The Thermal Scalar and Random Walks in Curved Spacetime

Thomas Mertens

PhD Student, Ghent University

In collaboration with Henri Verschelde (supervisor) and Valentin Zakharov

Outline

Introduction

String Thermodynamics in Flat space

Motivation for studying curved space string thermodynamics

Results

Random walks
3d Geometry: AdS_3 WZW model
Generic Black holes
Stress Tensor
Consider a gas of (non-interacting) strings at finite temperature (canonical ensemble):

What happens as we heat the gas?

Canonical ensemble of non-interacting strings $Z_\beta = \text{Tr} \left(e^{-\beta H} \right)$ exhibits maximal temperature = Hagedorn temperature T_H

Reason = Exponential increase of $\rho(E) \sim e^{\beta H E}$ at high E
For $T \lesssim T_H$, no divergence is present yet
Near T_H, string gas recombines into one (or several) highly excited long strings

Deo-Jain-Tan '89, Bowick-Giddings '89, Mitchell-Turok '87

Long string behaves as random walk in space
Hagedorn divergence can be interpreted as instability towards long string formation
Alternative Perspective: Thermal Manifold

Alternatively: Study string theory on the thermal manifold Sathiapalan '87, Kogan '87, O’Brien-Tan '87, McClain-Roth '87, Atick-Witten '88

Thermal manifold = Wick-rotate + periodically identify time direction

Extra feature: **winding modes** possible

As \(T \) (or \(\beta \)) changes \(\Rightarrow \) masses of wound strings change

\(w = 1 \) state is called **thermal scalar**

- Masslessness of this state determines \(T_H \)
- \(T > T_H \), state becomes tachyonic \(\Rightarrow \) instability of theory
- Dominates TD for \(T \lesssim T_H \) (random walk)
GOAL

Study string thermodynamics in the high-temperature regime in curved backgrounds using the thermal manifold approach.

Take gas of strings ...

... and place it on a curved background

- How does the curvature affect the Hagedorn behavior?
- Thermal scalar and its random walk interpretation?
In particular: black hole backgrounds

Why study string thermodynamics near black hole horizons?

1. Deeper understanding of black hole horizons (Firewall Almheiri-Marolf-Polchinski-Sully '12)

2. Holography: Black hole horizons \Leftrightarrow deep IR of dual field theory
 Fluid properties of quark-gluon plasma?

3. Better understanding of string thermodynamics (not completely understood in general)
1. **Jeans Instability**
 Matter clumps together (Perturbative generation of imaginary mass of gravitons)
 ⇒ Restrict amount of thermal matter by using compact space or AdS as a container Barbon-Rabinovici ’02

2. Canonical ensemble suffers from large fluctuations near β_H
 ⇒ Use the canonical picture as a tool to obtain $\rho(E)$
 Or study this discrepancy further

3. **Hagedorn transition** could be first order at a lower temperature than T_H (semi-classical tunneling) Atick-Witten ’88
 ⇒ We will study overheated spaces
Set-up of the geometry

Background metric of the static form
\[ds^2 = G_{00}(x)dt^2 + G_{ij}(x)dx^i dx^j \]

Thermal manifold

Flat space: Cylinder \(\rightarrow\) **Curved space:** varying size

What about black holes?

- **Thermal circle pinches off**
- **Does the thermal scalar exist?**
Random walks in curved backgrounds: Path integral approach (1)

Torus string path integral reduced to particle path integral

Kruczenski-Lawrence '06, TM-Verschelde-Zakharov '13

Starting point = Torus path integral on the strip modular domain:

\[Z_{T^2} = \int [E] \Delta_{FP} \int \mathcal{D}X \sqrt{G} e^{-\frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{h} \partial_{\alpha} X^\mu \partial_{\beta} X^\nu G_{\mu\nu}(X)} \]

Near-Hagedorn approximation:

- We consider strings that are singly wound around the Euclidean time direction: \(X^0(\sigma, \tau + 1) = X^0(\sigma, \tau) \pm \beta \)
 \(\Rightarrow \) Interpretation of a free closed string performing one loop around the thermal dimension

- Small \(\tau_2 \) region in strip \(E \)
Random walks in curved backgrounds: Path integral approach (2)

In the near-Hagedorn limit, it is found that this simplifies to

\[Z_p = 2 \int_0^\infty \frac{d\tau_2}{2\tau_2} \int_{X_i(\tau_2) = X_i(0)} [\mathcal{D}X] \sqrt{\det G_{ij}} \exp -S_p(X) \]

with particle action \(S_p \):

\[S_p = \frac{1}{4\pi\alpha'} \left[\int_0^{\tau_2} dt G_{ij} \partial_t X^i \partial_t X^j + \beta^2 \int_0^{\tau_2} dt G_{00} - \beta_{H,flat}^2 \tau_2 + \ldots \right] \]

⇒ particle path integral on the spatial submanifold and can be interpreted as a random walk of the long string

⇒⇒ Particle Trajectory = Spatial form of long string

Unfortunately, some corrections to the action \(S_p \) are missed (naive)
Thermal Scalar action

Alternative perspective: field theory of the thermal scalar (supposed to dominate near T_H)

Thermal scalar field $\phi(x) = \text{complex scalar field}$ only depending on the spatial coordinates of the manifold

Its action (non-interacting) can be obtained using T-duality and dimensional reduction:

$$S_{\text{th.sc.}} = \int dV \sqrt{G_{ij}} \sqrt{G_{00}} \left[G^{ij} \partial_i \phi \partial_j \phi^* - \frac{4}{\alpha'} \phi \phi^* + \frac{\beta^2 G_{00}}{4\pi^2 \alpha'^2} \phi \phi^* \right]$$

Q: α'-corrections?
A: Possibly, depends on model
Determining Hagedorn Temperature

For $T \lesssim T_H$, partition function is dominated by thermal scalar

$$Z_\beta = \text{Tr}(e^{-\beta H}) \approx Z_{\text{th.sc.}} = \int [\mathcal{D}\phi] \ e^{-S_{\text{th.sc.}}}$$

Determining T_H:

$$S_{\text{th.sc.}} \sim \int dV e^{-2\Phi} \sqrt{G} \phi^* \hat{O} \phi \ , \ \hat{O} \psi_n = \lambda_n \psi_n$$

$$\Rightarrow Z_{\text{th.sc.}} = \text{det}^{-1} \hat{O} \ \Rightarrow \beta F \approx \text{Tr} \ln \hat{O}$$

$\lambda_0 = 0$ determines β_H

ψ_0 determines where random walk is localized

Link with previous random walk picture:

Schwinger proper time representation of logarithm:

$$\ln(a) = - \int_0^{+\infty} \frac{d\tau_2}{\tau_2} \ (e^{-a\tau_2} - e^{-\tau_2})$$

Predicts corrections to previous random walk
Comparison of two methods

String path integral approach

Advantages
- Intuitive geometric derivation of random walk

Disadvantages
- On-shell backgrounds only
- Corrections to action

Field theory approach

Advantages
- Field Theory \Rightarrow in principle also off-shell
- Direct control on corrections

Disadvantages
- Interpretation on real-time manifold obscured

Both approaches individually not ideal
\Rightarrow Combining them gives full picture
Application 1: thermal AdS_3

Q: Does thermal scalar exist and predict T_H? \Rightarrow Thermal Spectrum

Geometry:

AdS_3 WZW model is group manifold $\Rightarrow \alpha'$-exact background

$$ds^2 = \alpha' k \left(\cosh(\rho)^2 d\tau^2 + d\rho^2 + \sinh(\rho)^2 d\phi^2 \right)$$

$\tau \sim \tau + \beta$ and $\phi \sim \phi + 2\pi$

Additionally $B = -i\alpha' k \sinh(\rho)^2 d\tau \wedge d\phi$

Imaginary in Euclidean signature
The (bosonic) thermal spectrum in AdS_3

Spectrum on non-thermal space is known

Thermal spectrum constructed using: TM-Verschelde-Zakharov '14

- Twisted vertex operator method
- Field theory methods
- Hamiltonian rewriting of the (known) partition function

Maldacena-Ooguri-Son '01 $Z = \text{Tr} \left(q^{L_0-c/24} \bar{q}^{\bar{L}_0-c/24} \right)$

Resulting thermal spectrum:

$$h = \frac{s^2 + 1/4}{k - 2} - i \frac{qp\beta}{4\pi} + \frac{pn}{2} + \frac{kp^2\beta^2}{4(2\pi)^2} + h_{int}$$

$p = \text{Cylinder Winding}$, $n = \text{Cylinder Discrete momentum}$

$q = \text{Cigar Winding}$, $w = \text{Cigar Discrete momentum}$

Properties

- No Cigar-winding modes
- Only continuous modes (due to B), $s \sim \text{radial momentum}$
The thermal scalar in AdS_3

Defining a tachyon
Genus 1 vacuum amplitude in \mathcal{F} (for large τ_2):

$$Z \approx \int_\mathcal{F} \frac{d\tau_1 d\tau_2}{2\tau_2} \sum_{H_{\text{matter}}} q^{h_i-1} \bar{q}^{\bar{h}_i-1}$$

where $q^{h-1} \bar{q}^{\bar{h}-1} = e^{2\pi i \tau_1 (h-\bar{h})} e^{-2\pi \tau_2 (h+\bar{h}-2)}$

\Rightarrow Quantity $\Re(h + \bar{h})$ determines convergence

Thermal tachyon: $p = \pm 1$, $q \in \mathbb{Z}$ are all marginal at

$$\beta_H^2 = \frac{4\pi^2}{k} \left(4 - \frac{1}{k-2} \right)$$

Berkooz-Komargodski-Reichmann '07, Lin-Matsuo-Tomino '07

- Infinitely many states become marginal at T_H
- Thermal scalar is continuous \Rightarrow Spreads over entire space
\(\mathbb{Z}_N \) orbifold by modding out a \(2\pi/N \) rotation around cigar

Hamiltonian rewriting of \(Z \Rightarrow \text{Appearance of discrete states} \)

Mathematical Reason = correct analytic continuation of Poisson’s summation formula:

\[
\sum_{n \in \mathbb{Z}} e^{inz} \hat{f}(n) = 2\pi \sum_{k \in \mathbb{Z}} \left[f(z+2\pi k) + 2\pi i \sum_{p_i \in \mathcal{P}} \text{Res}_{p_i}(f) \delta(z-p_i+2\pi k) \right]
\]

Resulting spectrum:

- **Continuous part:**
 \[
h = \frac{s^2 + 1/4}{k-2} + \frac{qw}{2} + \frac{i\pi nw}{\beta} + \frac{kw^2}{4} - \frac{iqp\beta}{4\pi} + \frac{pn}{2} + \frac{kp^2\beta^2}{4(2\pi)^2}
\]

- **Discrete part:**
 \[
h = -\frac{j(j-1)}{k-2} + \frac{qw}{2} - \frac{i\pi inw}{\beta} + \frac{kw^2}{4} - \frac{i\beta pq}{4\pi} - \frac{pn}{2} + \frac{kp^2\beta^2}{4(2\pi)^2}
\]

where \(j = \frac{k|w|}{2} - \frac{|q|}{2} \pm \frac{i\pi n}{\beta} - l, l=0,1,2,..., q \in \mathbb{N}\mathbb{Z}, n \in \mathbb{Z}, p \in \mathbb{Z} \) and \(|w| \leq 1/2\)

Application: Chemical potential in \(AdS_3 \)
Application 2: generic black holes

Susskind: an asymptotic observer throws in 1 string

- As it falls, the string is seen to elongate dramatically near the black hole horizon (distance ℓ_s) Susskind ’94
- Elongation not seen by free-falling observers, only by fiducial observers
- Two different situations with long strings: high T and near horizon? \Rightarrow Related?
Susskind’s story from canonical point of view
Recall: Unruh effect (intrinsic to black holes)

- Close to the horizon, infalling QFT vacuum around the black hole is viewed by fiducial observers as thermally populated with temperature $T = \frac{1}{2\pi \rho}$ where $\rho \sim \sqrt{r - r_s}$
For $r \to r_s$, T diverges (QG effects should be important!)

Thermal gas is emergent from the black hole quantum mechanics with $T = T_{\text{Hawking}}$
Thermal structure of black holes

In thermal atmosphere: Rindler approximation of metric:
\[ds^2 = -\frac{\rho^2}{(4GM)^2} dt^2 + d\rho^2 + dx_{\perp}^2. \]

\[\implies \text{Study string theory on thermal manifold = Euclidean Rindler space: } \]
\[ds^2 = \frac{\rho^2}{(4GM)^2} d\tau^2 + d\rho^2 + dx_{\perp}^2, \quad \tau \sim \tau + 8\pi GM \]
Results from string theory (1)

Approach: Small curvature (large \(k\)) limit of \(SL(2, \mathbb{R})/U(1)\) cigar

⇒ Euclidean Rindler space \(^{Giveon-Itzhaki '13}\)

⇒ \(\exists\ w = 1\) state in thermal spectrum

From coset construction ⇒ \(\alpha'\)-exact thermal scalar field theory for type II superstrings \(^{Verlinde-Verlinde-Dijkgraaf '92}\)

From thermal scalar FT perspective:

\[
ds^2 = \frac{\rho^2}{(4GM)^2} d\tau^2 + d\rho^2 + dx_{\perp}^2
\]

Wave operator: \(\hat{\mathcal{O}} = -\partial_\rho^2 - \frac{1}{\rho} \partial_\rho - \frac{2}{\alpha'} + \frac{\beta^2 \rho^2}{4\pi^2 \alpha'^2 (4GM)^2}\)

Spectrum (enforcing regularity at the origin and at infinity):

\[
\psi_n(\rho) \propto \exp \left(-\frac{\beta \rho^2}{4\pi \alpha' (4GM)} \right) L_n \left(\frac{\beta \rho^2}{2\pi \alpha' (4GM)} \right)
\]

\[
\lambda_n = \frac{\beta - 8\pi GM + 2\beta n}{\pi \alpha' (4GM)}, \quad n \geq 0
\]

With \(\beta = \beta_{\text{Hawking}} = 8\pi GM\) and \(n = 0\) (lowest mode)

\[
\psi_0 \propto \exp \left(-\frac{\rho^2}{2\ell_s^2} \right), \quad \lambda_0 = 0
\]
\[\psi_0 \propto \exp \left(-\frac{\rho^2}{2\ell_s^2} \right), \quad \lambda_0 = 0 \]

- Bound to black hole, width \(\sim \ell_s \) \(\Rightarrow \) Random walk near horizon
- Even though no reference to \(\ell_s \) is made in the background, the thermal scalar \(\psi_0 \) is sensitive to \(\ell_s \) (reason = T-duality)
- Predicts \(T_H = T_{\text{Hawking}} \)

Gas around black hole behaves as \(T = T_H \) gas of flat space!
Thermal scalar \textit{dominates} one-loop TD

Susskind’s picture of long string surrounding black hole horizon
Resulting thermal structure

Disclaimer: only genus 1 \Rightarrow interactions expected to be important near horizon
Energy-momentum tensor of string gas for type II superstrings

Horowitz-Polchinski '98

Microcanonical
High-energy averaged stress tensor

\[\langle T_{\mu\nu}(x) \rangle_E \approx \frac{E}{2N\beta_H^2} T_{\text{th.sc.}}^{\mu\nu}(x) \]

Canonical
Near-Hagedorn stress tensor (compact space):

\[\langle T_{\mu\nu}(x) \rangle_\beta \approx \frac{1}{2N\beta_H^2} T_{\text{th.sc.}}^{\mu\nu}(x) \frac{1}{\beta - \beta_H} \]

- Classical stress tensor evaluated on lowest eigenmode \(\psi_0 \) of thermal scalar
- Thermal scalar wavefunction determines where stress-energy is located
Example Near-Hagedorn energy density in Rindler space

Rindler space: \(\psi_0 \propto \exp \left(-\frac{\rho^2}{2\ell_s^2} \right) \)

\[\langle T^0_0 \rangle_{\text{thermal}} = \]

- Energy density located close to black hole horizon
- Negative energy density zone is present (violates weak-energy condition)

Generic feature in curved spacetime

- Consistency Check: \(E_{\text{tot}} = \partial_\beta (\beta F) \)
Conclusions

1. High-temperature string theory contains a divergence, the Hagedorn divergence, related to long string dominance. Thermal scalar is singly wound state on thermal manifold and encodes the random walk near-Hagedorn thermodynamics of the gas.

2. Random walk picture can be generalized to curved spacetimes using 1^{st} quantized string path integral methods or 2^{nd} quantized field theory methods.

3. AdS_3 contains infinitely many states becoming marginal at T_H. Thermal scalar wavefunction spreads over entire space.

4. Black hole atmosphere behaves precisely the same as the $T = T_H$ gas of flat space: long strings are present. The long string configuration is close to the event horizon.

5. Other properties such as the stress tensor of the near-Hagedorn gas can also be analyzed.
Thank you!