Baryonic symmetries in $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$

Diego Rodriguez-Gomez
Queen Mary, U. of London

Mostly based in arXiv: 1004.2045

 w/. N.Benishti \& J.Sparks(Many thanks to N.Benishti, S.Franco, A.Hanany, I.Klebanov, J.Park \& J.Sparks!!!)

- Much less is know about $A d S_{d+1}{ }^{C F T_{d}}$ ford other than 4. One reason is that finding CFT's is difficult$d=3$ is an interesting case:
- AdS_{4} factor: quantum gravity in 4d???
- 3d CFT: relations to condensed matter systems???
- Of course, understanding (super) YM is interesting by itself, and AdS/CFT is a powerful tool

D Let's start with maximally susY SYM in 3d. At the abelian level it just has 7 scalars $+u$ (1) gauge field. upon duality, it is just 8 scalars
$\square S O$ (8) is actually an R-symmetry: there is a conformal algebra with such property

Flow to an IR SCFT!
(seiberg)

- In 3d the YM coupling has $\left[g_{Y M}\right]=m^{1 / 2}$. But we can construct a cs (dimensionless) term natural for CFT $\underbrace{\sim}_{\text {(sonwarz) }} A B M M($ after $B L, G)$
- The 8 transverse scalars suggest a $(2+1)$ d object in 11d: an M2 brane. Indeed, close to the branes (the "IR flow") the space is Ads
$\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$
- obvious question: can we generalize this to more generic (less symmetric) spaces???
- A particularly important role should be played by (global) symmetries: $R(c Y)$ and baryonic (non-trivial topology)

Contents

- Motivation
- $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ and (Betti) vector fields: bulk perspective
- Towards a field theory interpretation
- Resolving the cone: M5 baryonic condensate and Goldstone bosons
- What about 6-cycles?
- Conclusions

AdS/CFT and Betti vectors

- We are interested in CY4 compactifications of 11d SUGRA: at least $N=2$ SUSY, such that there is an R-charge
\square The $c Y 4 \times$ will be a cone over a $7 d$ SE base Y. We will assume toric cy's
- The standrd Freund-Rubin ansatz is

$$
\begin{array}{rlr}
d s_{11}^{2} & =h^{-2 / 3} d s_{1,2}^{2}+h^{1 / 3} d s^{2}(X) ; \quad h=1+\frac{R^{6}}{r^{6}} \\
G & =d^{3} x \wedge d h^{-1} \\
& \Downarrow \\
d s_{11}^{2} & =d s^{2}\left(A d S_{4}\right)+R^{2} d s^{2}(Y) ; \quad\left(\rho_{A d S_{4}} \sim r^{2}\right)
\end{array}
$$

- Generically Y will have non-trivial topology: we can reduce the 6 -form on $b_{2} 5$-cycles to get b_{2} vectors in Ads (Betti)

$$
\delta C_{6}=\frac{2 \pi}{T_{5}} \sum_{i=1}^{b_{2}} \mathcal{A}_{i} \wedge \alpha_{i}
$$Vectors in Ads admit the two possible falloffs

$$
\mathcal{A}_{\mu} \sim a_{\mu}+\frac{j_{\mu}}{\rho^{d-2}}, \quad \rho \rightarrow \infty
$$This raises the possibility of choosing either falloff: each will be dual to a DIFFERENT boundary CT.

- In order to properly define the variational problem in Ads one has to take care of the boundary terms: this requires some boundary terms in the action depending on what bic. one wishes to impose
(Klebanov \& Witten, Witten, Marolf \& Ross)
- The outcome is that the two bic. (either a_{μ} or j_{μ} fixed at the boundary) are Legendre transformed one of the other, and thus cannot be imposed at the same time
choice of th. with choice of b.c. \Leftrightarrow dynamical/global gym.
- Working the details:
- Fixed $j_{\mu}: \vec{E}=0$ No electric sources $=M 5$
- Fixed $a_{\mu}: \vec{B}=0$ No magnetic sources $=M 2$
- In the body. this amounts to gauging a global symm. with a backer. field (s-operation). AToperation is also defined: SL $(2, Z)$ algebra

Body.
$\mathcal{S}: S[A, j] \rightarrow S[A, j]+\int C \wedge d A$

Bulk
Bulk E-M duality Bulk shift $\theta \rightarrow \theta+2 \pi$

Note that the dual CFT's are different!

- suppose we choose bic. such that the field is dual to a global current in the body. Then we are allowed to have M5 braces wrapping holomorphic cycles: DYBARIONS
- These are easy to spot for doric geometries: they are just outer points in the toric diagram

$$
\begin{array}{c|cccccc}
& A_{1} & A_{2} & B_{1} & B_{2} & C_{1} & C_{2} \\
\hline U(1)_{I} & 0 & 0 & 1 & 1 & -1 & -1 \\
U(1)_{I I} & -1 & -1 & 0 & 0 & 1 & 1
\end{array} \Rightarrow \operatorname{Ker} Q=\left(\begin{array}{cccccc}
A_{1} & A_{2} & B_{1} & B_{2} & C_{1} & C_{2} \\
\hline 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & 0
\end{array}\right)
$$

$$
\mathcal{C}\left(Q^{111}\right)=\frac{S U(2) \times S U(2) \times S U(2)}{U(1) \times U(1)}
$$

- We can also easily identify the forrest. U(1)!
- The metric is known:

$$
\begin{aligned}
& d s^{2}=d r^{2}+r^{2}\left[\frac{1}{16}\left(d \psi+\sum \cos \theta_{i} d \phi_{i}\right)^{2}+\right.\left.\frac{1}{8} \sum d \theta_{i}^{2}+\sin ^{2} \theta_{i} d \phi_{i}^{2}\right] \\
& \text { (D'Auría, Fre \& van Niewenhuizen) }
\end{aligned}
$$

- The divisors where to wrap M5 branes are Not all independent

$$
\Sigma_{5} \sim \theta_{i}=0, \theta_{i}=\pi, \quad i=1,2,3
$$ in cohomology, since $b_{2}\left(Q^{111}\right)=2$

- Note that

$$
\Delta\left[\Sigma_{5}\right]=\frac{N \pi}{6} \frac{\operatorname{Vol}\left(\Sigma_{5}\right)}{\operatorname{Vol}\left(Q^{111}\right)}=\frac{N}{3} \rightsquigarrow \mathcal{O} \sim X^{N} / \Delta[X]=\frac{1}{3}
$$

Towards a QFT interpretation

- Following $A B J M, U(N) C S$-matter theories are natural candidates for dual SCFT's.
\square Since we are interested in $C Y 4$, we have $N=2$ susy, which is the dimensional reduction of $N=1$ in $4 d$. In particular, the vector multiplet is

$$
V=-2 i \theta \bar{\theta} \sigma+2 \theta \gamma^{\mu} \bar{\theta} A_{\mu}+\theta^{2} \bar{\theta}^{2} D+\cdots
$$

- crucially, for cs theories, both $\{D, \sigma\}$ are auxiliary fields!!!
- The bosonic potential is

$$
\begin{aligned}
& V_{b}=\operatorname{Tr}\left\{-4 k_{g} \sigma_{g} D_{g}+D_{g} \mu_{g}-\sum_{X_{g_{1} g_{2}}}\left|\sigma_{g_{1}} X_{g_{1} g_{2}}-X_{g_{1} g_{2}} \sigma_{g_{2}}\right|^{2}-\left|\partial_{X_{g_{1} g_{2}}} W\right|^{2}\right\} \\
& \mu_{g}=X_{g g_{2}} X_{g g_{2}}^{\dagger}-X_{g g_{2}}^{\dagger} X_{g g_{2}} \text { (Tomasiello } \text { \& Jafferis, } \\
& \text { Martelli \& sparks, } \\
& \text { Hanany \& } \text { Zaffaroni) }
\end{aligned}
$$

- In order to find the moduli space, we look at the "geometric brauch"

$$
X=\operatorname{diag}\left(x_{1}, \cdots, x_{N}\right), \quad \sigma=\sigma \forall g \Rightarrow \mu_{g}=4 k_{g} \sigma
$$

- This leaves $G-2$ effective D-terms. For toric W the master space has dim $=c_{1}+2$. Therefore we have a cy four-fold.
- We are not yet done. We have to be more careful with the gauge symm: the overall gauge field is decoupled from bifunds. It only appears as

$$
\frac{k}{2 \pi G} \int \mathcal{B}_{G-1} \wedge d \mathcal{B}_{G}, \quad \mathcal{B}_{G-1}=\frac{1}{k} \sum k_{g} \mathcal{A}_{g}, \quad \mathcal{B}_{G}=\sum_{g} \mathcal{A}_{i}, \quad k=\operatorname{gdc}\left(k_{g}\right)
$$

- Dualizing this

$$
\Delta S=\frac{1}{2 \pi} \int \tau d \mathcal{F}_{\mathcal{B}_{G}} \quad \Rightarrow \mathcal{B}_{G-1}=\frac{G}{k} d \tau, \quad S=\int d\left(\frac{\tau}{2 \pi} \mathcal{F}_{\mathcal{B}_{G}}\right)
$$

- In turn, since the scalar is compact, the discrete gauge transformations get quantized: further orbifold quotient of the moduli space (basically the M-theory circle)!!!
- For our example

(Franco, Hanany, Park \& D.R-G)
- At $k=1$, for $u(1)$, the smallest $G I O^{\prime}$ s are

$$
\begin{array}{llll}
w_{1}=A_{1} B_{2} C_{1}, & w_{2}=A_{2} B_{1} C_{2}, & w_{3}=A_{1} B_{1} C_{2}, & w_{4}=A_{2} B_{2} C_{1} \\
w_{5}=A_{1} B_{1} C_{1}, & w_{6}=A_{2} B_{1} C_{1}, & w_{7}=A_{1} B_{2} C_{2}, & w_{8}=A_{2} B_{2} C_{2}
\end{array}
$$

- ...and satisfy
$\left\{\begin{array}{l}w_{1} w_{2}-w_{3} w_{4}=w_{1} w_{2}-w_{5} w_{8}=w_{1} w_{2}-w_{6} w_{7}=0, \\ w_{1} w_{3}-w_{5} w_{7}=w_{1} w_{6}-w_{4} w_{5}=w_{1} w_{8}-w_{4} w_{7}=0, \\ w_{2} w_{4}-w_{6} w_{8}=w_{2} w_{5}-w_{3} w_{6}=w_{2} w_{7}-w_{3} w_{8}=0 .\end{array}\right\} \sim \mathcal{C}\left(Q^{111}\right)$
- At largerk
(Franco, Klebanov \& D.R-G)
$\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{8}\right) \rightarrow\left(w_{1}, w_{2}, w_{3}, w_{4}, e^{i \frac{2 \pi}{k}} w_{5}, e^{i \frac{2 \pi}{k}} w_{6}, e^{-i \frac{2 \pi}{k}} w_{7}, e^{i \frac{2 \pi}{k}} w_{8}\right) \Rightarrow \frac{\mathcal{C}\left(Q^{111}\right)}{\mathbb{Z}_{k}}$
\square At large k monopoles decouple. One can then study the non-abelian theory.
- The chiral ring precisely matches the coordinate ring of the variety (Franco, Klebanov \& D.R-G)
- crucially, in order to have such achievement, Fterms must be used (cf. the conifold in IIB)
\Rightarrow Non-trivial check of W !
- However, in the $U(N)$ theory...where are the G10 dual to the M5 branes wrapping toric divisors???
consider $k=1$. The action roughly looks like

$$
S_{U} \sim \int \mathcal{A}_{I} \wedge d \mathcal{A}_{I I}+\int \mathcal{B}_{3} \wedge d \mathcal{B}_{4}+\int \mathcal{L}_{R} \wedge \quad S_{S U} \sim \int \mathcal{B}_{3} \wedge d \mathcal{B}_{4}+\int \mathcal{L}_{R}
$$

We can just consider $S_{S U}$ by itself. We can act on it with the soperation on one global symm.

$$
S_{S U} \rightarrow S_{S U}\left[\mathcal{A}_{I}\right]+\int \mathcal{C}_{I} \wedge d \mathcal{A}_{I}
$$

We can act again with S, but now on $C_{I}-\mathcal{A}_{I I}$

$$
S_{S U}\left[\mathcal{A}_{I}\right]+\int \mathcal{C}_{I} \wedge d \mathcal{A}_{I} \rightarrow S_{S U}\left[\mathcal{A}_{I}, \mathcal{A}_{I I}\right]+\int \mathcal{C}_{I} \wedge d \mathcal{A}_{I}+\int \mathcal{C}_{I I} \wedge d\left(C_{I}-\mathcal{A}_{I I}\right)
$$

- We can perform the path integral over the C fields $\rightsquigarrow S_{U}$

Relation between $U(1)^{2} \times S U(N)^{4} \leftrightarrow U(N)^{4}$

From the bulk perspective the S-operation is electric-magnetic dualíty

- In the $\operatorname{su}(N)$ th. we have $B=0$, and thus we CAN have electric M5 brane sources
- This provides a way to identify the ungauged $u(1)$'s: they are precisely the Betti multiplets!!! (c.f. the GLSM description)
- In the $\operatorname{su}(N)$ theory we can form baryonic operators Gravity suggests $R=1 / 3$ Just the right one to put the theory at a SCFT point!!!

$$
\begin{aligned}
& \mathfrak{B}_{B_{i}}=\frac{1}{N!} \operatorname{det} B_{i} e^{i(-1)^{i-1} N \tau} \\
& \mathfrak{B}_{C_{\mathrm{i}}}=\frac{1}{N!} \operatorname{det} C_{i} e^{i(-1)^{i-1} N \tau}
\end{aligned}
$$

Resolving the cone

- The cy cone admits a crepant resolution

$$
\begin{aligned}
d s^{2}(X)= & \kappa(r)^{-1} d r^{2}+\kappa(r) \frac{r^{2}}{16}\left(d \psi+\sum_{i=1}^{3} \cos \theta_{i} d \phi_{i}\right)^{2}+\frac{\left(2 a+r^{2}\right)}{8}\left(d \theta_{2}^{2}+\sin ^{2} \theta_{2} d \phi_{2}^{2}\right) \\
& +\frac{\left(2 b+r^{2}\right)}{8}\left(d \theta_{3}^{2}+\sin ^{2} \theta_{3} d \phi_{3}^{2}\right)+\frac{r^{2}}{8}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \phi_{1}^{2}\right), \\
\kappa(r)= & \frac{\left(2 A_{-}+r^{2}\right)\left(2 A_{+}+r^{2}\right)}{\left(2 a+r^{2}\right)\left(2 b+r^{2}\right)}, \quad A_{ \pm}=\frac{1}{3}\left(2 a+2 b \pm \sqrt{4 a^{2}-10 a b+4 b^{2}}\right)
\end{aligned}
$$

- consider partial resolution. Locating the branes at, say, the N of the blown-up sphere

$$
\begin{aligned}
\Delta_{x} h[y] & =\frac{\left(2 \pi \ell_{p}\right)^{6} N}{\sqrt{\operatorname{det} g_{X}}} \delta^{8}(x-y) \Rightarrow h\left(r, \theta_{3}\right)=\sum_{l=0}^{\infty} H_{l}(r) P_{l}\left(\cos \theta_{3}\right) \\
H_{l}(r) & =\mathcal{C}_{l}\left(\frac{8 b}{3 r^{2}}\right)^{3(1+\beta) / 2}{ }_{2} F_{1}\left(-\frac{1}{2}+\frac{3}{2} \beta, \frac{3}{2}+\frac{3}{2} \beta, 1+3 \beta,-\frac{8 b}{3 r^{2}}\right)
\end{aligned}
$$

$$
\beta=\beta(l)=\sqrt{1+\frac{8}{9} l(l+1)}, \quad \mathcal{C}_{l}=\frac{3 \Gamma\left(\frac{3}{2}+\frac{3}{2} \beta\right)^{2}}{2 \Gamma(1+3 \beta)}\left(\frac{3}{8 b}\right)^{3}(2 l+1) R^{6}, \quad R^{6}=\frac{\left(2 \pi \ell_{p}\right)^{6} N}{6 \operatorname{vol}\left(Q^{111}\right)}=\frac{256}{3} \pi^{2} N \ell_{p}^{6}
$$

- Looking at the assymptotic form of the warp factor

$$
h\left(r, \theta_{3}\right) \sim \frac{R^{6}}{r^{6}}\left(1+\frac{18 b \cos \theta_{3}}{5 r^{2}}+\cdots\right) \rightarrow\langle\mathcal{U}\rangle \sim b \cos \theta_{3} / \Delta(\mathcal{U})=1
$$

- This is suggestive of SSB of a global symmetry. Indeed the natural dim. 1 op . is

$$
\mathcal{U} \sim \sum_{X_{g}} q_{X} X_{g} X_{g}^{\dagger} \sim \mu_{g} \quad \begin{gathered}
\text { (c.f. } \text { with the conifold example. } \\
\text { Klebanov } \xi \text { Murugan) }
\end{gathered}
$$

- Since this would break a baryonic symmetry, it is natural to guess that a baryon gets a VEV: look for baryonic condensates=euclidean M5 branes!
- The baryonic condensate is an euclidean brane wrapping the cone over the dual 5-cycle. By the AdS/CFT duality, its action is the desired VEV

$$
S\left(r_{c}\right)=T_{5} \int_{r \leq r_{c}} h \sqrt{\operatorname{det} g_{6}} d^{6} x,
$$

- After some computations we get

$$
e^{-S\left(r_{c}\right)}=e^{7 N / 18}\left(\frac{8 b}{3 r_{c}^{2}}\right)^{\frac{N}{3}}\left(\sin \frac{\theta_{3}}{2}\right)^{N}
$$

- This is expected to be

$$
\left\langle\mathfrak{B}_{X}\right\rangle \sim b^{\Delta_{X} N} \Rightarrow \Delta_{X}=\frac{1}{3}
$$

- Non-trivial check of the R-charge assignation
- An M2 brane wrapped on the blown-up cycle is sUSY. In analogy with the \|B case, it is the string of the SSB
(c.f. the conifold in IIB.

Klebanov, Murugan, D.R-G, ward)It sources a 3-form fluctuation

$$
\delta C_{3}=\tilde{\mathcal{A}} \wedge \beta, d \beta=0, d\left(h \star_{8} \beta\right)=0 \Rightarrow d \star_{3} d \tilde{\mathcal{A}}
$$in the unwarped case this can be explicitly solved. In the warped case we can argue an appropriate solution exists

$$
\begin{aligned}
& I=\int_{X} \beta \wedge \star_{s} h \beta=\int_{0}^{\pi} d \theta_{2} \int_{0}^{\pi} d \theta_{3} \int_{0}^{\infty} d e h \sqrt{\operatorname{det} g} \sin \theta_{2} \sin \theta_{3}\left[\left(\partial_{e} f_{0}\right)^{2}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{\left(-1+f_{0}-\cot \theta_{2} f_{2}-\partial_{0} f_{2}\right)^{2}}{\left(l_{2}^{2}+\varrho\right)^{2}}+\frac{U}{\left(l_{2}^{2}+\varrho\right)}\left(\partial_{e} f_{2}\right)^{2}+\frac{U}{\left(l_{3}^{2}+\varrho\right)^{2}}\left(\partial_{e} f_{3}\right)^{2}+\frac{f_{0}^{2}}{g^{2}}\right] .
\end{aligned}
$$

- The Hodge dual is

$$
\delta G_{7}=\star_{3} d A \wedge h \star_{8} \beta .
$$

- This can be re-written as

$$
\star_{3} d A=d p \Rightarrow \delta G_{7}=d p \wedge h \star_{8} \beta=d\left(p h \star_{8} \beta\right)
$$

- Together with the boundary behavior of the 2form

$$
\beta \sim \frac{2}{3} e_{\theta_{2}} \wedge e_{\phi_{2}}-\frac{1}{3} e_{\theta_{1}} \wedge e_{\phi_{1}}-\frac{1}{3} e_{\theta_{3}} \wedge e_{\phi_{3}}
$$

- This suggests

$$
\left\langle J_{\mu}\right\rangle=f_{\pi}^{-1} \partial_{\mu} p, \quad f_{\pi} \sim b^{-1}
$$

(excpetional) 6-cyclesFor isolated singularities with no 6-cycles we expect to be able to do the same analysis as for Q111. This is basically because when a lagrangian description exists, it is basically the minimal GLSM.What about (exceptional) 6-cycles???We use as toy model an orbifold of Q111 along the $u(1)$ R-symmetry known as Q222 (D^{\prime} Auria, Fre E van Niewenhuizen)
 R angle period). The toric diagram is

- AU(N) theory has been proposed

(I)

(II)

$$
\begin{aligned}
& W_{I}=\operatorname{Tr} \epsilon_{i j} \epsilon_{m n} X_{12}^{i} X_{23}^{m} X_{34}^{j} X_{41}^{n}, \\
& W_{I I}=\operatorname{Tr}\left(\epsilon_{i j} \epsilon_{m n} X_{32}^{i} X_{24}^{m} X_{43}^{j n}-\epsilon_{i j} \epsilon_{m n} X_{31}^{m} X_{14}^{i} X_{43}^{j n}\right) .
\end{aligned}
$$

(Franco, Klebanov \& D.R-G)

- The abelian moduli space gives the expected variety. The (large k) chiral ring matches the expectation (again with crucial use of F-terms)
- However, the GLSM is NOT the minimal one. The baryonic symmetry story would be the same as in its Q111 cousin. Thus, it seems there is not enough room in the master space to accomodate the exceptional 6-cycle...
- On the other hand, 6-cycles should have a different interpretation...
- Once blown-up, we can wrap an E5 brane on it \square As opposed to the $\| B$ case, this brawe sees the same susy's as if there was no "sourcing" M2's
- Therefore, naively the counting of fermionic zero modes suggests this E5 to generate a nonperturbative W
- The warped volume should give (the real) part of the W

$$
W=e^{-S_{D B I}-i S_{W Z}}, \quad S_{D B I}=T_{5} \int_{D} \sqrt{\operatorname{det} g_{D}} h d^{6} x
$$

(Witten,
Baumann, Dymarsky, Klebanov, Maldacena \& Murugan)

- In the case at hand
$W=e^{-S}=\exp \left[\frac{2 N}{3} \frac{r_{\star}^{6}}{r_{0}^{6}}{ }_{2} F_{1}\left(\frac{3}{4}, 1, \frac{7}{4},\left(\frac{r_{\star}}{r_{0}}\right)^{8}\right)\right]$,

There are very nice mathematical results one can prove which give warped volumes in generic CY's

- Thus, either the cycle is not blown-up or the M2 branes are constrained to live on it (reduced mesonic moduli space)
- The complex part is missing, as well as how to write this in terms of field theory quantities
- Besides, the field theory interpretation is not clear

Conclusions

- $A d S_{4} / C F_{3}$ is much richer than its $4 d$ cousin
- We set out for the study of (Betti) vector multiplets in AdS $_{4}$. Suitable choice of b.c. allow to consider a theory with dybarionsThese, being dual to M5 branes, allow for a number of non-trivial checks (VEV'S, SSB...)
- However there are many aspects to be better understood: resolution sequences, explicit action of T / S, generic cases, relation to flavored th... (Benini, Closset \& Cremonesi, Jafferis)
- Also one would like to understand the role of the M-th circle. For example, it should give a (Killing vector-like) gauge field in Ads. What is its role???
- Non-perturbative W 's and 6-cycles also require more understanding. Do these cycles really contribute a W? If so, what is the FT interpretation? How to holomorphically write the warped volumes?...

Many thanks!!!

