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String Thermodynamics in flat space

Consider a gas of (non-interacting) strings at finite temperature
(canonical ensemble):

What happens as we heat the gas?

Canonical ensemble of non-interacting strings Zβ = Tr
(
e−βH

)
exhibits maximal temperature = Hagedorn temperature TH

Reason = Exponential increase of ρ(E ) ∼ eβH E at high E
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String Thermodynamics in flat space: Random walks

For T . TH , no divergence is present yet
Near TH , string gas recombines into one (or several) highly excited
long strings Deo-Jain-Tan ’89, Bowick-Giddings ’89, Mitchell-Turok ’87

Long string behaves as random walk in space
Hagedorn divergence can be interpreted as instability towards long
string formation
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Alternative Perspective: Thermal Manifold

Alternatively: Study string theory on the thermal manifold Sathiapalan

’87, Kogan ’87, O’Brien-Tan ’87, McClain-Roth ’87, Atick-Witten ’88

Thermal manifold = Wick-rotate + periodically identify time
direction
Extra feature: winding modes possible

As T (or β) changes ⇒ masses of wound strings change
w = 1 state is called thermal scalar

I Masslessness of this state determines TH

I T > TH , state becomes tachyonic ⇒ instability of theory

I Dominates TD for T . TH (random walk)
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Motivation (1)

GOAL
Study string thermodynamics in the high-temperature regime in
curved backgrounds using the thermal manifold approach

Take gas of strings ...
... and place it on a curved background

I How does the curvature affect the Hagedorn behavior?

I Thermal scalar and its random walk interpretation?
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Motivation (2)

In particular: black hole backgrounds

Why study string thermodynamics near black hole horizons?

1. Deeper understanding of black hole horizons (Firewall
Almheiri-Marolf-Polchinski-Sully ’12)

2. Holography: Black hole horizons ⇔ deep IR of dual field
theory
Fluid properties of quark-gluon plasma ?

3. Better understanding of string thermodynamics (not
completely understood in general)
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Issues with String Thermodynamics

1. Jeans Instability
Matter clumps together (Perturbative generation of imaginary
mass of gravitons)
⇒ Restrict amount of thermal matter by using compact space
or AdS as a container Barbon-Rabinovici ’02

2. Canonical ensemble suffers from large fluctuations near βH

⇒ Use the canonical picture as a tool to obtain ρ(E )
Or study this discrepancy further

3. Hagedorn transition could be first order at a lower
temperature than TH (semi-classical tunneling) Atick-Witten ’88

⇒ We will study overheated spaces
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Set-up of the geometry

Background metric of the static form
ds2 = G00(x)dt2 + Gij (x)dx idx j

Thermal manifold
Flat space: Cylinder =⇒ Curved space: varying size

=⇒

What about black holes?

I Thermal circle pinches off

I Does the thermal scalar exist ?
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Random walks in curved backgrounds: Path integral
approach (1)

Torus string path integral reduced to particle path integral
Kruczenski-Lawrence ’06, TM-Verschelde-Zakharov ’13

Starting point = Torus path integral on the strip modular domain:

ZT2 =

∫
E

dτ2dτ1

2τ2
∆FP

∫
[DX ]

√
Ge−

1
4πα′

∫
d2σ
√

hhαβ∂αXµ∂βXνGµν(X )

Near-Hagedorn approximation:

I We consider strings that are singly wound around the
Euclidean time direction: X 0(σ, τ + 1) = X 0(σ, τ)± β
⇒ Interpretation of a free closed string performing one loop
around the thermal dimension

I Small τ2 region in strip E
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Random walks in curved backgrounds: Path integral
approach (2)

In the near-Hagedorn limit, it is found that this simplifies to

Zp = 2

∫ ∞
0

dτ2

2τ2

∫
X i (τ2)=X i (0)

[DX ]
√

detGij exp−Sp(X )

with particle action Sp:

Sp = 1
4πα′

[∫ τ2

0 dtGij∂tX
i∂tX

j + β2
∫ τ2

0 dtG00 − β2
H,flatτ2 + . . .

]
⇒ particle path integral on the spatial submanifold and can be
interpreted as a random walk of the long string
=⇒ Particle Trajectory = Spatial form of long string

Unfortunately, some corrections to the action Sp are missed (naive)
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Thermal Scalar action

Alternative perspective: field theory of the thermal scalar
(supposed to dominate near TH)

Thermal scalar field φ(x) = complex scalar field only depending on
the spatial coordinates of the manifold

Its action (non-interacting) can be obtained using T-duality and
dimensional reduction:
Sth.sc. =

∫
dV
√

Gij

√
G00

[
G ij∂iφ∂jφ

∗ − 4
α′φφ∗ + β2G00

4π2α′2φφ
∗
]

Q: α′-corrections?
A: Possibly, depends on model
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Determining Hagedorn Temperature

For T . TH , partition function is dominated by thermal scalar
=⇒ Zβ = Tr(e−βH) ≈ Zth.sc. =

∫
[Dφ] e−Sth.sc.

Determining TH :

Sth.sc. ∼
∫
dVe−2Φ

√
Gφ∗Ôφ , Ôψn = λnψn

⇒ Zth.sc. = det−1Ô ⇒ βF ≈ TrlnÔ

λ0 = 0 determines βH

ψ0 determines where random walk is localized

Link with previous random walk picture:
Schwinger proper time representation of logarithm:
ln(a) = −

∫ +∞
0

dτ2
τ2

(e−aτ2 − e−τ2)

Predicts corrections to previous random walk
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Comparison of two methods

String path integral approach
Advantages

I Intuitive geometric
derivation of random walk

Disadvantages

I On-shell backgrounds only

I Corrections to action

Field theory approach
Advantages

I Field Theory ⇒ in principle
also off-shell

I Direct control on
corrections

Disadvantages

I Interpretation on real-time
manifold obscured

Both approaches individually not ideal
⇒ Combining them gives full picture
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Application 1: thermal AdS3

Q: Does thermal scalar exist and predict TH ? ⇒ Thermal
Spectrum
Geometry:
AdS3 WZW model is group manifold ⇒ α′-exact background
ds2 = α′k

(
cosh(ρ)2dτ2 + dρ2 + sinh(ρ)2dφ2

)
τ ∼ τ + β and φ ∼ φ+ 2π

Additionally B = −iα′k sinh(ρ)2dτ ∧ dφ
Imaginary in Euclidean signature
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The (bosonic) thermal spectrum in AdS3

Spectrum on non-thermal space is known
Thermal spectrum constructed using: TM-Verschelde-Zakharov ’14

I Twisted vertex operator method

I Field theory methods

I Hamiltonian rewriting of the (known) partition function

Maldacena-Ooguri-Son ’01 Z = Tr
(
qL0−c/24q̄L̄0−c/24

)
Resulting thermal spectrum:

h =
s2 + 1/4

k − 2
− i

qpβ

4π
+

pn

2
+

kp2β2

4(2π)2
+ hint

p = Cylinder Winding , n = Cylinder Discrete momentum
w = Cigar Winding , q = Cigar Discrete momentum
Properties

I No Cigar-winding modes

I Only continuous modes (due to B), s ∼ radial momentum
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The thermal scalar in AdS3

Defining a tachyon
Genus 1 vacuum amplitude in F (for large τ2):

Z ≈
∫
F

dτ1dτ2
2τ2

∑
Hmatter

qhi−1q̄h̄i−1

where qh−1q̄h̄−1 = e2πiτ1(h−h̄)e−2πτ2(h+h̄−2)

⇒ Quantity <(h + h̄) determines convergence

Thermal tachyon: p = ±1, q ∈ Z are all marginal at

β2
H = 4π2

k

(
4− 1

k−2

)
Berkooz-Komargodski-Reichmann ’07, Lin-Matsuo-Tomino ’07

I Infinitely many states become marginal at TH

I Thermal scalar is continuous ⇒ Spreads over entire space
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Orbifolded thermal spectrum in AdS3

ZN orbifold by modding out a 2π/N rotation around cigar

Hamiltonian rewriting of Z ⇒ Appearance of discrete states
Mathematical Reason = correct analytic continuation of Poisson’s
summation formula:∑

n∈Z e inz f̂ (n)=2π
∑

k∈Z

[
f (z+2πk)+2πi

∑
pi∈P Respi

(f )δ(z−pi +2πk)
]

Resulting spectrum:

I Continuous part:

h = s2+1/4
k−2 + qw

2 + iπnw
β + kw2

4 − i qpβ
4π + pn

2 + kp2β2

4(2π)2

I Discrete part:

h = − j̃(j̃−1)
k−2 + qw

2 −
πiwn
β + kw2

4 −
iβpq
4π −

pn
2 + kp2β2

4(2π)2

where j̃= k|w|
2 −

|q|
2 ±

iπn
β −l ,l=0,1,2,..., q∈NZ, n∈Z, p∈Z and |w |≤1/2

Application: Chemical potential in AdS3
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Application 2: generic black holes

Susskind: an asymptotic observer throws in 1 string

I As it falls, the string is seen to elongate dramatically near the
black hole horizon (distance `s) Susskind ’94

I Elongation not seen by free-falling observers, only by fiducial
observers

I Two different situations with long strings: high T and near
horizon ? ⇒ Related ?
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Thermodynamics and Black holes

Susskind’s story from canonical point of view
Recall: Unruh effect (intrinsic to black holes)

I Close to the horizon, infalling QFT vacuum around the black
hole is viewed by fiducial observers as thermally populated
with temperature T = 1

2πρ where ρ ∼
√
r − rs

For r → rs , T diverges (QG effects should be important!)

Thermal gas is emergent from the black hole quantum mechanics
with T = THawking
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Thermal structure of black holes

In thermal atmosphere: Rindler approximation of metric:

ds2 = − ρ2

(4GM)2 dt
2 + dρ2 + dx2

⊥.

=⇒ Study string theory on thermal manifold = Euclidean Rindler

space: ds2 = ρ2

(4GM)2 dτ
2 + dρ2 + dx2

⊥, τ ∼ τ + 8πGM
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Results from string theory (1)

Approach: Small curvature (large k) limit of SL(2,R)/U(1) cigar
⇒ Euclidean Rindler space Giveon-Itzhaki ’13

⇒ ∃ w = 1 state in thermal spectrum
From coset construction ⇒ α′-exact thermal scalar field theory for
type II superstrings Verlinde-Verlinde-Dijkgraaf ’92

From thermal scalar FT perspective:

ds2 = ρ2

(4GM)2 dτ
2 + dρ2 + dx2

⊥

Wave operator: Ô = −∂2
ρ − 1

ρ∂ρ −
2
α′ + β2ρ2

4π2α′2(4GM)2

Spectrum (enforcing regularity at the origin and at infinity):

ψn(ρ) ∝ exp
(
− βρ2

4πα′(4GM)

)
Ln

(
βρ2

2πα′(4GM)

)
λn = β−8πGM+2βn

πα′(4GM) , n ≥ 0

With β = βHawking = 8πGM and n = 0 (lowest mode)

ψ0 ∝ exp
(
− ρ2

2`2
s

)
, λ0 = 0
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Results from string theory (2)

ψ0 ∝ exp
(
− ρ2

2`2
s

)
, λ0 = 0

I Bound to black hole, width ∼ `s ⇒ Random walk near horizon

I Even though no reference to `s is made in the background,
the thermal scalar ψ0 is sensitive to `s (reason = T-duality)

I Predicts TH = THawking

Gas around black hole behaves as T = TH gas of flat space!
Thermal scalar dominates one-loop TD

Susskind’s picture of long
string surrounding black
hole horizon
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Resulting thermal structure

Disclaimer: only genus 1 ⇒ interactions expected to be important
near horizon
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Stress Tensor (1)

Energy-momentum tensor of string gas for type II superstrings
Horowitz-Polchinski ’98

Microcanonical
High-energy averaged stress

tensor
〈Tµν(x)〉E ≈

E
2Nβ2

H
Tµν

th.sc.(x)

⇔

Canonical
Near-Hagedorn stress tensor

(compact space):
〈Tµν(x)〉β ≈

1
2Nβ2

H
Tµν

th.sc.(x) 1
β−βH

I Classical stress tensor evaluated on lowest eigenmode ψ0 of
thermal scalar

I Thermal scalar wavefunction determines where stress-energy is
located
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Stress Tensor (2)

Example Near-Hagedorn energy density in Rindler space

Rindler space: ψ0 ∝ exp
(
− ρ2

2`2
s

)

〈
T 0

0

〉
thermal

=

I Energy density located close to black hole horizon

I Negative energy density zone is present (violates weak-energy
condition)

Generic feature in curved spacetime

I Consistency Check: Etot = ∂β(βF )
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Conclusions

1. High-temperature string theory contains a divergence, the
Hagedorn divergence, related to long string dominance
Thermal scalar is singly wound state on thermal manifold and
encodes the random walk near-Hagedorn thermodynamics of
the gas

2. Random walk picture can be generalized to curved spacetimes
using 1st quantized string path integral methods or 2nd

quantized field theory methods

3. AdS3 contains infinitely many states becoming marginal at TH

Thermal scalar wavefunction spreads over entire space

4. Black hole atmosphere behaves precisely the same as the
T = TH gas of flat space: long strings are present
The long string configuration is close to the event horizon

5. Other properties such as the stress tensor of the
near-Hagedorn gas can also be analyzed
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Thank you!
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