Cardy \& Kerr

Vishnu Jejjala
Queen Mary, University of London

Based on arXiv:0909.1110 with S. Nampuri

Second Joburg Workshop on String Theory 26 April 2010

Einstein

$$
\begin{gathered}
S=\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{d} x \sqrt{-g}[R-2 \Lambda]+\int \mathrm{d}^{d} x \sqrt{-g} \mathcal{L}_{\mathrm{m}} \\
\quad \delta S=0 \\
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=8 \pi G_{N} T_{\mu \nu}
\end{gathered}
$$

- How matter responds to curvature of spacetime and conversely how geometry responds to presence of energy
- There are singular solutions in General Relativity
- How does string theory resolve spacetime singularities?

Schwarzschild \& Friends

- Paradigmatic examples are black holes
- These are thermodynamic objects with entropy

$$
\begin{aligned}
& \kappa=\text { constant } \neq 0 \\
& d M=\frac{\kappa}{2 \pi} d A+\Omega d J+\Phi d Q \\
& d S \geq 0
\end{aligned}
$$

Bekenstein \& Hawking

- Entropy of a black hole is $S_{\mathrm{BH}}=\frac{\text { Area }}{4 G_{\mathrm{N}} \hbar}$
- String theory enables us to understand the origin of this entropy in very special settings
- Gravitational thermodynamics is then promoted to a theory of statistical mechanics
- Can study physics of $e^{S_{\mathrm{BH}}}$ states
- So far astrophysical black holes are not among these very special settings

Boltzmann

$S_{\mathrm{BH}}=\frac{A}{4 G_{N}}$

Kinetic Theory of Gases

Thermodynamic quantities like T, p, μ describe a gas
We do a statistical averaging
There is an underlying microscopic theory: $S=k \log \Omega$, where Ω is number of microstates; this enumerates configurations of gas molecules

Question: What are the microstates of a black hole?

A partial answer: Enumerating degenerate supersymmetric vacua in a weakly coupled description in terms of strings and D-branes correctly reproduces Bekenstein-Hawking entropy

Maldacena

- Spacetime is an approximation

maximally symmetric solution to Einstein equations with negative c.c.

$$
\begin{aligned}
& X_{0}^{2}+X_{d+1}^{2}-\sum_{i=1}^{d} X_{i}^{2}=L^{2} \text { in } \mathbb{R}^{d, 2} \\
& \mathrm{~d} s^{2}=L^{2}\left(-\cosh ^{2} \rho \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}+\sinh ^{2} \rho \mathrm{~d} \Omega_{d-1}^{2}\right)
\end{aligned}
$$

Type IIB string theory on $A d S_{5} \times S^{5}=\mathcal{N}=4$ SYM in $d=4$

- closed string/open string duality
- strong coupling/weak coupling duality

Question: How do black hole spacetimes emerge?
Question: What are the fundamental degrees of freedom of quantum gravity?

Seurat

La Parade de Cirque (1888)

Wilson

Quantum data is washed out

(cf. RG)

Classical geometry origin of entropy

- Scale L; on smaller scales all microstates look the same
- For black holes, this new length scale is classical horizon

Mathur

- Many horizonless configurations with the same global charges (M, J, Q) as black hole
- Individual microstates have no entropy (so horizonless)
- The generic state is intrinsically quantum
- A typical state is characteristically stringy all the way to the effective horizon, and well approximated by the black hole metric in the exterior

Mathur

- Horizons and singularities are effective notions in gravity
- They arise only as a consequence of a thermodynamic averaging over microstates, or coarse-graining
- Origin of entropy lies in the inability of a semiclassial observer to distinguish the different quantum microstates
- Quantise moduli space to find $e^{S_{\mathrm{BH}}}$ solutions

Cardy \& Kerr

- The aim of this talk is suitably modest
- Guica, Hartman, Song, Strominger have proposed a way of computing the entropy of four dimensional Kerr black hole from CFT
- This is analogue of Strominger-Vafa entropy counting, except this time it is a genuine astrophysical setting
- The computation uses the Cardy formula without justification (i.e. outside its regime of validity)
- Our work motivates the Cardy computation of entropy

Brown \& Henneaux

- Example: AdS_{3}
- With suitable b.c., large diffeos generate Vir \times Vir

$$
\begin{aligned}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c_{L}}{12}\left(m^{3}-m\right) \delta_{m+n, 0}} \\
& {\left[\bar{L}_{m}, \bar{L}_{n}\right]=(m-n) \bar{L}_{m+n}+\frac{c_{R}}{12}\left(m^{3}-m\right) \delta_{m+n, 0}} \\
& {\left[L_{m}, \bar{L}_{n}\right]=0}
\end{aligned}
$$

- Central charge is $\quad c_{L}=c_{R}=\frac{3}{2 G_{N} \sqrt{-\Lambda}} \equiv \frac{3 \ell}{2 G_{N}}$
- Precursor to $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

BTZ

- Gravity in $2+1$ dimensions is trivial
- Nevertheless there is a black hole in AdS_{3}

Bañados, Teitelboim, Zanelli, 1992

- We understand the entropy of BTZ in light of the AdS/CFT correspondence
- In fact, this is not really string theory:
just use Brown-Henneaux and look at asymptotic growth of states
- This is the blueprint for the Kerr analysis

Kerr

- Four dimensional rotating black hole

Theorem: This is unique time-independent vacuum black hole in four dimensional General Relativity.

- Two parameters: $J \leq G_{N} M_{\text {ADM }}^{2}$
(extremal at equality)
- $\mathbb{R} \times U(1)$ isometry

$$
S_{\mathrm{BH}}=\frac{A}{4 G_{N}}=2 \pi J
$$

- What are its microstates?

Kerr

- divide into slices of latitude
- each slice contains BTZ in warped $A d S_{3}$
- What are its microstates?

Bardeen \& Horowitz

- Near-horizon extremal Kerr has metric

$$
\begin{gathered}
\mathrm{d} s^{2}=2 G_{4} J \Omega(\theta)^{2}\left(-\left(1+r^{2}\right) d \tau^{2}+\frac{d r^{2}}{1+r^{2}}+d \theta^{2}+\Lambda(\theta)^{2}(d \varphi+r d \tau)^{2}\right) \\
\Omega(\theta)^{2}=\frac{1+\cos ^{2} \theta}{2}, \quad \Lambda(\theta)=\frac{2 \sin \theta}{1+\cos ^{2} \theta}, \quad \theta \in[0, \pi], \quad \varphi \sim \varphi+2 \pi
\end{gathered}
$$

- τ, r combine to give AdS_{2}
- φ is a circle fibered on top
- constant $\theta:$ warped AdS_{3}

Bardeen \& Horowitz

- Near-horizon extremal Kerr has metric

$$
\begin{gathered}
\mathrm{d} s^{2}=2 G_{4} J \Omega(\theta)^{2}\left(-\left(1+r^{2}\right) d \tau^{2}+\frac{d r^{2}}{1+r^{2}}+d \theta^{2}+\Lambda(\theta)^{2}(d \varphi+r d \tau)^{2}\right) \\
\Omega(\theta)^{2}=\frac{1+\cos ^{2} \theta}{2}, \quad \Lambda(\theta)=\frac{2 \sin \theta}{1+\cos ^{2} \theta}, \quad \theta \in[0, \pi], \quad \varphi \sim \varphi+2 \pi
\end{gathered}
$$

- Geodesically complete with timelike infinity at $r= \pm \infty$
- Isometry group is enhanced to $S L(2, \mathbb{R}) \times U(1)$
- Can we apply Brown-Henneaux here?

GHSS

- Devise b.c. on metric falloff and then find all the allowed diffeos that preserve them
- Find the generators and show they are wellpreserved, finite, and conserved

$$
\zeta_{\epsilon}=\epsilon(\varphi) \partial_{\varphi}-r \epsilon^{\prime}(\varphi) \partial_{r}
$$

- Obtain chiral CFT with $c_{L}=12 J$

GHSS

- Frolov-Thorne vacuum with $T_{L}=\frac{1}{2 \pi}, T_{R}=0$
- Extremality $=$ No excitations on right side: $c_{R}=0$
- Entropy from Cardy formula

$$
S_{\mathrm{CFT}}=\frac{\pi^{2}}{3} c_{L} T_{L}=2 \pi J=S_{\mathrm{BH}}
$$

- So we are done...

GUS

- Frolov-Thorne vacuum with $T_{L}=\frac{1}{2 \pi}, T_{R}=0$
- Extremality $=$ No excitations on right side $c_{R}=0$
- Entropy from Cardy formula

$$
S_{\mathrm{CFT}}=\frac{\pi^{2}}{3} c_{L} T_{L}=2 \pi J=S_{\mathrm{BH}}
$$

- So we are done...
- Except we are not...

AHMR / DRS / BDSS

- No dynamics in near-horizon extremal Kerr

Theorem: Any solution to vacuum GR that is asymptotic to NHEK is as well diffeomorphic to NHEK.

- Look at near-horizon BTZ; DLCQ of a non-chiral CFT dual to AdS_{3} is a chiral CFT

Question: The CFT dual of Kerr is a DLCQ limit of what theory?

Cardy

$$
\begin{aligned}
& c_{L}=12 J \\
& T_{L}=\frac{1}{2 \pi}
\end{aligned} \leftrightharpoons S_{\mathrm{CFT}}=\frac{\pi^{2}}{3} c_{L} T_{L}=2 \pi J=S_{\mathrm{BH}}
$$

Cardy

$$
\begin{array}{|c}
c_{L}=12 J \\
T_{L}=\frac{1}{2 \pi}
\end{array} \leadsto S_{\mathrm{CFT}}=\frac{\pi^{2}}{3} c_{L} T_{L}=2 \pi J=S_{\mathrm{BH}}
$$

- Cardy formula extracts the leading term in the high-temperature expansion of the partition function

Cardy

$$
\begin{array}{|c|}
\hline c_{L}=12 J \\
T_{L}=\frac{1}{2 \pi}
\end{array} \longmapsto \quad S_{\mathrm{CFT}}=\frac{\pi^{2}}{3} c_{L} T_{L}=2 \pi J=S_{\mathrm{BH}}
$$

- Cardy formula extracts the leading term in the high-temperature expansion of the partition function
- Here, $T \approx \mathcal{O}(1)$!
- So why does Cardy work?

On Cardy Off Cardy

- Similar situation exists for Strominger-Vafa: Cardy formula works outside its regime of validity
- In fact, this is generic in string theory when there is a CFT dual to gravitational system
- No general argument or explanation, but we often know how!
- Mathur gives us a paradigm for how to count

Lunin \& Mathur

- $\left.\quad \begin{array}{l}n_{1} \text { D1 - branes } \\ n_{5} \text { D5 - branes }\end{array}\right\}$ wrapping $\mathcal{M}=\mathrm{T}^{4}$ or K3
- CFT is a sigma model with target \mathcal{M}^{N} / S_{N}

$$
c=6 N=6 n_{1} n_{5}
$$

de Boer, 1998; Seiberg, Witten, 1999; Larsen, Martinec, 1999

Lunin \& Mathur

- $\left.\begin{array}{l}n_{1} \text { D1 - branes } \\ n_{5} \text { D5 - branes }\end{array}\right\}$ wrapping $\mathcal{M}=\mathrm{T}^{4}$ or K3
- CFT is a sigma model with target \mathcal{M}^{N} / S_{N}

$$
c=6 N=6 n_{1} n_{5}
$$

- System is dual to an effective string
n_{1} units of winding
n_{5} units of momentum
$-\quad T_{L} \approx \frac{\sqrt{L_{0}}}{c_{L}} \gg 1$

Cardy works!

Kerr

- Charged black holes in string theory have a lower bound on mass set by the charges
- Consider extremal solutions: $T_{\mathrm{H}}=0, S_{\mathrm{BH}} \neq 0$ near-horizon is AdS
- Global charges encode central charge of CFT
- Goal: Start with neutral Kerr in four dimensions and find a duality frame such that we have a black hole in string theory whose CFT dual is in the Cardy regime

Kerr

- If we lift four dimensional Kerr black hole to five dimensions and add a magnetic charge, we get a rotating Kaluza-Klein black hole with the same entropy

$$
S_{\mathrm{BH}}=\frac{A}{4 G_{N}}=2 \pi J
$$

- If we take limit of large radius, this is a Myers-Perry black hole at the tip of a Taub-NUT cigar
- We shall use and develop these observations

Kaluza \& Klein

metric of M-theory lifted four-dimensional extremal, dyonically charged rotating black hole

$$
\mathrm{d} s^{2}=\frac{H_{q}}{H_{p}}(d y+\mathbf{A})^{2}-\frac{\Delta_{\theta}}{H_{q}}(d t+\mathbf{B})^{2}+H_{p}\left(\frac{d r^{2}}{\Delta}+d \theta^{2}+\frac{\Delta}{\Delta_{\theta}} \sin ^{2} \theta d \phi^{2}\right)
$$

$$
H_{p}=r^{2}+r p+\frac{p^{2} q}{2(p+q)}+\frac{q p^{2} \cos \theta}{2(p+q)} \frac{\alpha}{m}, H_{q}=r^{2}+r q+\frac{q^{2} p}{2(p+q)}-\frac{p q^{2} \cos \theta}{2(p+q)} \frac{\alpha}{m}, \text { etc. }
$$

$$
2 G_{4} M=\frac{p+q}{2}, \quad G_{4} J=\frac{(p q)^{\frac{3}{2}}}{4(p+q)} \frac{\alpha}{m}
$$

$$
Q^{2}=\frac{q^{3}}{4(p+q)}, \quad P^{2}=\frac{p^{3}}{4(p+q)}
$$

D6-brane charge (monopole)
-D0-brane charge
(momentum on M-theory circle)

Kaluza \& Klein

metric of M-theory lifted four-dimensional extremal, dyonically charged rotating black hole

$$
\begin{aligned}
& \mathrm{d} s^{2}=\frac{H_{q}}{H_{p}}(d y+\mathbf{A})^{2}-\frac{\Delta_{\theta}}{H_{q}}(d t+\mathbf{B})^{2}+H_{p}\left(\frac{d r^{2}}{\Delta}+d \theta^{2}+\frac{\Delta}{\Delta_{\theta}} \sin ^{2} \theta d \phi^{2}\right) \\
& H_{p}=r^{2}+r p+\frac{p^{2} q}{2(p+q)}+\frac{q p^{2} \cos \theta}{2(p+q)} \frac{\alpha}{m}, H_{q}=r^{2}+r q+\frac{q^{2} p}{2(p+q)}-\frac{p q^{2} \cos \theta}{2(p+q)} \frac{\alpha}{m}, \text { etc. } \\
& 2 G_{4} M=\frac{p+q}{2}, \quad G_{4} J=\frac{(p q)^{\frac{3}{2}}}{4(p+q)} \frac{\alpha}{m}, \quad Q^{2}=\frac{q^{3}}{4(p+q)}, \quad P^{2}=\frac{p^{3}}{4(p+q)} \\
& \text { D0-brane charge }
\end{aligned}
$$

- In sugra: we have a Taub-NUT/ALE space with momentum flowing along the circle

$$
Q=\frac{2 G_{4} N_{0}}{R}, P=\frac{R N_{6}}{4}, R \gg 1
$$

Myers \& Perry

Take limits

$$
\begin{array}{ccc}
p \rightarrow \infty & y \rightarrow \infty & \psi=\frac{y}{p} \\
q \rightarrow 0 & p q=\frac{\mu}{4} \\
\alpha \rightarrow 0 & p \alpha=\frac{1}{8}\left(\mu-(a+b)^{2}\right)^{\frac{1}{2}}(a-b) \\
m \rightarrow 0 & p m=\frac{1}{8}\left[\mu\left(\mu-(a+b)^{2}\right)\right]^{\frac{1}{2}} \\
r \rightarrow 0 & p r=\frac{1}{4}\left[\rho^{2}-\frac{1}{2}\left(\mu-a^{2}-b^{2}-8 p m\right)\right]
\end{array}
$$

$$
\begin{array}{r}
\text { metric of five dimensional Myers-Perry black hole placed at tip of Taub-NUT cigar } \\
\mathrm{d} s^{2}=-d t^{2}+\frac{\mu}{\Sigma}\left(d t-a \sin ^{2} \theta d \psi-b \cos ^{2} \theta d \phi\right)^{2}+\Sigma\left(\frac{d \rho^{2}}{\Delta}+d \theta^{2}\right)+\left(\rho^{2}+a^{2}\right) \sin ^{2} \theta d \psi^{2}+\left(\rho^{2}+b^{2}\right) \cos ^{2} \theta d \phi^{2} \\
\hline
\end{array}
$$

$$
\Sigma=\rho^{2}+a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta, \Delta=\frac{\left(\rho^{2}+a^{2}\right)\left(\rho^{2}+b^{2}\right)-\mu \rho^{2}}{\rho^{2}}
$$

Myers \& Perry

This is just a reflection of Myers-Perry
$\mathrm{d} s^{2}=-d t^{2}+\frac{\mu}{\Sigma}\left(d t-a \sin ^{2} \theta d \psi-b \cos ^{2} \theta d \phi\right)^{2}+\Sigma\left(\frac{d \rho^{2}}{\Delta}+d \theta^{2}\right)+\left(\rho^{2}+a^{2}\right) \sin ^{2} \theta d \psi^{2}+\left(\rho^{2}+b^{2}\right) \cos ^{2} \theta d \phi^{2}$

$$
\Sigma=\rho^{2}+a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta, \Delta=\frac{\left(\rho^{2}+a^{2}\right)\left(\rho^{2}+b^{2}\right)-\mu \rho^{2}}{\rho^{2}}
$$

Myers \& Perry

$$
\begin{aligned}
& \phi \leftrightarrow-\phi, b \leftrightarrow-b \text { is a symmetry } \\
& \therefore J_{2} \leftrightarrow-J_{2}, \text { Cartans flipped } \\
& J_{1}=J_{2} \Longrightarrow J=0
\end{aligned}
$$

This is just a reflection of Myers-Perry

This exchanges angular momentum and charge

$$
\begin{gathered}
J_{1}=\frac{\pi \mu a}{4 G_{5} N_{6}}, J_{2}=\frac{\pi \mu b}{4 G_{5} N_{6}} \\
J_{1,2}=\frac{N_{0} N_{6}}{2} \pm J
\end{gathered}
$$

Myers \& Perry

$$
\begin{aligned}
& \phi \leftrightarrow-\phi, b \leftrightarrow-b \text { is a symmetry } \\
& \therefore J_{2} \leftrightarrow-J_{2}, \text { Cartans flipped } \\
& J_{1}=J_{2} \Longrightarrow J=0
\end{aligned}
$$

Trade J for N_{0}

This is just a reflection of Myers-Perry

This exchanges angular momentum and charge

Entropy stays the same

$$
\begin{gathered}
J_{1}=\frac{\pi \mu a}{4 G_{5} N_{6}}, J_{2}=\frac{\pi \mu b}{4 G_{5} N_{6}} \\
J_{1,2}=\frac{N_{0} N_{6}}{2} \pm J
\end{gathered}
$$

Kaluza \& Klein

Nyersern en

- We have a system of DO- and D6-branes

$$
\begin{array}{cc}
N_{0} & \text { D0-brane charge } \\
N_{6}=1 & \text { D6-brane charge }
\end{array}
$$

- Use four dimensional U-duality

$$
\begin{aligned}
& m=\frac{J}{n} \quad \text { D0-brane charge } \\
& n \gg 1 \quad \text { D6-brane charge }
\end{aligned}
$$

Entropy stays the same!

- Reverse uplift to four dimensions

Kerr black hole on $\mathbb{R}^{4} / \mathbb{Z}_{N}$; with angular momentum J

Cardy

- Azimuthal angle has periodicity $\frac{2 \pi}{N_{6}}$
- Temperature is then $T_{L}=\frac{\Delta \varphi}{4 \pi^{2}}=\frac{1}{2 \pi N_{6}}$
- Central charge increases by same factor N_{6}

$$
S_{\mathrm{CFT}}=\frac{\pi^{2}}{3} c_{L} T_{L}=2 \pi J=S_{\mathrm{BH}}
$$

- Family of CFTs with correct entropy
- Still not in the Cardy regime; in fact further than where we started as temperature is now even smaller

Cardy

Type IIA on T^{6}

$$
\begin{gathered}
\vec{Q}=\left(q_{0}=N_{0}, 0, \ldots, 0\right) \\
\vec{P}=\left(0, p^{0}=N_{6}, 0, \ldots, 0\right)
\end{gathered}
$$

$\vec{Q} \cdot \vec{P}=\vec{Q}\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \otimes 1\right) \vec{P}=q_{0} p^{0}=N_{0} N_{6} \gg 1$
Cardy regime
$S_{\mathrm{BH}}=\pi \sqrt{-I}$

$$
\begin{gathered}
p^{0}=0 \\
I=(\vec{Q} \cdot \vec{Q})^{2}(\vec{P} \cdot \vec{P})^{2}-(\vec{Q} \cdot \vec{P})^{2} \gg 6\left(p^{1}\right)^{2}(\vec{P} \cdot \vec{P})^{2}
\end{gathered}
$$

Cardy

Type IIA on T^{6}

$$
\begin{gathered}
\vec{Q}=\left(q_{0}=N_{0}, 0, \ldots, 0\right) \\
\vec{P}=\left(0, p^{0}=N_{6}, 0, \ldots, 0\right)
\end{gathered}
$$

Cardy regime

$$
S_{\mathrm{BH}}=\pi \sqrt{-I}
$$

$$
\begin{gathered}
p^{0}=0 \\
I=(\vec{Q} \cdot \vec{Q})^{2}(\vec{P} \cdot \vec{P})^{2}-(\vec{Q} \cdot \vec{P})^{2} \gg 6\left(p^{1}\right)^{2}(\vec{P} \cdot \vec{P})^{2}
\end{gathered}
$$

Cardy

Type IIA on T^{6}

$$
\begin{gathered}
\vec{Q}=\left(q_{0}=N_{0}, 0, \ldots, 0\right) \\
\vec{P}=\left(0, p^{0}=N_{6}, 0, \ldots, 0\right)
\end{gathered}
$$

$\vec{Q} \cdot \vec{P}=\vec{Q}\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \otimes 1\right) \vec{P}=q_{0} p^{0}=N_{0} N_{6} \gg 1$

Cardy regime

$$
S_{\mathrm{BH}}=\pi \sqrt{-I}
$$

$$
\begin{gathered}
p^{0}=0 \\
I=(\vec{Q} \cdot \vec{Q})^{2}(\vec{P} \cdot \vec{P})^{2}-(\vec{Q} \cdot \vec{P})^{2} \gg 6\left(p^{1}\right)^{2}(\vec{P} \cdot \vec{P})^{2}
\end{gathered}
$$

Caray

Type IIA on T^{6}

$$
\begin{gathered}
\vec{Q}=\left(q_{0}=N_{0}, 0, \ldots, 0\right) \\
\vec{P}=\left(0, p^{0}=N_{6}, 0, \ldots, 0\right)
\end{gathered}
$$

infinitesimally close to

$$
\begin{gathered}
\vec{Q}=\left(q_{0}, 0,1,0 \ldots, 0\right) \\
\vec{P}=\left(0, p^{0},-1,1,0, \ldots, 0\right)
\end{gathered}
$$

$\vec{Q} \cdot \vec{P}=\vec{Q}\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \otimes 1\right) \vec{P}=q_{0} p^{0}=N_{0} N_{6} \gg 1$

Cardy regime

$$
S_{\mathrm{BH}}=\pi \sqrt{-I}
$$

$$
\begin{gathered}
p^{0}=0 \\
I=(\vec{Q} \cdot \vec{Q})^{2}(\vec{P} \cdot \vec{P})^{2}-(\vec{Q} \cdot \vec{P})^{2} \gg 6\left(p^{1}\right)^{2}(\vec{P} \cdot \vec{P})^{2}
\end{gathered}
$$

caray

Type IIA on T^{6}

$$
\begin{gathered}
\vec{Q}=\left(q_{0}=N_{0}, 0, \ldots, 0\right) \\
\vec{P}=\left(0, p^{0}=N_{6}, 0, \ldots, 0\right)
\end{gathered}
$$

infinitesimally close to

$$
\begin{gathered}
\vec{Q}=\left(q_{0}, 0,1,0 \ldots, 0\right) \\
\vec{P}=\left(0, p^{0},-1,1,0, \ldots, 0\right)
\end{gathered}
$$

$\vec{Q} \cdot \vec{P}=\vec{Q}\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \otimes 1\right) \vec{P}=q_{0} p^{0}=N_{0} N_{6} \gg 1$
Cardy regime
$S_{\mathrm{BH}}=\pi \sqrt{-I}$

$$
\begin{gathered}
p^{0}=0 \\
I=(\vec{Q} \cdot \vec{Q})^{2}(\vec{P} \cdot \vec{P})^{2}-(\vec{Q} \cdot \vec{P})^{2} \gg 6\left(p^{1}\right)^{2}(\vec{P} \cdot \vec{P})^{2}
\end{gathered}
$$

$$
\begin{gathered}
\vec{Q}=\left(q_{0}, p^{0}, 1,-p^{0} q_{0}, 0 \ldots, 0\right) \\
\vec{P}=(0,0,-1,1,0, \ldots, 0)
\end{gathered}
$$

Caray

Type IIA on T^{6}

$$
\begin{gathered}
\vec{Q}=\left(q_{0}=N_{0}, 0, \ldots, 0\right) \\
\vec{P}=\left(0, p^{0}=N_{6}, 0, \ldots, 0\right)
\end{gathered}
$$

infinitesimally close to

$$
\begin{gathered}
\vec{Q}=\left(q_{0}, 0,1,0 \ldots, 0\right) \\
\vec{P}=\left(0, p^{0},-1,1,0, \ldots, 0\right)
\end{gathered}
$$

$\vec{Q} \cdot \vec{P}=\vec{Q}\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \otimes 1\right) \vec{P}=q_{0} p^{0}=N_{0} N_{6} \gg 1$
Cardy regime

$$
S_{\mathrm{BH}}=\pi \sqrt{-I}
$$

$$
\begin{gathered}
p^{0}=0 \\
I=(\vec{Q} \cdot \vec{Q})^{2}(\vec{P} \cdot \vec{P})^{2}-(\vec{Q} \cdot \vec{P})^{2} \gg 6\left(p^{1}\right)^{2}(\vec{P} \cdot \vec{P})^{2}
\end{gathered}
$$

$$
\begin{gathered}
\vec{Q}=\left(q_{0}, p^{0}, 1,-p^{0} q_{0}, 0 \ldots, 0\right) \\
\vec{P}=(0,0,-1,1,0, \ldots, 0)
\end{gathered}
$$

Cardy finally applies!

caray

Type IIA on T^{6}

$$
\begin{gathered}
\vec{Q}=\left(q_{0}=N_{0}, 0, \ldots, 0\right) \\
\vec{P}=\left(0, p^{0}=N_{6}, 0, \ldots, 0\right)
\end{gathered}
$$

Cardy regime

$$
S_{\mathrm{BH}}=\pi \sqrt{-I}
$$

$$
\begin{gathered}
\vec{Q}=\left(q_{0}, 0,1,0 \ldots, 0\right) \\
\vec{P}=\left(0, p^{0},-1,1,0, \ldots, 0\right)
\end{gathered}
$$

infinitesimally close to
$\vec{Q} \cdot \vec{P}=\vec{Q}\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \otimes 1\right) \vec{P}=q_{0} p^{0}=N_{0} N_{6} \gg 1$

Cardy finally applies!

Kerr \& Cardy

- Assumption: Near-horizon geometry remains invariant under duality transformations

Thus the leading entropy remains same in sugra

- Assumption: Attractor mechanism operates for nonsupersymmetric black holes and the moduli are under control in map from D0/D6 to D0/D2/D2/D4/D4/D4

Can check this (I will point out how momentarily)

- Note: At a point in moduli space where the four dimensional coupling is strong, DO/D2/D2/D4/D4/D4 gives BTZ
Thus, this is naturally related to $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$

Kerr \& Cardy

5d KK black hole embedded in M-theory reduced to type IIA

dual to heterotic

$$
\begin{aligned}
& \mathbb{R}^{1,3} \times K 3 \times S_{M} \times S_{1} \times S_{2} \\
& \mathbb{R}^{1,3} \times K 3 \times S_{1} \times S_{2} \\
& \mathbb{R}^{1,3} \times T^{3} \times S_{M} \times S_{1} \times S_{2}
\end{aligned}
$$

- The S_{M} circle is the eleven-dimensional M-theory circle with radius R_{11}.
- The S_{1} and S_{2} are circles with radii R_{1} and R_{2}, respectively. We can think of these two circles as being T^{2} at a special point with volume denoted as V_{2}.
- Of the 22 two-cycles of $K 3,16$ arise as fixed points of T^{4} / \mathbb{Z}_{2} at the orbifold point and are not of interest. Of the remaining six two-cycles, D2-branes in the type IIA frame wrap the cycles corresponding to momentum and winding charges on the S_{1} circle in the heterotic frame; these have volumes labelled by $V_{(2)}$ and $V_{(3)}$, respectively.
- The volume of the six-dimensional manifold, $K 3 \times T^{2}$ is denoted by V_{6}.
- The quantities ℓ_{11} and ℓ_{5} denote Planck lengths in eleven dimensions and five dimensions, respectively.
- The four-dimensional string coupling constant is denoted as g_{4}; unless explicitly stated, this is represented in the heterotic frame.

Kerr \& Cardy

5d KK black hole embedded in M-theory
reduced to type IIA
dual to heterotic

$$
\begin{aligned}
& \mathbb{R}^{1,3} \times K 3 \times S_{M} \times S_{1} \times S_{2} \\
& \mathbb{R}^{1,3} \times K 3 \times S_{1} \times S_{2} \\
& \mathbb{R}^{1,3} \times T^{3} \times S_{M} \times S_{1} \times S_{2}
\end{aligned}
$$

- from comparing masses and tensions of objects, map moduli

$$
\begin{array}{ll}
\frac{V_{K 3}}{\ell_{11}^{4}}=\left(g_{4}^{2}\right)^{\frac{2}{3}}\left(\frac{R_{11}}{\ell_{s}}\right)^{\frac{2}{3}}\left(\frac{V_{2}}{\ell_{s}^{2}}\right)^{\frac{2}{3}} & \frac{R_{1}}{\ell_{s}}=\sqrt{\frac{R_{1}}{R_{2}}} \frac{1}{g_{4}} \\
\frac{R_{1}}{\ell_{11}} \sqrt{\frac{V_{K 3}}{\ell_{11}^{4}}}=\frac{R_{1}}{\ell_{s}} & \frac{R_{2}}{\ell_{s}}=\sqrt{\frac{R_{2}}{R_{1}}} \frac{1}{g_{4}} \\
\frac{R_{2}}{\ell_{11}} \sqrt{\frac{V_{K 3}}{\ell_{11}^{4}}}=\frac{R_{2}}{\ell_{s}} & \frac{V_{(2)}}{\ell_{s}^{2}}=\frac{R_{11}}{R_{1}} \\
\frac{R_{11}}{\ell_{11}} \sqrt{\frac{V_{K 3}}{\ell_{11}^{4}}}=\frac{R_{11}}{\ell_{s}} & \frac{R_{s}}{\ell_{s}^{2}}=\frac{R_{11} R_{1}}{\ell_{s}^{2}} \\
\frac{V_{2}}{\ell_{s}^{2}}=\frac{1}{\ell_{5}^{2}} \\
=\left(\frac{R_{11}}{\ell_{s}}\right)^{\frac{2}{3}}\left(\frac{1}{g_{4}^{2}}\right)^{\frac{1}{3}} & \frac{1}{g_{4,4}^{2}}=\frac{V_{2}}{\ell_{s}^{2}} \\
& \frac{V_{6}}{\ell_{s}^{6}}=\frac{1}{g_{4}^{2}} \frac{R_{11}^{2}}{\ell_{s}^{2}}
\end{array}
$$

M-theory/heterotic moduli

Kerr \& Cardy

5d KK black hole embedded in M-theory reduced to type IIA dual to heterotic

$$
\begin{aligned}
& \mathbb{R}^{1,3} \times K 3 \times S_{M} \times S_{1} \times S_{2} \\
& \mathbb{R}^{1,3} \times K 3 \times S_{1} \times S_{2} \\
& \mathbb{R}^{1,3} \times T^{3} \times S_{M} \times S_{1} \times S_{2}
\end{aligned}
$$

- from comparing masses and tensions of objects, map moduli
- want gravity to be weak in 5d so sugra is a good approximation
- attractor mechanism fixes the radii of $\frac{R_{11}}{\ell_{s}}=\frac{R_{1}}{\ell_{s}}=\sqrt{q_{0}}$
- duality maps are under control when $\frac{R_{2}}{\ell_{s}} \gg 1, \frac{R_{2}}{\ell_{s}}>g_{4}^{-2} q_{0}^{\frac{1}{2}}$

Kerr

- Extremal D0/D6 uplifted to five dimensions has the near-horizon geometry $\mathrm{AdS}_{2} \times S^{3}$
- Black hole is not a thermal excitation over pure AdS_{2} so it is unique solution (modulo diffeos) with given charges
- CFT is uniquely characterised by DO/D6 quantum numbers that fix radius, central charge consistent with NHEK analysis

Kerr

- We have gravitational thermodynamics of extremal Kerr (analogue of Strominger-Vafa), but what are microstates of extremal Kerr (analogue of Mathur's fuzzball programme)?
- Notably the CFT dual of Kerr is chiral - does this arise as a DLCQ of a non-chiral CFT as in BDSS? - if so, what is the parent theory?
- What about non-extremal Kerr?

Instead of near-horizon with conformal symmetry, look for conformal symmetry in space of solutions of wave equation in Kerr background Derive temperature from periodicities, assume central charges are 12 J Correctly derive entropy from Cardy formula

- Are there hidden conformal symmetries?

Thank You!

