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Planar Integrability

Motivated by AdS/CFT there has been tremendous progress in
exploring the planar limit of N = 4 super Yang-Mills theory.

Much of this progress is thanks to integrability; integrability in the
planar limit follows from considering the computation of
anomalous dimensions and noting

1 One can focus on single trace operators;

2 There is a bijection between states of a spin chain and single
trace operators;

3 The dilatation operator is the Hamiltonian of an integrable
spin chain.

Question: Is integrability present in other large N (but not planar)
limits of the theory? These limits are obtained by considering
operators with a dimension that grows parametrically with N.



Some points to consider

Single-traces mix with multi-traces so the spin chain language is
lost; is there a new description?

Not all operators are independent.

Non-planar diagrams must be summed.

Operators are in irreps of PSU(2, 2|4). Large multiplicities of irreps
from combinatorics of building gauge invariant operators from φi ,
fermions, field strengths, derivatives.

Key idea: Organizing multiple representations, summing Feynman
diagrams and constructing independent operators is achieved using
symmetries. (Symmetric group of n! permutations of n objects;
Schur-Weyl Duality between symmetric and unitary groups;
PSU(2, 2|4).)

New description is entirely in terms of permutations.



Not all operators are independent

For N = 2 and a single matrix

Tr(Z 3) = −1

2

[
Tr(Z )3 − 3Tr(Z )Tr(Z 2)

]
There are also relations for operators built using many matrices -
these are more complicated.
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Language for Multitraces: permutations

Consider a collection of n distinct N × N matrices,
(M1)ij , · · · (Mn)ij . Any multitrace structure

Tr(M1MkMl)Tr(M2)Tr(M3MmMnMp) · · ·

can be written using the permutation
σ = (1, k , l)(2)(3,m, n, p) · · · as

(M1)i1iσ(1)
(M2)i2iσ(2)

· · · (Mn)iniσ(n)
≡ Tr (σM1 ⊗M2 ⊗ · · ·Mn)

For every permutation there is a unique multitrace structure.

The language of permutations provides a convenient description
which treats all mulitrace trace structures on equal footing.



Language for Multitraces: conjugacy classes

1
2 -BPS sector: Gauge-invariant BPS operators are traces and
products of traces built using a single matrix.

n = 1 : Tr(Z )
n = 2 : Tr(Z 2); (TrZ )2

n = 3 : Tr(Z 3); Tr(Z 2)Tr(Z ); (TrZ )3

In general (bose statistics)

Tr(σZ⊗n) = Z i1
iσ(1)

Z i2
iσ(2)
· · ·Z in

iσ(n)

= Tr(σγ−1Z⊗nγ) = Tr(γσγ−1Z⊗n)

Any multitrace operator composed from k fields corresponds to a
σ ∈ Sk . Permutations in the same conjugacy class determine the
same operator.



Fourier Transform: Duality between irreps and conjugacy
classes

Characters of symmetric group are a complete set of functions on
the conjugacy classes. Comparing∑

σ∈Sn

χR(σ)χS(σ) ∝ δRS
∑
R

χR(σ)χR(ψ) ∝ δ([σ][ψ])

∫
dxe ikxe−ik

′x ∝ δ(k − k ′)

∫
dke ikxe−ikx

′ ∝ δ(x − x ′)

motivates

χR(Z ) =
∑
σ∈Sn

1

n!
χR(σ)Tr(σZ⊗n)

Tr(σZ⊗n) =
∑
R

χR(σ)χR(Z )



Schur Polynomials

χR(Z ) ∝ (PR)i1 i2 ··· inj1 j2 ··· jnZ
j1
i1
Z j2
i2
· · ·Z jn

in

χR(Z ) =
1

n!

∑
σ∈Sn

χR(σ)Tr(σZ⊗n)

R specifies an irrep of Sn. χR(σ) is the character of σ in irrep R.

χ =
1

6

[
Tr(Z )3 + 3Tr(Z )Tr(Z 2) + 2Tr(Z 3)

]
χ =

1

6

[
2Tr(Z )3 − 2Tr(Z 3)

]
χ =

1

6

[
Tr(Z )3 − 3Tr(Z )Tr(Z 2) + 2Tr(Z 3)

]
The relation between traces at N = 2 reads χ = 0.



Wick Contraction as a Permutation
From the basic Wick contraction

〈Z i
j(Z
†)k l〉 = δil δ

k
j

we find (A and B are arbitrary coefficients)

〈Ai1 i2 ··· in
j1 j2 ··· jnZ

j1
i1
Z j2
i2
· · ·Z jn

in
Bk1 k2 ··· kn
l1 l2 ··· ln (Z †)l1k1(Z †)l2k2 · · · (Z

†)lnkn 〉

=
∑
σ∈Sn

Tr(AσBσ−1)

A nice choice for A and B follow from noting that projection
operators obey [

PA, σ
]

= 0 PAPB = δABPA

Thus, choosing A and B to be projectors∑
σ∈Sn

Tr(PAσPBσ
−1) = n!δABTr(PA) = n!δABdA



Schur Polynomials

Number of Schur polynomials agrees with finite N counting. Finite
N cut off is implemented by saying R has no more than N rows.

〈χR(Z )χS(Z )†〉 = fRδRS

Tr(σZ⊗ n) =
∑
R

χR(σ)χR(Z )

(Corley, Jevicki, Ramgoolam, hep-th/0111222)



Summary

1 Each permutation gives a gauge invariant operator.

2 Bose symmetry implies permutations in same conjugacy class
give same gauge invariant operator.

3 Mathematical structure: conjugacy classes ↔ irreps of Sn.
Fourier transform to find irreps of Sn ↔ gauge invariant
operators.

4 Use Wick contraction ↔ permutation to get exact two point
function.

Output: A new basis that diagonalizes the free field two point
function.

Could consider fermions and then operators built with many
matrices, as well as move beyond tree level.



Single Adjoint Fermionic Matrix

The Grassman nature of ψ implies that the trace of an even
number of fields vanishes

Tr(ψ4) = ψi
jψ

j
kψ

k
l ψ

l
i = −ψj

kψ
i
jψ

k
l ψ

l
i = ψj

kψ
k
l ψ

i
jψ

l
i

= −ψj
kψ

k
l ψ

l
iψ

i
j = −Tr(ψ4)

In general
Tr(σγψ⊗ nγ−1) = sgn(γ)Tr(σψ⊗ n)

Previously we used characters which reflected bose symmetry as
χR(γ−1σγ) = χR(σ). We now need functions that obey

χF
R(γ−1σγ) = sgn(γ)χF

R(σ)



Single Adjoint Fermionic Matrix

The character is a trace. To construct the functions

χF
R(γ−1σγ) = sgn(γ)χF

R(σ)

modify the trace

χF
R(α) =

∑
m,m′

S
[1n]R R

m′mΓR
mm′(α)

Now take a Fourier transform

χF
R(ψ) =

∑
α∈Sn

χF
R(α)TrV⊗n(αψ⊗n)

Wick contractions are now signed permutations

〈(ψ⊗ n)IJ(ψ†⊗ n)KL 〉 =
∑
σ∈Sn

sgn(σ)σIL(σ−1)KJ



Fermionic Schur Polynomials

Number of fermionic Schur polynomials agrees with finite N
counting. Finite N cut off is implemented by saying R has no more
than N rows. Only self conjugate irreps R participate.

〈χF
R(ψ)χF

S (ψ)†〉 = fRδRS

Tr(σψ⊗ n) =
∑
R

χF
R(σ)χF

R(ψ)

(dMK, Diaz, Nokwara, arXiv:1212.5935)



Including a second matrix

Tr(σZ⊗n ⊗ Y⊗m) = Z i1
iσ(1)

Z i2
iσ(2)
· · ·Z in

iσ(n)
Y

in+1

iσ(n+1)
Y

in+2

iσ(n+2)
· · ·Y im+n

iσ(m+n)

Any multitrace operator built using n Z s and m Y s corresponds to
a σ ∈ Sn+m. Permutations related by γσ1γ

−1 = σ2 with
σ1, σ2 ∈ Sn+m and γ ∈ Sn × Sm determine the same operator.

Bose symmetry implies that we now need a set of functions that
obeys

f (γσγ−1) = f (σ) σ ∈ Sn+m γ ∈ Sn × Sm



Restricted Characters

f (γσγ−1) = f (σ) σ ∈ Sn+m γ ∈ Sn × Sm

Restricting Sn+m irrep R to Sn × Sm, we find irreps (r , s) with
multiplicity indexed by α. Modify the trace in the character by
restricting row index to the α copy of (r , s) and column index to
the β copy of (r , s) to get the restricted character χR,(r ,s)αβ(σ):∑

σ∈Sn+m

χR,(r ,s)αβ(σ)χS ,(t,u)γδ(σ) ∝ δRSδrtδsuδαγδβδ

∑
R,(r ,s)αβ

χR,(r ,s)αβ(σ)χR,(r ,s)αβ(ψ) ∝ δ([σ]r [ψ]r )

(dMK, Smolic, Smolic hep-th/0701066)



Restricted Schur Polynomials

χR,(r ,s)αβ(Z ,Y ) =
1

n!m!

∑
σ∈Sn+m

Tr(r ,s)αβ(ΓR(σ))Tr(σZ⊗n ⊗ Y⊗m)

R is an irrep of Sn+m. We can subduce the Sn × Sm irrep (r , s)
from R. α, β keep track of which copy we subduce.

χ ,( , ) = Tr(Z )Tr(Y ) + Tr(ZY )

χ
,( , )

= Tr(Z )Tr(Y )− Tr(ZY )

(Bhattacharyya, Collins, dMK, arXiv:0801.2061)



Wick Contractions are permutations

Wick contractions are again a sum over permutations

〈Z i
j(Z
†)k l〉 = δil δ

k
j = 〈Y i

j(Y
†)k l〉

〈Ai1 ··· in+m

j1 ··· jn+m
Z j1
i1
· · ·Z jn

in
Y

jn+1

in+1
· · ·Y jn+m

in+m
· · ·

· · ·Bk1 ··· kn+m

l1 ··· ln+m
(Z †)l1k1 · · · (Z

†)lnkn(Y †)
ln+1

kn+1
· · · (Y †)ln+m

kn+m
〉

=
∑

σ∈Sn×Sm

Tr(AσBσ−1)



Restricted Schur Polynomials

Number of restricted Schur polynomials agrees with finite N
counting. (Finite N cut off is implemented by saying R, r , s each
have no more than N rows.)

〈χR,(r ,s)µν(Z ,Y )χS ,(t,u)αβ(Z ,Y )†〉 = N(R, r , s)δRSδrtδsuδµαδνβ

Tr(σZ⊗ nY⊗m) =
∑

R,(r ,s)αβ

Tr(r ,s)βα(ΓR(σ))χR,(r ,s)βα(Z ,Y )

(Bhattacharyya, Collins, dMK, arXiv:0801.2061; Bhattacharyya,
dMK, Stephanou, arXiv:0805.3025)



Symmetries have provided a good way to reorganize
degrees of freedom of the matrix model so that we
(i) have a complete basis and (ii) diagonalize the
two point function.

Can the same ideas be used at loop level?



Dilatation Operator
Since we have two matrices, action of one loop dilatation operator
is non-trivial

D = −g2
YMTr

([
Z ,Y

][ d

dZ
,
d

dY

])
(Beisert, Kristjansen, Staudacher, hep-th/0303060)

DχR,(r ,s)αβ =
∑

T ,(t,u)kl

MR,(r ,s)αβ;T ,(t,u)γδχT ,(t,u)δγ

MR,(r ,s)αβ;T ,(t,u)δγ = −g2
YM

∑
R′

NR,R′,r ,s,T ,t,u

×TrR⊕T
([

ΓR(1,m+ 1),PR,(r ,s)αβ

]
IR′ T ′

[
ΓT (1,m+ 1),PT ,(t,u)δγ

]
IT ′ R′

)
.

Tr(r ,s)αβ(∗) = TrR(PR,(r ,s)αβ∗)
(De Comarmond, dMK, Jefferies, arXiv:1012.3884)



The Displaced Corners Approximation

Figure: Example of a three row Young diagram.

In the displaced corners approximation we assume that b0, b1, b2
are all of order N.

This limit simplifies the action of the symmetric group which is
responsible for a new U(p) symmetry.



A New Symmetry

χR,(r ,s)µν

R =

r =

R =

∗ ∗ ∗
∗

∗ ∗

~m = (3, 1, 2)

New symmetry leads to a further conservation law - the dilatation
operator does not mix operators with different ~m.



D in the Displaced Corners Approximation: Factorization

DχR,(r ,s)µ1µ2 = −g2
YM

∑
uν1ν2

∑
i<j

M
(ij)
sµ1µ2;uν1ν2∆ijχR,(r ,u)ν1ν2

i , j run over the rows of R.

∆ij acts only on the Young diagrams R, r and M
(ij)
sµ1µ2;uν1ν2 acts

only on the labels sµ1µ2.

(dMK, Dessein, Giataganas, Mathwin, arXiv:1108.2761)



Action of ∆13



Action of ∆12

∆12χ(b0, b1, b2) = (2N + 2b0 + 2b1 + b2)χ(b0, b1, b2)

−
√

(N + b0 + b1 + 1)(N + b0 + b1 + b2)χ(b0, b1 − 1, b2 + 2)−

−
√

(N + b0 + b1)(N + b0 + b1 + b2 + 1)χ(b0, b1 + 1, b2 − 2))

Figure: Example of labeling for a three row Young diagram.



∆ij eigenproblem
Think of ∆ij ∈ u(2) acting on states given by restricted Schur
polynomials.

Standard raising/lowering operator gives

J+|λ,Λ〉 = c+|λ+ 1,Λ〉 , c+ =
√

(Λ + λ+ 1)(Λ− λ) ,

J−|λ,Λ〉 = c−|λ− 1,Λ〉 , c− =
√

(Λ + λ)(Λ− λ+ 1) .

∆12χ(b0, b1, b2) = (2N + 2b0 + 2b1 + b2)χ(b0, b1, b2)

−
√

(N + b0 + b1 + 1)(N + b0 + b1 + b2)χ(b0, b1 − 1, b2 + 2)

−
√

(N + b0 + b1)(N + b0 + b1 + b2 + 1)χ(b0, b1 + 1, b2 − 2))

∆ij →
(
∂

∂xi
− ∂

∂xj

)2

−
(xi − xj)

2

4

xi =
ri − rp√
N + rp

(dMK, Kemp, Smith, arXiv:1111.1058)
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Y Eigenproblem: M
(ij)
sµ1µ2;uν1ν2

Diagonalization of M
(ij)
sµ1µ2;uν1ν2 means diagonalizing r(r − 1)/2

matrices simultaneously. Matrix elements are given by
Clebsch-Gordan coefficients of U(r). Can we solve this problem by
reorganizing degrees of freedom?

The operators we consider are dual to giant gravitons (one for each
row of R) with strings attached (one for each Y ).

Figure: R has 4 long rows; there are 8 Y fields



Graph as a permutation

Figure: The graph determines an element of H \ Sm1+m2+m3/H where
H = Sm1 × Sm2 × Sm3 . σ = (1)(24)(356)(7)

1

|H|2
∑

α1,α2∈H

∑
σ∈Sn

δ(α2σ
−1α1σ) =

∑
s`m

(Ms
1H

)2



Fourier transform applied to the double coset

Complete set of functions on the double coset (modify trace!!)

C s;µν(σ) =
∑
ij

√
dsΓs

ij(σ)BjµBiν

[
∼ e ikx

]
1

|H|
∑
γ∈H

Γs
ik(σ) =

∑
µ

BiµBkµ

OR,r (σ) =
∑
s,µ,ν

C s;µν(σ)χR,(r ,s)µν(Z ,Y )

DOR,r (σ) = −g2
YM

∑
i<j

nij(σ)∆ijOR,r (σ)

(dMK, Ramgoolam, arXiv:1204.2153)



Y Eigenproblem

Example: (from Young diagrams with 4 rows and 8 labeled boxes;
~m = (3, 2, 2, 1))

Figure: Example of a pictorial labeling.

DO(b0, b1, b2, b3) = −g2
YM(4∆12 + 2∆13)O(b0, b1, b2, b3)

(dMK, Dessein, Giataganas, Mathwin, arXiv:1108.2761)



Open Spring Theory

D = −g2
YM

∑
i<j

nij(σ)

[(
∂

∂xi
− ∂

∂xj

)2

−
(xi − xj)

2

4

]

∆ = ∆0 + g2
YM

∑
i

niωi = ∆0 + λ
∑
i

ni
N
ωi

Continuous spectrum at large N!
(dMK, Kemp, Smith, arXiv:1111.1058)



Higher Loops: Restrictions imposed by Symmetry

Dilatation operator commutes with R-symmetry generators.
Consider an su(2) subgroup of the su(4) R-symmetry.[

J+, J−
]

= J3,
[
J3, J±

]
= ±2J± .

When acting on the restricted Schur polynomials

J+ = Tr

(
Y

d

dZ

)
, J− = Tr

(
Z

d

dY

)
, J3 = Tr

(
Y

d

dY

)
−Tr

(
Z

d

dZ

)
From the algebra, eigenvalues of the su(2) generators are integers
⇒ they don’t pick up λ corrections



Restrictions imposed by SU(2) Symmetry Algebra

Use the explicit form for the J∓, J3. Work with two rows.

Ansatz:

DO
(n,m)
r1,j ,j3

=

p∑
a=−p

p∑
b=−p

β
(n,m)
r1,j ,j3

(a, b)O
(n,m)
r1+a,j+b,j3

Now the requirement
[
Dp, J±

]
=
[
Dp, J3

]
= 0 gives recursion

relations for the β
(n,m)
r1,j ,j3

(a, b). Also D = D†.

No unique solution:
D → κ1D + 2k01

k0 fixed by requiring lowest eigenvalue is zero. Using distant

corners approximation the form of M
(ij)
sµ1µ2;uν1ν2 is fixed to all loops.

(dMK, Graham, Messamah)



Restrictions imposed by SU(2) Symmetry Algebra: Result

To obtain restrictions on ∆ij one needs the exact form for J±. Can
be computed for small m.

DχR,(r ,s)µ1µ2 = −

(∑
n=1

cnλ
n

) ∑
uν1ν2

∑
i<j

M
(ij)
sµ1µ2;uν1ν2∆ijχR,(r ,u)ν1ν2

(dMK, Hasina-Tahiridimbisoa)



Summary

Families of operators with definite scaling dimension labeled by
permutations - giant gravitons with open strings attached.

Dilatation operator reduces to decoupled harmonic oscillators.

O~n(σ) =
∑
s,µ,ν

∑
ij

√
ds
∑
r

Γs
ij(σ)BjµBiνψHO,~n(r)χR,(r ,s)µν(Z ,Y )

χR,(r ,s)αβ(Z ,Y ) =
1

n!m!

∑
ψ∈Sn+m

Tr(r ,s)αβ(ΓR(ψ))Tr(ψZ⊗n ⊗ Y⊗m)

R ` m + n r ` n s ` m σ ∈ H \ Sm/H

∆ = ∆0 + f (λ)
∑
i

niωi

The action of the dilatation operator is tightly constrained by
symmetry.



Thanks for your attention!




