Z^{\dagger}\right)_{l_{1}}^{k_{1}}\left(Z^{\dagger}\right)_{l_{2}}^{k_{2}}\left(Z^{\dagger}\right)_{l_{3}}^{k_{3}}\right\rangle=\sum_{\sigma \in S_{3}}\langle I| \sigma|L\rangle\langle K| \sigma^{-1}|J\rangle
$$

If we have $n$ fields

$$
\left.\left\langle\langle I| Z^{\otimes n} \mid J\right\rangle\langle K|\left(Z^{\dagger}\right)^{\otimes n}|L\rangle\right\rangle=\sum_{\sigma \in S_{n}}\langle I| \sigma|L\rangle\langle K| \sigma^{-1}|J\rangle
$$

and

$$
\left\langle\operatorname{Tr}\left(A Z^{\otimes n}\right) \operatorname{Tr}\left(B Z^{\dagger \otimes n}\right)\right\rangle=\sum_{\sigma \in S_{n}} \operatorname{Tr}\left(\sigma^{-1} A \sigma B\right)
$$

## Schur Polynomials

$$
\begin{gathered}
\chi_{R}(Z)=\operatorname{Tr}\left(P_{R} Z^{\otimes n}\right), \quad P_{R}=\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi_{R}(\sigma) \sigma \\
\left\langle\chi_{R}(Z) \chi_{S}(Z)^{\dagger}\right\rangle=\sum_{\sigma \in S_{n}} \operatorname{Tr}\left(\sigma^{-1} P_{R} \sigma P_{S}\right) \\
P_{R} \sigma=\sigma P_{R} \quad P_{R} P_{S}=\frac{\delta_{R S}}{d_{R}} P_{R}
\end{gathered}
$$

These two properties follow because $P_{R}$ is (up to a factor) a projector - it projects onto an irrep of $S_{n}$.

$$
\operatorname{Tr}\left(P_{R}\right)=\chi_{R}(1)=\operatorname{Dim}_{N} R
$$

which follows because $\chi_{R}(U)$ is the character of the unitary group element $U$.

## Take Away Message

$$
\begin{gathered}
\left\langle\operatorname{Tr}\left(A Z^{\otimes n}\right) \operatorname{Tr}\left(B Z^{\dagger \otimes n}\right)\right\rangle=\sum_{\sigma \in S_{n}} \operatorname{Tr}\left(\sigma^{-1} A \sigma B\right) \\
\chi_{R}(Z)=\operatorname{Tr}\left(P_{R} Z^{\otimes n}\right) \\
P_{R} \sigma=\sigma P_{R} \quad P_{R} P_{S}=\frac{\delta_{R S}}{d_{R}} P_{R} \quad \operatorname{Tr} P_{R}=\text { known } \\
\left\langle\chi_{R}(Z) \chi_{S}(Z)^{\dagger}\right\rangle=\frac{n!\operatorname{Dim}_{N} R}{d_{R}}
\end{gathered}
$$

(Corley, Jevicki, Ramgoolam)

## Two Matrices

$$
\begin{gathered}
\langle I| Z^{\otimes n} Y^{\otimes m}|J\rangle=Z_{j_{1}}^{i_{1}} \cdots Z_{j_{n}}^{i_{n}} Y_{j_{n+1}}^{i_{n+1}} \cdots Y_{j_{n+m}}^{i_{n+m}} \\
\left\langle Z_{j}^{i}\left(Z^{\dagger}\right)_{l}^{k}\right\rangle=\delta_{i}^{i} \delta_{j}^{k}=\left\langle Y_{j}^{i}\left(Y^{\dagger}\right)_{l}^{k}\right\rangle \\
\left.\langle\langle || Z^{\otimes n} Y^{\otimes m}|J\rangle\langle K|\left(Z^{\dagger}\right)^{\otimes n}\left(Y^{\dagger}\right)^{\otimes m}|L\rangle\right\rangle \\
=\sum_{\sigma S_{n} \times S_{m}}\langle I| \sigma|L\rangle\langle K| \sigma^{-1}|J\rangle
\end{gathered}
$$

Can we again diagonalize the two point function using projectors?

We can again diagonalize the two point function using projectors, $O_{R}$

$$
\begin{gathered}
{\left[O_{R, r}, \sigma\right]=0, \quad \sigma \in S_{n} \times S_{m}} \\
O_{R, r} O_{S, s}=\delta_{R S} \delta_{r s} \alpha O_{R, r}, \quad \operatorname{Tr}\left(O_{R, r}\right)=\beta \\
O_{R, r}=\frac{1}{n!m!} \sum_{\sigma \in S_{n+m}} \operatorname{Tr}_{r}\left(\Gamma_{R}(\sigma)\right) \sigma
\end{gathered}
$$

(Balasubramanian, Berenstein, Feng, Huang; Bhattacharyya, Collins, dMK)
$\alpha=\frac{(n+m)!}{n!m!d_{R}}, \quad \beta=d_{r} f_{R}$
(dMK, Smolic, Smolic)

## Counting

If a particular $S_{n} \times S_{m}$ irrep is subduced more than once, we have interesting possibilities.

subduces

twice
Call the states in these two irreps $|i, 1\rangle$ and $|i, 2\rangle$. There are four possible definitions for the restricted trace

$$
\begin{array}{ll}
\langle 1, i| \Gamma_{R}(\sigma)|1, i\rangle & \langle 2, i| \Gamma_{R}(\sigma)|1, i\rangle \\
\langle 1, i| \Gamma_{R}(\sigma)|2, i\rangle & \langle 2, i| \Gamma_{R}(\sigma)|2, i\rangle
\end{array}
$$

$4=(2)^{2}=$ the Littlewood-Richardson number squared

## Counting

$$
Z=\sum_{n, m} \sum_{R \vdash n+m} \sum_{r_{1} \vdash n} \sum_{r_{2} \vdash m}\left(g_{r_{1} r_{2} R}\right)^{2} z^{n} y^{m}
$$

When the sum is unrestricted we reproduce the counting formula from Polya theory.
When each partition is restricted to have at most $N$ parts we recover the $g_{Y M}=0$ partition function for $1 / 4$ BPS states. (Collins)

## Schur-Weyl Duality

Basic Idea: You can diagonalize operators which commute. $\left(S_{n}\right.$ action and $U(N)$ action on $V^{\otimes n}$ commute so that finding the irreps of $S_{n}$ gives you irreps of $U(N)$ )
Consider an algebra $A$ acting of a vector space $V$ :

$$
A: V \rightarrow V
$$

so that a rep (in general not an irrep) of $A$ is a map

$$
\rho: A \rightarrow \operatorname{End}(V)
$$

Inside $\operatorname{End}(V)$ there is a subalgebra of all things that commute with $A$, denoted $\operatorname{com}(A)$ called the commutant of $A$. States in $V$ can be organized into irreps of $A$ :

$$
\left|V_{\mu}^{A}, m_{\mu}, i\right\rangle
$$

where $i$ is a multiplicity label.

## Schur-Weyl Duality

Double Centralizer Theorem tells you how to organize the multiplicity label $i$ :

$$
\left|V_{\mu}^{A}, m_{\mu}^{A}, V_{\mu}^{\operatorname{com} A}, m_{\mu}^{\operatorname{com} A}\right\rangle
$$

or

$$
V=\oplus_{\mu} V_{\mu}^{A} \otimes V_{\mu}^{\operatorname{com}(A)}
$$

(Ramgoolam, arXiv:0804.2764)

## Other Bases

Choosing a basis is not unique. Different choices of basis correspond to different choices for the commutant. For operators built from $Z$ and $Z^{*}, \operatorname{com}(A)$ is the Brauer algebra (Kimura, Ramgoolam).
We can include in $A$ any global symmetry group $G$. The basis will have good $G$ quantum numbers. (Brown, Heslop, Ramgoolam)

## Probing New Geometries

Schur polynomials labeled by Young diagrams with $O\left(N^{2}\right)$ boxes are dual to LLM geometries. "Probe" the geometries with gravitons (following Balasubramanian, de Boer, Jejjala, Simon)

$$
\begin{gathered}
\left\langle\chi_{R}(Z) \chi_{R}(Z)^{\dagger} \operatorname{Tr}(Z) \operatorname{Tr}(Z)^{\dagger}\right\rangle= \\
N\left\langle\chi_{R}(Z) \chi_{R}(Z)^{\dagger}\right\rangle+\left\langle\frac{d}{d Z_{i j}} \chi_{R}(Z) \frac{d}{d Z_{j j}^{\dagger}} \chi_{R}(Z)^{\dagger}\right\rangle
\end{gathered}
$$

## Probing New Geometries

After the derivative acts there are only $n-1$ fields

$$
\begin{aligned}
& \frac{d}{d Z_{i i}} \chi_{R}(Z)=\frac{1}{(n-1)!} \sum_{\sigma \in S_{n}} \chi_{R}(\sigma) Z_{i_{\sigma(1)}}^{i_{1}} \cdots Z_{i_{\sigma(n-1)}}^{i_{n-1}} \delta_{i_{\sigma(n)}}^{i_{n}} \\
= & \frac{1}{(n-1)!} \sum_{\sigma \in S_{n-1}} \chi_{R}\left(\sigma\left[N-\sum_{i=1}^{n-1}(i, n)\right]\right) Z_{i_{\sigma(1)}}^{i_{1}} \cdots Z_{i_{\sigma(n-1)}}^{i_{n-1}} \delta_{i_{\sigma(n)}}^{i_{n}}
\end{aligned}
$$

## Jucys Murphy Elements

$$
\sum_{i=1}^{n-1} \Gamma_{R}((i, n)), \quad \sum_{i=1}^{n-2} \Gamma_{R}((i, n-1)), \quad \sum_{i=1}^{n-3} \Gamma_{R}((i, n-2)) \cdots
$$

They commute and generate a maximal commutative subalgebra in the group algebra of $S_{n}$ which is exactly the algebra of elements acting diagonally the Young basis of irreducible representations of $S_{n}$

In recent years, they have become allpurpose heavyduty technical tools in representation theory of $S_{n}$.

## Graviton Correlator: No Background

$$
\mathcal{A}(N)=\left\langle\prod_{i, j} \operatorname{Tr}\left(Z^{n_{j}}\right) \operatorname{Tr}\left(Z^{\dagger m_{j}}\right)\right\rangle
$$

- Use:

$$
\prod_{i} \operatorname{Tr}\left(Z^{n_{i}}\right)=\sum_{R} \alpha_{R} \chi_{R}(Z) \quad \prod_{j} \operatorname{Tr}\left(Z^{\dagger m_{j}}\right)=\sum_{T} \beta_{T} \chi_{T}(Z)^{\dagger}
$$

- Note that $\alpha_{R}, \beta_{R}$ are independent of $N$.

$$
\mathcal{A}(N)=\sum_{R, T} \alpha_{R} \beta_{T}\left\langle\chi_{R}(Z) \chi_{T}(Z)^{\dagger}\right\rangle=\sum_{R} \alpha_{R} \beta_{R} f_{R}
$$

## Graviton Correlator: Background

$$
\begin{aligned}
& \langle O\rangle_{B} \equiv \frac{\left\langle\chi_{B}(Z) \chi_{B}\left(Z^{\dagger}\right) O\right\rangle}{\left\langle\chi_{B}(Z) \chi_{B}\left(Z^{\dagger}\right)\right\rangle} \\
& =f_{B}^{-1}\left\langle\chi_{B}(Z) \chi_{B}\left(Z^{\dagger}\right) O\right\rangle
\end{aligned}
$$

- A particularly simple example is obtained when $B$ has $M$ columns and $N$ rows
- In this case the product $\chi_{B}(Z) \chi_{R}(Z)$ has a single term


## Graviton Correlator: Background

$$
\begin{gathered}
\mathcal{A}_{B}(N)=f_{B}^{-1}\left\langle\chi_{B}(Z) \chi_{B}\left(Z^{\dagger}\right) \prod_{i, j} \operatorname{Tr}\left(Z^{n_{i}}\right) \operatorname{Tr}\left(Z^{\dagger m_{j}}\right)\right\rangle \\
=f_{B}^{-1} \sum_{R, T} \alpha_{R} \beta_{T}\left\langle\chi_{B}(Z) \chi_{B}\left(Z^{\dagger}\right) \chi_{R}(Z) \chi_{T}(Z)^{\dagger}\right\rangle \\
=f_{B}^{-1} \sum_{R, T} \alpha_{R} \beta_{T}\left\langle\chi_{+R}(Z) \chi_{+T}(Z)^{\dagger}\right\rangle=f_{B}^{-1} \sum_{R} \alpha_{R} \beta_{R} f_{+R}
\end{gathered}
$$

- Compare $\mathcal{A}(N)=\sum_{R} \alpha_{R} \beta_{R} f_{R}$ and $\mathcal{A}_{B}(N)=\sum_{R} \alpha_{R} \beta_{R} \frac{f_{+R}}{f_{B}}$
- to obtain $\mathcal{A}_{B}(N)=\mathcal{A}(N+M)$
(dMK, Dey, Ives, Stephanou, arXiv:0905.2273)

Is there a reorganization of the $\frac{1}{N}$ expansion for $\frac{1}{2}$-BPS operators which have an $\mathcal{R}$-charge of $O\left(N^{2}\right)$ ? What is the effective expansion parameter?

Yes - in the background considered, the $\frac{1}{N}$ expansion is replaced by a $\frac{1}{N+M}$ expansion. This nontrivial renormalization of the effective string coupling is a direct consequence of the fact that many non-planar diagrams have been summed.

What we really want - multimatrix operators (V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon)

## One Loop Dilatation Operator

$$
\begin{gathered}
D \chi_{(R,(r, s))}\left(Z^{\otimes n}, X^{\otimes m}\right)=g_{Y M}^{2} \operatorname{Tr}\left([X, Z]\left[\frac{d}{d Z}, \frac{d}{d X}\right]\right) \chi_{(R,(r, s))}\left(Z^{\otimes n}, X^{\otimes m}\right) \\
=g_{Y M}^{2} \frac{N d_{T} n m}{d_{t} d_{u}(n+m)!} \sum_{T,(t, u)} \sum_{\psi \in S_{n+m}, \text { fix } n+1} \chi_{R,(r, s)}\left(\Gamma_{R}((n, n+1) \psi-\psi(n, n+1))\right) \\
\times \chi_{T,(t, u)}\left(\Gamma_{R}((n, n+1) \psi-\psi(n, n+1))\right) \chi_{T,(t, u)}\left(Z^{\otimes n}, X^{\otimes m}\right)
\end{gathered}
$$

(De Comarmond, dMK, Jeffries)

## Membrane States

$O_{a}\left(b_{0}, b_{1}\right)=\chi_{\#} \boxplus_{\#} \#_{\theta}$

$$
O_{d}\left(b_{0}, b_{1}\right)=\chi_{\nexists ;: \square}^{\nexists \square}
$$



## Membrane States





## Final Result

$$
\begin{aligned}
& D \hat{O}_{a}\left(b_{0}, b_{1}\right)=4 \lambda \frac{\left(N-b_{0}-b_{1}-1\right)}{N\left(b_{1}+2\right)^{2}} \hat{O}_{a}\left(b_{0}, b_{1}\right)-2 \lambda \frac{\sqrt{\left(N-b_{0}-b_{1}-1\right)\left(N-b_{0}+1\right)}}{N\left(b_{1}+2\right)} \sqrt{\frac{b_{1}+3}{b_{1}+1}} \hat{O}_{d}\left(b_{0}, b_{1}\right) \\
& +2 \lambda \frac{\sqrt{\left(N-b_{0}-b_{1}-1\right)\left(N-b_{0}+1\right)} b_{1}}{N\left(b_{1}+2\right)^{2}} \sqrt{\frac{b_{1}+3}{b_{1}+1}} \hat{O}_{e}\left(b_{0}, b_{1}\right) \\
& +4 \lambda \frac{\sqrt{\left(N-b_{0}-b_{1}-1\right)\left(N-b_{0}+1\right)}}{N\left(b_{1}+2\right)^{2}} \hat{O}_{b}\left(b_{0}-1, b_{1}+2\right) \\
& +2 \lambda \frac{\left(N-b_{0}-b_{1}-1\right)}{\left(b_{1}+2\right)} \sqrt{\frac{b_{1}+1}{N\left(b_{1}+3\right)}} \hat{O}_{d}\left(b_{0}-1, b_{1}+2\right)-2 \lambda \frac{\left(b_{1}+4\right)\left(N-b_{0}-b_{1}-1\right)}{N\left(b_{1}+2\right)^{2}} \sqrt{\frac{b_{1}+1}{b_{1}+3}} \hat{O}_{e}\left(b_{0}-1, b_{1}+2\right)
\end{aligned}
$$

(dmk, Mashile, Park)

## Compare to BMN

$$
\begin{gathered}
\mathcal{O}_{I}=\operatorname{Tr}\left(Y Z^{\prime} Y Z^{J-I}\right) \\
\left\langle\mathcal{O}_{l} \mathcal{O}_{k}^{\dagger}\right\rangle \propto\left(\delta_{l, k}+\delta_{J, I+k}\right) \\
D O_{I} \propto \lambda\left(2 \mathcal{O}_{I}-\mathcal{O}_{I-1}-\mathcal{O}_{I+1}\right)
\end{gathered}
$$

Weak mixing; looks like a second derivative on the lattice of Zs

## Final Result

In the limit that $N-b_{0}=O(N), b_{0}=O(N)$ and $b_{1}=O(\sqrt{N})$ we have giants which are separated by a distance of $O(1)$ in string units. In this limit

$$
\begin{gathered}
D \hat{O}_{a}\left(b_{0}, b_{1}\right)=\lambda \times O\left(b_{1}^{-1}\right), \quad D \hat{O}_{b}\left(b_{0}, b_{1}\right)=\lambda \times O\left(b_{1}^{-1}\right), \\
D \hat{O}_{d}\left(b_{0}, b_{1}\right)=\lambda\left(1-\frac{b_{0}}{N}\right)\left[2 \hat{O}_{d}\left(b_{0}, b_{1}\right)-\hat{O}_{d}\left(b_{0}-1, b_{1}+2\right)-\hat{O}_{d}\left(b_{0}+1, b_{1}-2\right)\right] \\
-\lambda\left(1-\frac{b_{0}}{N}\right)\left[2 \hat{O}_{e}\left(b_{0}, b_{1}\right)-\hat{O}_{e}\left(b_{0}-1, b_{1}+2\right)-\hat{O}_{e}\left(b_{0}+1, b_{1}-2\right)\right]+O\left(b_{1}^{-1}\right) \\
D \hat{O}_{e}\left(b_{0}, b_{1}\right)=\lambda\left(1-\frac{b_{0}}{N}\right)\left[2 \hat{O}_{e}\left(b_{0}, b_{1}\right)-\hat{O}_{e}\left(b_{0}-1, b_{1}+2\right)-\hat{O}_{e}\left(b_{0}+1, b_{1}-2\right)\right] \\
-\lambda\left(1-\frac{b_{0}}{N}\right)\left[2 \hat{O}_{d}\left(b_{0}, b_{1}\right)-\hat{O}_{d}\left(b_{0}-1, b_{1}+2\right)-\hat{O}_{d}\left(b_{0}+1, b_{1}-2\right)\right]+O\left(b_{1}^{-1}\right)
\end{gathered}
$$

## Excited Giant Gravitons

## Energy



Figure: Numerically obtained spectrum

## Dilatation Operator

Deformations of a single giant are all BPS (Das, Jevicki, Mathur, hep-th/0009019)

$$
\begin{gathered}
D \chi_{(R,(r, s))}\left(Z^{\otimes n}, X^{\otimes 2}\right) \\
=g_{Y M}^{2} \frac{1}{(n-1)!} \sum_{\psi \in S_{n+2}} \operatorname{Tr}_{(r, s)}\left(\Gamma_{R}((n, n+2) \psi-\psi(n, n+2))\right) \\
Z_{i_{\psi(1)}}^{i_{1}} \cdots Z_{i_{\psi(n-1)}}^{i_{n-1}} X_{i_{\psi(n+1)}}^{i_{n+1}}(X Z-Z X)_{i_{\psi(n)}}^{i_{n}} \delta_{i_{\psi(n+2)}}^{i_{n+2}}
\end{gathered}
$$

## Excited Giant Gravitons



Figure: Numerically obtained spectrum and brane separation

