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Motivations

1 Half-BPS sector of N = 4 super Yang-Mills: holomorphic, U(N)
singlet sector of a free N × N complex matrix model.

2 Description in terms of N free fermions - eigenvalues
Corley, Jevicki, Ramgoolam

3 Supergravity dual geometries of half-BPS operators involve free
fermion phase space

Lin, Lunin, Maldacena

4 Supergravity geometries admit coarse graining - possible lessons for
black hole physics

Balasubramanian, de Boer, Jejjala, Simon

5 Free particle descriptions in other sectors? Non-holomorphic sectors?
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Overview

1 Review of free particles in matrix models and AdS/CFT

2 Introduction to Brauer algebra basis

3 Emergence of free particles in complex matrix models

4 Counting and stringy exclusion principle

5 Open Questions
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Free particles in unitary matrix quantum mechanics

Consider the free Unitary matrix quantum mechanics with Hamiltonian

H = tr

(
U
∂

∂U

)2

U(N) symmetry U → gUg †, g ∈ U(N) .

An orthonormal basis of U(N) invariant wavefunctions is given by
U(N) characters.

U(N) representations built from tensor products of the fundamental are
specified by a Young diagram R with c1(R) ≤ N and their characters are
the Schur polynomials:

χR(U) =
∑
σ∈Sn

χR(σ)U i1
iσ1
· · ·U in

iσn
.

The same is true for tensor copies of the antifundamental with U ↔ U†.
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Free particles in unitary matrix quantum mechanics

More general representations are specified by a composite Young diagram
(R, S̄), where

R controls the fundamental indices

S controls the antifundamental indices

For U(N) (and everywhere in this talk) a composite Young diagram has N
rows so we require c1(R) + c1(S) ≤ N:

R

S

(R,S)
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Free particles in unitary matrix quantum mechanics

Use symmetry U → gUg † to diagonalise U:

U = gDg †, D = diag(e iθ1 , . . . , e iθN ), g ∈ U(N) .

This introduces jacobian ∆(u) =
∏

i<j(e
iθi − e iθj ).

The Hamiltonian becomes

H = −
∑

i

[
1

∆̃

d2

dθ2
i

∆̃

]
− 1

12
N(N2 − 1) + off-diag ,

where

∆̃ =
∏
i<j

sin
θi − θj

2
=

∆(u)

(det U)
N−1

2

.

Douglas ’93
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Free particles in unitary matrix quantum mechanics

Absorb ∆̃ into wavefunctions and Hamiltonian:

ψf = ∆̃ψ , Hf = ∆̃H
1

∆̃
=
∑

i

∂

∂θ2
i

− 1

12
N(N2 − 1)

Wavefunctions ψf antisymmetric under exchange of any pair θi ↔ θj .

Singlet eigenfunctions are Slater determinants - N fermion wavefunctions,

ψ~p = det
j ,k

e iθjpk

which are related to Schur polynomials via

Ψf
~p = ∆(u)χR(U)

where if rj are the rows of the Young diagram R,

pj = rj + (nF + 1− j) , nF =
N − 1

2
.

This sector is thus equivalent to N free fermions on a circle.

Douglas ’93
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Fermions on a circle

States of fermion on a circle:
quantised momentum p ∈ Z
Energy E = p2

N fermions: Fermi sea with two
Fermi levels.

Excitations labelled by composite
Young diagram (R, S̄):
length of row j is excitation energy
of fermion j

Natural interpretation of
c1(R) + c1(S) ≤ N.
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Free particles in hermitian matrix models

Consider the Gaussian hermitian matrix quantum mechanics with
Lagrangian

L = tr

(
1

2
Φ̇2 − 1

2
Φ2

)
which is invariant under the global U(N) action

Φ→ gΦg † , g ∈ U(N) .

Decompose Φ into diagonal and off-diagonal d.o.f.:

Φ = UΛU†, Λ = diag(λ1, . . . , λN) , U ∈ U(N) .

The jacobian is ∆ =
∏

i<j(λi − λj) and the Hamiltonian becomes

HΛ =
1

2

∑
i

(
− 1

∆

∂2

∂λ2
i

∆ + λ2
i

)
+ off-diag ,
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Free particles in hermitian matrix models

Absorb ∆ into wavefunctions and Hamiltonian:

Ψf (λ) = ∆Ψ(λ)

H f = ∆H
1

∆
=

1

2

∑
i

(
− d2

dλi
2

+ λ2
i

)

Singlet eigenfunctions are Slater determinants - N fermion wavefunctions,

Ψf
~E = det

i ,j
λ
Ej
i e−

1
2

tr Φ2

which are related to Schur polynomials as in the UMM via

Ψf
~E = ∆OR(Φ)e−

1
2

tr Φ2
, Ei = ri + (N − i)

where ri are the rows of the Young diagram R.
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Fermions in 1D SHO

States of SHO : (n + 1
2 )~

Ground state of N fermion system:
Fermi sea

Excitations labelled by single Young
diagram: length of row j is excitation
energy of fermion j

Natural interpretation of c1(R) ≤ N
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Free particles and AdS/CFT

N = 4 SYM
Gauge group U(N)
’t Hooft coupling

λ = g2
YMN

←→
IIB String Theory

on AdS5 × S5

Radius L,
F5 flux N

Parameters:

√
λ ←→ L2

α′

λ

N
←→ gs

Strong form of conjecture: equivalence for all λ, N.

This talk: λ = 0, N finite.
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Field Content of N = 4 SYM

Gauge field, 4 Weyl fermions

3 Complex scalars X ,Y ,Z

All fields in adjoint of U(N).

Restrict attention to one complex scalar - say Z .

Holomorphic polynomials in Z are 1
2 -BPS operators: they preserve half of

the supersymmetries.

Relevant part of the Lagrangian is:

LZ = tr
(
DµZ

†DµZ
)
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Spherical Harmonics and Dimensional Reduction

Consider N = 4 SYM on S3 × R:

1
2 -BPS states correspond to s-wave modes.

Fields Z (t), A0(t).

A0 non-dynamical - imposes Gauss’s Law (gauge invariance).

Dimensionally reduced Lagrangian: extra term from conformal coupling to
curvature of S3 - absorbing constants, this becomes

L = tr
(
Ż Ż † − ZZ †

)
→ U(N) singlet sector of complex matrix quantum mechanics in a simple
harmonic oscillator potential.

Hashimoto ’00, Corley, Jevicki, Ramgoolam ’01
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Schur polynomials (yet again)

The Schur polynomials generalised to a complex matrix, OR(Φ) are
polynomials of degree n labelled by a representation R of Sn, where the
first column of R has length at most N:

OR(Φ) =
∑
σ∈Sn

χR(σ)Φi1
iσ1
· · ·Φin

iσn

In this basis the two-point function is diagonal:〈
OR(Φ)†OS(Φ)

〉
= fRδRS

Corley, Jevicki, Ramgoolam ’01

At n = 2 the Schur polynomials are

O[2](Φ) =
1

2

(
tr Φ tr Φ + tr Φ2

)
O[12](Φ) =

1

2

(
tr Φ tr Φ− tr Φ2

)
where [2] = (symmetric), [12] = (antisymmetric).
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Schur Triangularisation

U(N) not sufficient to diagonalise Z ; use Schur Triangularisation:

Z = UTU†, U ∈ U(N) , T upper triangular.

zi : diagonal entries - eigenvalues of Z

tjk : off-diagonal entries for j < k .

Since
tr Zp = tr T p =

∑
i

zi
p

the holomorphic GIOs are symmetric polynomials in the zi , related to
Schur polynomials as for the Hermitian matrix model.
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Change of variables

Since the holomorphic GIOs are symmetric polynomials in the zi , change
variables

Zij → {zi , tjk ,U}

Jacobian ∆ =
∏

j<k (zj − zk)

Absorb ∆ into wavefunctions - interpret the zi as fermions.

Fermions zi are complex - target space is a plane.

Holomorphic dynamics is effectively one - dimensional.

Thus the holomorphic, U(N) singlet sector of the matrix SHO quantum
mechanics is equivalent to a theory of N fermions in a 1D SHO potential.
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Fermion phase space and LLM

SHO Fermions on R have a 2D phase space plane

Quantize : each fermion occupies area ~
System occupies area N~ of phase space

So phase space configurations are colourings of the plane into black/white
regions.

1
2 -BPS solutions to IIB supergravity with SO(4)× SO(4) isometry: (LLM)

Coordinates t, y , x1, x2, S
3, S̃3

Geometries determined by function u(x1, x2)

Smoothness condition : u(x1, x2) = 0 or 1

x1 − x2 plane identified with fermion phase space above.

Lin, Lunin, Maldacena ’04
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Beyond the Holomorphic Sector

So far: U(N) singlet, holomorphic sector of Complex Matrix Model

Natural extension: relax holomorphic constraint

GIOs now functions of Z , Z †, equivalently zi , tjk - this takes us
beyond eigenvalues.

New features:

1 This sector is non-BPS - no non-renormalisation theorems.

2 However at zero coupling, Z , Z † sector remains a consistent
truncation of N = 4 SYM

3 Is there a string dual of this sector at zero coupling?
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The symmetric group Sn in diagrams

Symmetric group elements may be represented by diagrams:

1 32

1 2 3

= (123)

Products are obtained by stacking diagrams: e.g.

1 32

1 2 3

1 2 3

1 2 3

=

represents the product (12)(123) = (23).
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The Brauer algebra

The (walled) Brauer algebra BN(m, n) contains the group algebra of
Sm × Sn along with ‘contraction’ elements, which cross a wall:

1 2 3

321

1

1

2

2

= C31̄

along with the rule that in a product, a closed loop is replaced by
multiplication by the parameter N:
1 2 3

321

1

1

2

2

1 2 3 1 2

321 1 2

=   N 

which represents the product C31̄

[
(12)C31̄

]
= N (12)C31̄.
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Application to GIOs

The index structure of tr ZZ † can be represented diagrammatically using Z
and Z †, using a symmetric group element and a trace:

Z Z†

= Z i
jZ
†j

i = tr ZZ †

Alternatively, tr ZZ † can be represented with Z and Z ∗, using a Brauer
algebra contraction and a trace:

Z Z*
= Z i

jZ
∗
j
i = Z i

jZ
†j

i = tr ZZ †
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Application to GIOs

More generally, any GIO may be written using Z ,Z ∗ and a Brauer algebra
element b as

Z
m

Z*
n

b
= tr (b ZmZ∗n)
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Brauer basis of operators

The Brauer algebra can be used to build an orthogonal basis, as follows:

The representations of the Brauer algebra are labelled by
γ = (k , γ+, γ−) where

k is an integer in the range 0 ≤ k ≤ min(m, n)
(γ+, γ−) have m − k and n − k boxes respectively and form a form a
composite Young diagram; c1(γ+) + c1(γ−) ≤ N

A representation γ can be decomposed into irreps A = (α, β) of the
C[Sm × Sn] sub-algebra, where α ` m, β ` n.

Let the irrep A appear with multiplicity Mγ
A, let i run over this

multiplicity and let
|γ; A,mA; i〉

be the state in the representation γ which transforms in the i th copy
of the state mA of the irrep A of the sub-algebra.
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C[Sm × Sn] sub-algebra, where α ` m, β ` n.

Let the irrep A appear with multiplicity Mγ
A, let i run over this

multiplicity and let
|γ; A,mA; i〉

be the state in the representation γ which transforms in the i th copy
of the state mA of the irrep A of the sub-algebra.

David Turton (QMUL) Free particles from Brauer algebras in complex matrix modelsJoburg, 30 April 2010 24 / 49



Brauer basis of operators

The Brauer algebra can be used to build an orthogonal basis, as follows:

The representations of the Brauer algebra are labelled by
γ = (k , γ+, γ−) where

k is an integer in the range 0 ≤ k ≤ min(m, n)
(γ+, γ−) have m − k and n − k boxes respectively and form a form a
composite Young diagram; c1(γ+) + c1(γ−) ≤ N

A representation γ can be decomposed into irreps A = (α, β) of the
C[Sm × Sn] sub-algebra, where α ` m, β ` n.

Let the irrep A appear with multiplicity Mγ
A, let i run over this

multiplicity and let
|γ; A,mA; i〉

be the state in the representation γ which transforms in the i th copy
of the state mA of the irrep A of the sub-algebra.

David Turton (QMUL) Free particles from Brauer algebras in complex matrix modelsJoburg, 30 April 2010 24 / 49



Brauer basis of operators

The Brauer basis, formed of particular linear combinations of such traces,
is a generalisation of the Schur Polynomials to Z , Z † operators,

Oγαβ;ij(Z ,Z
†) = tr

(
Qγ
αβ;ijZ

mZ∗n
)

where
Qγ
αβ;ij = |γ; A,mA; i〉〈γ; A,mA; j | .

This basis diagonalises the two-point function.

Kimura, Ramgoolam ’07

For example, when m = 1, n = 1, suppressing non-essential labels:

Ok=0
[1], ¯[1]

= tr Z tr Z † − 1

N
tr(ZZ †)

Ok=1
[1], ¯[1]

=
1

N
tr(ZZ †) .

Note that the coefficients depend on N.
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The k = 0 sector

The k = 0 operators are special:

They do not require point-splitting regularisation

In the k = 0 sector γ = (0, α, β) so operators are labelled simply by α
and β.

To connect with the notation of the unitary matrix model, we write
α = R and β = S .
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The k = 0 sector

If S = ∅, then the k = 0 operator is a holomorphic Schur polynomial:

Ok=0
R,∅ (Z ,Z †) = χR(Z ) .

If R = ∅, then the k = 0 operator is an anti-holomorphic Schur polynomial:

Ok=0
∅,S̄ (Z ,Z †) = χS(Z †)

If both α and β are nontrivial, the leading order term in the expansion of
Ok=0 begins with the product of the holomorphic and antiholomorphic
Schur polynomials:

Ok=0
R,S̄

(Z ,Z †) = χR(Z )χS(Z †) + · · · ,

where the dots denote terms with at least one ZZ † inside a trace.
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The k = 0 sector

The k = 0 operators are the generalisations of the characters of the
composite representations of unitary matrix model to a complex matrix - if
we replace Z by a unitary matrix, we obtain:

Ok=0
RS̄

(U,U†) = dRdSχRS̄(U) .

This gives an isomorphism between the k = 0 sector and the states of the
Unitary matrix model.

Motivation to look for free fermions on a circle in k = 0 sector.
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Free particles from Brauer Algebra

Strategy:

Seek free particle physics in the Brauer basis at particular values of k

Results:

Free particle descriptions in two sectors: k = 0 and k = m = n

k = 0 sector: Explicit expressions at N = 2 for momenta of free
fermions on a circle in terms of combinations of zi , tjk , implicit
generalisation to arbitrary N

k = m = n sector: map to free fermions in harmonic oscillator of
hermitian matrix model for arbitrary N.

see also Masuku & Rodrigues, 0911.2846
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Schur Triangularisation revisited

Let us examine more closely the Schur Decomposition,

Z = UTU†

where tii = zi and tjk = 0 for j < k .
Residual symmetries:

SN permutes eigenvalues zi (& transforms tjk)

U(1)N−1 acts on phases of the tjk .

The parameter space of inequivalent adjoint U(N) orbits, MN can be
obtained by fixing an ordering of zi and setting tj ,j+1 ∈ R.

At N = 2 setting t0 ∈ R we have

T =

(
z1 t0

0 z2

)
.
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Differential Gauss’s law

Recall the relevant part of the N = 4 SYM Lagrangian

LZ = tr
(
DµZ

†DµZ
)
.

A convenient gauge choice is to set A0 = 0. The e.o.m. for A0 leads to
Gauss’s Law:

Z †Ż + ZŻ † − ŻZ † − Ż †Z = 0 .

Upon canonical quantization this leads to the differential form of Gauss’s
Law,

G = G1 + G2 + G3 + G4 = 0

where Gi are defined as:

(G1)i
j = Z †ik

(
∂

∂Z †

)k
j

(G2)i
j = Z i

k

(
∂

∂Z

)k
j

(G3)i
j = −Z †kj

(
∂

∂Z †

)i
k

(G4)i
j = −Z k

j

(
∂

∂Z

)i
k
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Casimir Operators

Given generators {ei} of a Lie algebra G, with

[ei , ej ] = ck
ij ek , (∗)

the algebra formed from linear combinations of products of the {ei},
subject to (∗), is called the universal enveloping algebra GU of G.

Elements in the centre of GU are called Casimir operators.

Given a representation of G, ei → ρ(ei ) = Ei , then given a Casimir
operator c ,

C = ρ(c)

is called a Casimir operator of the representation ρ.

By Schur’s Lemma, Casimir operators of irreducible representations
take constant values.
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Casimir Operators

The Gauss Law operators Gi each form a representation of U(N) on GIOs.
There are thus associated Casimir operators: recalling the definitions

(G2)i
j = Z i

k

(
∂

∂Z

)k
j

, (G3)i
j = − Z †kj

(
∂

∂Z †

)i
k

and defining GL = G2 + G3, one may define

H1 = tr G2 H2 = tr G 2
2

H̄1 = tr G3 H̄2 = tr G 2
3 HL = tr G 2

L .

These can be thought of as Hamiltonians acting on GIOs.
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Casimirs and Young diagrams

Recall that a composite Young diagram R with arbitrary integer row
lengths ri labels momenta pi of N free fermions on a circle given in terms
of the Fermi energy nF = N−1

2 by

pi = ri + (nF + 1− i) .

Given a Young diagram R, the linear and quadratic Casimirs of the U(N)
representation R are expressible in terms of ri or pi :

C1(R) =
∑

i

ri =
∑

i

pi = n

C2(R) = nN +
∑

i

ri (ri − 2i + 1) =
N∑

i=1

p2
i −

N

12
(N2 − 1)
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Casimir Operators

Acting on a Brauer basis operator Oγαβ;ij(Z ,Z
†),

H1, H2 measure C1(α), C2(α)

H̄1, H̄2 measure C1(β), C2(β)

H1 − H̄1 measures C1(γ), HL measures C2(γ) .

Generalized Casimir operators such as tr(G 2
2 G3) are sensitive to the labels

i , j .

Kimura, Ramgoolam ’08

At N = 2 the labels i , j are trivial and it suffices to consider linear and
quadratic Casimirs.
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Free fermions in the k = 0 sector

At N = 2, a k = 0 operator is determined by the composite Young
diagram γ which has two integer rows rγ1 , rγ2 .
We shift the row lengths to obtain fermion momenta:

p1 = r1 +
1

2
, p2 = r2 −

1

2
.

The linear and quadratc Casimirs at N = 2 become

C1 = p1 + p2

C2 = p2
1 + p2

2 −
1

2

which may be inverted to

p1 =
C1

2
+

√
C2

2
−

C 2
1

4
+

1

4
p2 = C1 − p1.
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Free fermions in the k = 0 sector

We have identified differential operators which measure Casimirs, in
particular:

H1 − H̄1 measures C1(γ), HL measures C2(γ) .

We may thus write the fermion momenta as differential operators:

p̂1 =
H1 − H̄1

2
+

√
HL

2
− (H1 − H̄1)2

4
+

1

4
p̂2 = H1 − H̄1 − p̂1

In terms of the matrix entries, H1, H̄1, HL are combinations of the
eigenvalues zi and off-diagonal entries tjk ...
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Hamiltonians in terms of matrix elements

Introducing for convenience zc = z1 + z2, z = z1 − z2 and

L1 = z1
∂

∂z1
L̄1 = z1

∂

∂z1

L2 = z2
∂

∂z2
L̄2 = z2

∂

∂z2
Lt =

t0

2

∂

∂t0
,

Then H1, H̄1, HL in terms of the entries of Z at N = 2 are:

H1 = L1 + L2 + Lt , H̄1 = L̄1 + L̄2 + L̄t

HL = (L1 − L̄1)2 + (L2 − L̄2)2 +
zc

z
(L1 − L2) +

zc

z

(
L̄1 − L̄2

)
− 2

|z |2

{
t2
0 (L1 − L2)(L̄1 − L̄2) +

1

t2
0

(z1z1 − z2z2)2L2
t

−(z1z1 − z2z2)
[
(L1 − L2) + (L̄1 − L̄2)

]
Lt − (z1z1 + z2z2)Lt

}
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Free fermions in the k = 0 sector

The construction carried out expicitly at N = 2 generalises to general N in
a slightly weaker form.

At general N, we have N independent Casimirs leading to a degree N
polynomial for the pi .

To obtain closed form expressions for the pi in terms of the Ci would
require one to solve arbitrary order polynomials, however for any
specific values of the Ci one may solve for pi .

This gives an implicit map to free fermion momenta for any N.
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Free fermions in the k = m = n sector

The label k is related to the number of contractions in an operator.

k = m = n: all terms in an operator involve the maximum number of
contractions

These operators are multi-traces of the matrix Y = Z †Z

Y is hermitian so we find a map to the N fermions of the hermitian
matrix model...

In this sector γ = (k = m, γ+ = ∅, γ− = ∅) and α = β so operators in this
sector labelled by α alone.
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Free fermions in the k = m = n sector

The operators may be written as

Ok=m
α (Z ,Z †) =

dα
Dimα

trk(pαY⊗k)

where

dα is the dimension of the Sk representation α

Dimα is the dimension of the U(N) representation α.

pα is the projector onto the Sk representation α.

Thus operators in this sector are Schur polymonials constructed from Y .

As discussed earlier, Schur polynomials in a hermitian matrix correspond
to the states of N free fermions in a harmonic oscillator potential.

The harmonic oscillator fermions observed here are a second
emergence of free particles, distinct from those of the k = 0 sector.
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Counting

It is important to check whether the Brauer basis matches the counting of
operators at finite N described by other bases for two-matrix models.

Bhattacharyya, Collins, de Mello Koch & collaborators; Brown, Heslop, Ramgoolam

To count Brauer basis operators Oγαβ;ij(Z ,Z
†), we must calculate the

multiplicity Mγ
A of the restriction γ → A = (α, β) of Sm × Sn,

Mγ
A =

∑
δ`k

∑
δ

g(γ+, δ;α)g(γ−, δ, β)

since the indices i , j run from 1 to Mγ
A. The number of operators in the

Brauer basis is thus
QN

b (m, n) =
∑
γ,A

(
Mγ

A

)2
.

For m + n ≤ N, this formula counts multi-traces correctly.
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What if N isn’t big enough?

For m + n > N, further constraints must be added to
c1(γ+) + c1(γ−) ≤ N
At N = 2, we have a conjecture, as follows.

Firstly, replace the reduction multiplicities by

Mγ;N=2
α,β =

{
1 if Mγ

α,β > 0

0 otherwise

and secondly, constrain α, β as follows:
1 c1(α) + c1(β) ≤ N + k
2 [c1(α) + c1(β)] + [c2(α) + c2(β)] ≤ 2N + k

...
and in general for each p = 1, 2, . . . ,min(m, n) , constrain

p∑
r=1

(cr (α) + cr (β)) ≤ pN + k .
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Counting and the stringy exclusion principle

We can also express this as a constraint on k :

k ≥ min(r2, r̄2) + min (min(r1, r̄1), max(r2, r̄2))

We have numerically checked our conjecture up to (m, n) = (15, 15).

Is there a physical meaning to these extra constraints?
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Summary

We found free particle signatures in two sectors:
k = 0 and k = m = n

k = 0 sector: Explicit expressions at N = 2 for momenta of free
fermions on a circle in terms of combinations of zi , tjk , implicit
generalisation to arbitrary N

k = m = n sector: map to free fermions in harmonic oscillator of
hermitian matrix model for arbitrary N.

Brauer basis counts correctly for N ≥ m + n; interesting subtleties for
m + n > N.
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Open questions

Is it possible to realise these emergent fermions more explicitly?

We have their momenta - can we find the dual coordinates?
Can we express the wavefunctions as Slater determinants?

The label k seems to interpolate between degrees of freedom
described by

Free fermions on a circle for k = 0
Free fermions on a line for k = m = n.

Can these be interpreted as ‘radial’ and ‘angular’ degrees of freedom?
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Open questions

There is a family of bubbling 1
4 -BPS and 1

8 -BPS asymptotically
AdS5 × S5 geometries

Chen, Cremonini, Donos et al

Recent progress on identifying 1
4 -BPS operators at non-zero λ

Brown; Kimura

Can we find a description for 1
4 -BPS operators in terms of fermions?
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Open questions

At zero coupling, this model is a consistent truncation of N = 4 SYM.

Does it have a string dual at zero coupling?

Some speculations on this conjectured string dual:

zi : positions of N branes in two space dimensions.

tij : strings connecting brane i to j

c.f. Witten ’95

Here the triangular constraint (tij = 0 for i > j) will make the dual
qualitatively different from the standard system of strings and branes.

Does any of this physics survive at λ 6= 0, λ→∞ in SYM?

Can it be compared to supergravity? Near-extremal AdS black holes?
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Thanks!
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