Higher Loop Non-planar Anomalous Dimensions

Robert de Mello Koch
University of the Witwatersrand

December 19, 2014

Planar Integrability

Motivated by AdS/CFT there has been tremendous progress in exploring the planar limit of $\mathcal{N}=4$ super Yang-Mills theory.

Much of this progress is thanks to integrability; integrability in the planar limit follows from considering the computation of anomalous dimensions and noting

1 One can focus on single trace operators;
2 There is a bijection between states of a spin chain and single trace operators;
3 The dilatation operator is the Hamiltonian of an integrable spin chain.

Question: Is integrability present in other large N (but not planar) limits of the theory? These limits are obtained by considering operators with a dimension that grows parametrically with N.

Some points to consider

Single-traces mix with multi-traces so the spin chain language is lost; is there a new description?

Not all operators are independent.
Non-planar diagrams must be summed.
Operators are in irreps of $\operatorname{PSU}(2,2 \mid 4)$. Large multiplicities of irreps from combinatorics of building gauge invariant operators from ϕ_{i}, fermions, field strengths, derivatives.

Key idea: Organizing multiple representations, summing Feynman diagrams and constructing independent operators is achieved using symmetries. (Symmetric group of n ! permutations of n objects; Schur-Weyl Duality between symmetric and unitary groups; $\operatorname{PSU}(2,2 \mid 4)$.)

New description is entirely in terms of permutations.

Not all operators are independent

For $N=2$ and a single matrix

$$
\operatorname{Tr}\left(Z^{3}\right)=-\frac{1}{2}\left[\operatorname{Tr}(Z)^{3}-3 \operatorname{Tr}(Z) \operatorname{Tr}\left(Z^{2}\right)\right]
$$

There are also relations for operators built using many matrices these are more complicated.

Some points to consider

Single-traces mix with multi-traces so the spin chain language is lost; is there a new description?

Not all operators are independent.
Non-planar diagrams must be summed.
Operators are in irreps of $\operatorname{PSU}(2,2 \mid 4)$. Large multiplicities of irreps from combinatorics of building gauge invariant operators from ϕ_{i}, fermions, field strengths, derivatives.

Key idea: Organizing multiple representations, summing Feynman diagrams and constructing independent operators is achieved using symmetries. (Symmetric group of n ! permutations of n objects; Schur-Weyl Duality between symmetric and unitary groups; $\operatorname{PSU}(2,2 \mid 4)$.)

New description is entirely in terms of permutations.

Language for Multitraces: permutations

Consider a collection of n distinct $N \times N$ matrices, $\left(M_{1}\right)_{j}^{i}, \cdots\left(M_{n}\right)_{j}^{i}$. Any multitrace structure

$$
\operatorname{Tr}\left(M_{1} M_{k} M_{l}\right) \operatorname{Tr}\left(M_{2}\right) \operatorname{Tr}\left(M_{3} M_{m} M_{n} M_{p}\right) \cdots
$$

can be written using the permutation

$$
\begin{aligned}
\sigma= & (1, k, I)(2)(3, m, n, p) \cdots \text { as } \\
& \left(M_{1}\right)_{i_{\sigma(1)}}^{i_{1}}\left(M_{2}\right)_{i_{\sigma(2)}}^{i_{2}} \cdots\left(M_{n}\right)_{i_{\sigma(n)}}^{i_{n}} \equiv \operatorname{Tr}\left(\sigma M_{1} \otimes M_{2} \otimes \cdots M_{n}\right)
\end{aligned}
$$

For every permutation there is a unique multitrace structure.

The language of permutations provides a convenient description which treats all mulitrace trace structures on equal footing.

Language for Multitraces: conjugacy classes

$\frac{1}{2}$-BPS sector: Gauge-invariant BPS operators are traces and products of traces built using a single matrix.
$n=1: \operatorname{Tr}(Z)$
$n=2: \operatorname{Tr}\left(Z^{2}\right) ;(\operatorname{Tr} Z)^{2}$
$n=3: \operatorname{Tr}\left(Z^{3}\right) ; \operatorname{Tr}\left(Z^{2}\right) \operatorname{Tr}(Z) ;(\operatorname{Tr} Z)^{3}$
In general (bose statistics)

$$
\begin{gathered}
\operatorname{Tr}\left(\sigma Z^{\otimes n}\right)=Z_{i_{\sigma(1)}}^{i_{1}} Z_{i_{\sigma(2)}}^{i_{2}} \cdots Z_{i_{\sigma(n)}}^{i_{n}} \\
=\operatorname{Tr}\left(\sigma \gamma^{-1} Z^{\otimes n} \gamma\right)=\operatorname{Tr}\left(\gamma \sigma \gamma^{-1} Z^{\otimes n}\right)
\end{gathered}
$$

Any multitrace operator composed from k fields corresponds to a $\sigma \in S_{k}$. Permutations in the same conjugacy class determine the same operator.

Fourier Transform: Duality between irreps and conjugacy classes

Characters of symmetric group are a complete set of functions on the conjugacy classes. Comparing

$$
\begin{array}{ll}
\sum_{\sigma \in S_{n}} \chi_{R}(\sigma) \chi_{S}(\sigma) \propto \delta_{R S} & \sum_{R} \chi_{R}(\sigma) \chi_{R}(\psi) \propto \delta([\sigma][\psi]) \\
\int d x e^{i k x} e^{-i k^{\prime} x} \propto \delta\left(k-k^{\prime}\right) & \int d k e^{i k x} e^{-i k x^{\prime}} \propto \delta\left(x-x^{\prime}\right)
\end{array}
$$

motivates

$$
\begin{gathered}
\chi_{R}(Z)=\sum_{\sigma \in S_{n}} \frac{1}{n!} \chi_{R}(\sigma) \operatorname{Tr}\left(\sigma Z^{\otimes n}\right) \\
\operatorname{Tr}\left(\sigma Z^{\otimes n}\right)=\sum_{R} \chi_{R}(\sigma) \chi_{R}(Z)
\end{gathered}
$$

Schur Polynomials

$$
\begin{aligned}
& \chi_{R}(Z) \propto\left(P_{R}\right)_{j_{1} j_{2} \cdots j_{n}}^{i_{1} i_{2} \cdots i_{n}} Z_{i_{1}}^{j_{1}} Z_{i_{2}}^{j_{2}} \cdots Z_{i_{n}}^{j_{n}} \\
& \chi_{R}(Z)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi_{R}(\sigma) \operatorname{Tr}\left(\sigma Z^{\otimes n}\right)
\end{aligned}
$$

R specifies an irrep of $S_{n} . \chi_{R}(\sigma)$ is the character of σ in irrep R.

$$
\begin{gathered}
\chi_{\square \square}=\frac{1}{6}\left[\operatorname{Tr}(Z)^{3}+3 \operatorname{Tr}(Z) \operatorname{Tr}\left(Z^{2}\right)+2 \operatorname{Tr}\left(Z^{3}\right)\right] \\
\chi_{\square}=\frac{1}{6}\left[2 \operatorname{Tr}(Z)^{3}-2 \operatorname{Tr}\left(Z^{3}\right)\right] \\
\chi_{\square}=\frac{1}{6}\left[\operatorname{Tr}(Z)^{3}-3 \operatorname{Tr}(Z) \operatorname{Tr}\left(Z^{2}\right)+2 \operatorname{Tr}\left(Z^{3}\right)\right]
\end{gathered}
$$

The relation between traces at $N=2$ reads $\chi_{\square}=0$.

Wick Contraction as a Permutation

From the basic Wick contraction

$$
\left\langle Z^{i}{ }_{j}\left(Z^{\dagger}\right)^{k} \iota\right\rangle=\delta_{l}^{i} \delta_{j}^{k}
$$

we find (A and B are arbitrary coefficients)

$$
\begin{gathered}
\left\langle A_{j_{1} j_{2} \cdots j_{n}}^{i_{1} i_{2} \cdots i_{n}} Z_{i_{1}}^{j_{1}} Z_{i_{2}}^{j_{2}} \cdots Z_{i_{n}}^{j_{n}} B_{l_{1} l_{2} \cdots I_{n}}^{k_{1} k_{2} \cdots k_{n}}\left(Z^{\dagger}\right)_{k_{1}}^{l_{1}}\left(Z^{\dagger}\right)_{k_{2}}^{l_{2}} \cdots\left(Z^{\dagger}\right)_{k_{n}}^{l_{n}}\right\rangle \\
=\sum_{\sigma \in S_{n}} \operatorname{Tr}\left(A \sigma B \sigma^{-1}\right)
\end{gathered}
$$

A nice choice for A and B follow from noting that projection operators obey

$$
\left[P_{A}, \sigma\right]=0 \quad P_{A} P_{B}=\delta_{A B} P_{A}
$$

Thus, choosing A and B to be projectors

$$
\sum_{\sigma \in S_{n}} \operatorname{Tr}\left(P_{A} \sigma P_{B} \sigma^{-1}\right)=n!\delta_{A B} \operatorname{Tr}\left(P_{A}\right)=n!\delta_{A B} d_{A}
$$

Schur Polynomials

Number of Schur polynomials agrees with finite N counting. Finite N cut off is implemented by saying R has no more than N rows.

$$
\left\langle\chi_{R}(Z) \chi_{S}(Z)^{\dagger}\right\rangle=f_{R} \delta_{R S}
$$

$$
\operatorname{Tr}\left(\sigma Z^{\otimes n}\right)=\sum_{R} \chi_{R}(\sigma) \chi_{R}(Z)
$$

(Corley, Jevicki, Ramgoolam, hep-th/0111222)

Summary

1 Each permutation gives a gauge invariant operator.
2 Bose symmetry implies permutations in same conjugacy class give same gauge invariant operator.
3 Mathematical structure: conjugacy classes \leftrightarrow irreps of S_{n}. Fourier transform to find irreps of $S_{n} \leftrightarrow$ gauge invariant operators.
4 Use Wick contraction \leftrightarrow permutation to get exact two point function.

Output: A new basis that diagonalizes the free field two point function.

Could consider fermions and then operators built with many matrices, as well as move beyond tree level.

Single Adjoint Fermionic Matrix

The Grassman nature of ψ implies that the trace of an even number of fields vanishes

$$
\begin{gathered}
\operatorname{Tr}\left(\psi^{4}\right)=\psi_{j}^{i} \psi_{k}^{j} \psi_{l}^{k} \psi_{i}^{l}=-\psi_{k}^{j} \psi_{j}^{i} \psi_{l}^{k} \psi_{i}^{l}=\psi_{k}^{j} \psi_{l}^{k} \psi_{j}^{i} \psi_{i}^{l} \\
=-\psi_{k}^{j} \psi_{l}^{k} \psi_{i}^{l} \psi_{j}^{i}=-\operatorname{Tr}\left(\psi^{4}\right)
\end{gathered}
$$

In general

$$
\operatorname{Tr}\left(\sigma \gamma \psi^{\otimes n} \gamma^{-1}\right)=\operatorname{sgn}(\gamma) \operatorname{Tr}\left(\sigma \psi^{\otimes n}\right)
$$

Previously we used characters which reflected bose symmetry as $\chi_{R}\left(\gamma^{-1} \sigma \gamma\right)=\chi_{R}(\sigma)$. We now need functions that obey

$$
\chi_{R}^{F}\left(\gamma^{-1} \sigma \gamma\right)=\operatorname{sgn}(\gamma) \chi_{R}^{F}(\sigma)
$$

Single Adjoint Fermionic Matrix

The character is a trace. To construct the functions

$$
\chi_{R}^{F}\left(\gamma^{-1} \sigma \gamma\right)=\operatorname{sgn}(\gamma) \chi_{R}^{F}(\sigma)
$$

modify the trace

$$
\chi_{R}^{F}(\alpha)=\sum_{m, m^{\prime}} S_{m^{\prime} m}^{\left[1^{n}\right] R R} \Gamma_{m m^{\prime}}^{R}(\alpha)
$$

Now take a Fourier transform

$$
\chi_{R}^{F}(\psi)=\sum_{\alpha \in S_{n}} \chi_{R}^{F}(\alpha) \operatorname{Tr}_{V \otimes n}\left(\alpha \psi^{\otimes n}\right)
$$

Wick contractions are now signed permutations

$$
\left\langle\left(\psi^{\otimes n}\right)_{J}^{\prime}\left(\psi^{\dagger \otimes n}\right)_{L}^{K}\right\rangle=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \sigma_{L}^{\prime}\left(\sigma^{-1}\right)_{J}^{K}
$$

Fermionic Schur Polynomials

Number of fermionic Schur polynomials agrees with finite N counting. Finite N cut off is implemented by saying R has no more than N rows. Only self conjugate irreps R participate.

$$
\begin{gathered}
\left\langle\chi_{R}^{F}(\psi) \chi_{S}^{F}(\psi)^{\dagger}\right\rangle=f_{R} \delta_{R S} \\
\operatorname{Tr}\left(\sigma \psi^{\otimes n}\right)=\sum_{R} \chi_{R}^{F}(\sigma) \chi_{R}^{F}(\psi)
\end{gathered}
$$

(dMK, Diaz, Nokwara, arXiv:1212.5935)

Including a second matrix

$$
\operatorname{Tr}\left(\sigma Z^{\otimes n} \otimes Y^{\otimes m}\right)=Z_{i_{\sigma(1)}}^{i_{1}} Z_{i_{\sigma(2)}}^{i_{2}} \cdots Z_{i_{\sigma(n)}}^{i_{n}} Y_{i_{\sigma(n+1)}}^{i_{n+1}} Y_{i_{\sigma(n+2)}}^{i_{n+2}} \cdots Y_{i_{\sigma(m+n)}}^{i_{m+n}}
$$

Any multitrace operator built using $n Z s$ and $m Y_{s}$ corresponds to a $\sigma \in S_{n+m}$. Permutations related by $\gamma \sigma_{1} \gamma^{-1}=\sigma_{2}$ with $\sigma_{1}, \sigma_{2} \in S_{n+m}$ and $\gamma \in S_{n} \times S_{m}$ determine the same operator.
Bose symmetry implies that we now need a set of functions that obeys

$$
f\left(\gamma \sigma \gamma^{-1}\right)=f(\sigma) \quad \sigma \in S_{n+m} \quad \gamma \in S_{n} \times S_{m}
$$

Restricted Characters

$$
f\left(\gamma \sigma \gamma^{-1}\right)=f(\sigma) \quad \sigma \in S_{n+m} \quad \gamma \in S_{n} \times S_{m}
$$

Restricting S_{n+m} irrep R to $S_{n} \times S_{m}$, we find irreps (r, s) with multiplicity indexed by α. Modify the trace in the character by restricting row index to the α copy of (r, s) and column index to the β copy of (r, s) to get the restricted character $\chi_{R,(r, s) \alpha \beta}(\sigma)$:

$$
\begin{aligned}
& \sum_{\sigma \in S_{n+m}} \chi_{R,(r, s) \alpha \beta}(\sigma) \chi_{S,(t, u) \gamma \delta}(\sigma) \propto \delta_{R S} \delta_{r t} \delta_{s u} \delta_{\alpha \gamma} \delta_{\beta \delta} \\
& \sum_{R,(r, s) \alpha \beta} \chi_{R,(r, s) \alpha \beta}(\sigma) \chi_{R,(r, s) \alpha \beta}(\psi) \propto \delta\left([\sigma]_{r}[\psi]_{r}\right)
\end{aligned}
$$

(dMK, Smolic, Smolic hep-th/0701066)

Restricted Schur Polynomials

$$
\chi_{R,(r, s) \alpha \beta}(Z, Y)=\frac{1}{n!m!} \sum_{\sigma \in S_{n+m}} \operatorname{Tr}_{(r, s) \alpha \beta}\left(\Gamma^{R}(\sigma)\right) \operatorname{Tr}\left(\sigma Z^{\otimes n} \otimes Y^{\otimes m}\right)
$$

R is an irrep of S_{n+m}. We can subduce the $S_{n} \times S_{m}$ irrep (r, s) from R. α, β keep track of which copy we subduce.

$$
\begin{gathered}
\chi_{\square \square,(\square, \square)}=\operatorname{Tr}(Z) \operatorname{Tr}(Y)+\operatorname{Tr}(Z Y) \\
\chi_{\square,(\square, \square)}=\operatorname{Tr}(Z) \operatorname{Tr}(Y)-\operatorname{Tr}(Z Y)
\end{gathered}
$$

(Bhattacharyya, Collins, dMK, arXiv:0801.2061)

Wick Contractions are permutations

Wick contractions are again a sum over permutations

$$
\left\langle Z^{i}{ }_{j}\left(Z^{\dagger}\right)^{k}{ }_{ı}\right\rangle=\delta_{1}^{i} \delta_{j}^{k}=\left\langle Y^{i}{ }_{j}\left(Y^{\dagger}\right)^{k}{ }_{\iota}\right\rangle
$$

$$
\begin{gathered}
\left\langle A_{j_{1} \cdots j_{n+m}}^{i_{1} \cdots i_{n+m}} Z_{i_{1}}^{j_{1}} \cdots Z_{i_{n}}^{j_{n}} Y_{i_{n+1}}^{j_{n+1}} \cdots Y_{i_{n+m}}^{j_{n+m}} \cdots\right. \\
\left.\cdots B_{l_{1} \cdots l_{n+m}}^{k_{1} \cdots k_{n+m}}\left(Z^{\dagger}\right)_{k_{1}}^{l_{1}} \cdots\left(Z^{\dagger}\right)_{k_{n}}^{I_{n}}\left(Y^{\dagger}\right)_{k_{n+1}}^{l_{n+1}} \cdots\left(Y^{\dagger}\right)_{\left.k_{n+m}\right\rangle}^{l_{n+m}}\right\rangle \\
=\sum_{\sigma \in S_{n} \times S_{m}} \operatorname{Tr}\left(A \sigma B \sigma^{-1}\right)
\end{gathered}
$$

Restricted Schur Polynomials

Number of restricted Schur polynomials agrees with finite N counting. (Finite N cut off is implemented by saying R, r, s each have no more than N rows.)

$$
\begin{gathered}
\left\langle\chi_{R,(r, s) \mu \nu}(Z, Y) \chi_{s,(t, u) \alpha \beta}(Z, Y)^{\dagger}\right\rangle=N(R, r, s) \delta_{R S} \delta_{r t} \delta_{s u} \delta_{\mu \alpha} \delta_{\nu \beta} \\
\operatorname{Tr}\left(\sigma Z^{\otimes n} Y^{\otimes m}\right)=\sum_{R,(r, s) \alpha \beta} \operatorname{Tr}_{(r, s) \beta \alpha}\left(\Gamma^{R}(\sigma)\right) \chi_{R,(r, s) \beta \alpha}(Z, Y)
\end{gathered}
$$

(Bhattacharyya, Collins, dMK, arXiv:0801.2061; Bhattacharyya, dMK, Stephanou, arXiv:0805.3025)

Symmetries have provided a good way to reorganize degrees of freedom of the matrix model so that we (i) have a complete basis and (ii) diagonalize the two point function.

Can the same ideas be used at loop level?

Dilatation Operator

Since we have two matrices, action of one loop dilatation operator is non-trivial

$$
D=-g_{Y M}^{2} \operatorname{Tr}\left([Z, Y]\left[\frac{d}{d Z}, \frac{d}{d Y}\right]\right)
$$

(Beisert, Kristjansen, Staudacher, hep-th/0303060)

$$
\begin{gathered}
D \chi_{R,(r, s) \alpha \beta}=\sum_{T,(t, u) k l} M_{R,(r, s) \alpha \beta ; T,(t, u) \gamma \delta} \chi_{T,(t, u) \delta \gamma} \\
M_{R,(r, s) \alpha \beta ; T,(t, u) \delta \gamma}=-g_{Y M}^{2} \sum_{R^{\prime}} N_{R, R^{\prime}, r, s, T, t, u} \\
\times \operatorname{Tr}_{R \oplus T}\left(\left[\Gamma^{R}(1, m+1), P_{R,(r, s) \alpha \beta}\right] I_{R^{\prime}} T^{\prime}\left[\Gamma^{T}(1, m+1), P_{T,(t, u) \delta \gamma}\right] I_{T^{\prime} R^{\prime}}\right) .
\end{gathered}
$$

$$
\operatorname{Tr}_{(r, s) \alpha \beta}(*)=\operatorname{Tr}_{R}\left(P_{R,(r, s) \alpha \beta} *\right)
$$

(De Comarmond, dMK, Jefferies, arXiv:1012.3884)

The Displaced Corners Approximation

Figure: Example of a three row Young diagram.

In the displaced corners approximation we assume that b_{0}, b_{1}, b_{2} are all of order N.

This limit simplifies the action of the symmetric group which is responsible for a new $U(p)$ symmetry.

A New Symmetry

$\chi_{R,(r, s) \mu \nu}$

$$
\vec{m}=(3,1,2)
$$

New symmetry leads to a further conservation law - the dilatation operator does not mix operators with different \vec{m}.

D in the Displaced Corners Approximation: Factorization

$$
D \chi_{R,(r, s) \mu_{1} \mu_{2}}=-g_{Y M}^{2} \sum_{u \nu_{1} \nu_{2}} \sum_{i<j} M_{s \mu_{1} \mu_{2} ; \mu \nu_{1} \nu_{2}}^{(i j)} \Delta_{i j} \chi_{R,(r, u) \nu_{1} \nu_{2}}
$$

i, j run over the rows of R.
$\Delta_{i j}$ acts only on the Young diagrams R, r and $M_{S \mu_{1} \mu_{2} ; \nu_{1} \nu_{2}}^{(j j)}$ acts only on the labels $s \mu_{1} \mu_{2}$.
(dMK, Dessein, Giataganas, Mathwin, arXiv:1108.2761)

Action of Δ_{13}

Action of Δ_{12}

$$
\begin{gathered}
\Delta_{12} \chi\left(b_{0}, b_{1}, b_{2}\right)=\left(2 N+2 b_{0}+2 b_{1}+b_{2}\right) \chi\left(b_{0}, b_{1}, b_{2}\right) \\
-\sqrt{\left(N+b_{0}+b_{1}+1\right)\left(N+b_{0}+b_{1}+b_{2}\right)} \chi\left(b_{0}, b_{1}-1, b_{2}+2\right)- \\
\left.-\sqrt{\left(N+b_{0}+b_{1}\right)\left(N+b_{0}+b_{1}+b_{2}+1\right)} \chi\left(b_{0}, b_{1}+1, b_{2}-2\right)\right)
\end{gathered}
$$

Figure: Example of labeling for a three row Young diagram.

$\Delta_{i j}$ eigenproblem

Think of $\Delta_{i j} \in u(2)$ acting on states given by restricted Schur polynomials.
Standard raising/lowering operator gives

$$
\begin{gathered}
J^{+}|\lambda, \Lambda\rangle=c_{+}|\lambda+1, \Lambda\rangle, \quad c_{+}=\sqrt{(\Lambda+\lambda+1)(\Lambda-\lambda)}, \\
J^{-}|\lambda, \Lambda\rangle=c_{-}|\lambda-1, \Lambda\rangle, \quad c_{-}=\sqrt{(\Lambda+\lambda)(\Lambda-\lambda+1)}, \\
\Delta_{12} \chi\left(b_{0}, b_{1}, b_{2}\right)=\left(2 N+2 b_{0}+2 b_{1}+b_{2}\right) \chi\left(b_{0}, b_{1}, b_{2}\right) \\
-\sqrt{\left(N+b_{0}+b_{1}+1\right)\left(N+b_{0}+b_{1}+b_{2}\right)} \chi\left(b_{0}, b_{1}-1, b_{2}+2\right) \\
\left.-\sqrt{\left(N+b_{0}+b_{1}\right)\left(N+b_{0}+b_{1}+b_{2}+1\right)} \chi\left(b_{0}, b_{1}+1, b_{2}-2\right)\right) \\
\Delta_{i j} \rightarrow\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right)^{2}-\frac{\left(x_{i}-x_{j}\right)^{2}}{4} \\
x_{i}=\frac{r_{i}-r_{p}}{\sqrt{N+r_{p}}}
\end{gathered}
$$

(dMK, Kemp, Smith, arXiv:1111.1058)

D in the Displaced Corners Approximation: Factorization

$$
D \chi_{R,(r, s) \mu_{1} \mu_{2}}=-g_{Y M}^{2} \sum_{u \nu_{1} \nu_{2}} \sum_{i<j} M_{s \mu_{1} \mu_{2} ; \mu \nu_{1} \nu_{2}}^{(i j)} \Delta_{i j} \chi_{R,(r, u) \nu_{1} \nu_{2}}
$$

i, j run over the rows of R.
$\Delta_{i j}$ acts only on the Young diagrams R, r and $M_{S \mu_{1} \mu_{2} ; \nu_{1} \nu_{2}}^{(j j)}$ acts only on the labels $s \mu_{1} \mu_{2}$.
(dMK, Dessein, Giataganas, Mathwin, arXiv:1108.2761)

Y Eigenproblem: $M_{s \mu_{1} \mu_{2} ; u \nu_{1} \nu_{2}}^{(i j}$

Diagonalization of $M_{s \mu_{1} \mu_{2} ; u \nu_{1} \nu_{2}}^{(i j)}$ means diagonalizing $r(r-1) / 2$ matrices simultaneously. Matrix elements are given by Clebsch-Gordan coefficients of $U(r)$. Can we solve this problem by reorganizing degrees of freedom?

The operators we consider are dual to giant gravitons (one for each row of R) with strings attached (one for each Y).

Figure: R has 4 long rows; there are $8 Y$ fields

Graph as a permutation

Figure: The graph determines an element of $H \backslash S_{m_{1}+m_{2}+m_{3}} / H$ where $H=S_{m_{1}} \times S_{m_{2}} \times S_{m_{3}} . \sigma=(1)(24)(356)(7)$

$$
\frac{1}{|H|^{2}} \sum_{\alpha_{1}, \alpha_{2} \in H} \sum_{\sigma \in S_{n}} \delta\left(\alpha_{2} \sigma^{-1} \alpha_{1} \sigma\right)=\sum_{s \vdash m}\left(M_{1_{H}}^{s}\right)^{2}
$$

Fourier transform applied to the double coset

Complete set of functions on the double coset (modify trace!!)

$$
\begin{gathered}
C^{s ; \mu \nu}(\sigma)=\sum_{i j} \sqrt{d_{s}} \Gamma_{i j}^{s}(\sigma) B_{j \mu} B_{i \nu} \quad\left[\sim e^{i k x}\right] \\
\frac{1}{|H|} \sum_{\gamma \in H} \Gamma_{i k}^{s}(\sigma)=\sum_{\mu} B_{i \mu} B_{k \mu} \\
O_{R, r}(\sigma)=\sum_{s, \mu, \nu} C^{s ; \mu \nu}(\sigma) \chi_{R,(r, s) \mu \nu}(Z, Y) \\
D O_{R, r}(\sigma)=-g_{Y M}^{2} \sum_{i<j} n_{i j}(\sigma) \Delta_{i j} O_{R, r}(\sigma)
\end{gathered}
$$

(dMK, Ramgoolam, arXiv:1204.2153)

Y Eigenproblem

Example: (from Young diagrams with 4 rows and 8 labeled boxes; $\vec{m}=(3,2,2,1))$

Figure: Example of a pictorial labeling.

$$
D O\left(b_{0}, b_{1}, b_{2}, b_{3}\right)=-g_{Y M}^{2}\left(4 \Delta_{12}+2 \Delta_{13}\right) O\left(b_{0}, b_{1}, b_{2}, b_{3}\right)
$$

(dMK, Dessein, Giataganas, Mathwin, arXiv:1108.2761)

Open Spring Theory

$$
D=-g_{Y M}^{2} \sum_{i<j} n_{i j}(\sigma)\left[\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right)^{2}-\frac{\left(x_{i}-x_{j}\right)^{2}}{4}\right]
$$

$$
\Delta=\Delta_{0}+g_{Y M}^{2} \sum_{i} n_{i} \omega_{i}=\Delta_{0}+\lambda \sum_{i} \frac{n_{i}}{N} \omega_{i}
$$

Continuous spectrum at large N ! (dMK, Kemp, Smith, arXiv:1111.1058)

Higher Loops: Restrictions imposed by Symmetry

Dilatation operator commutes with R-symmetry generators.
Consider an su(2) subgroup of the su(4) R-symmetry.

$$
\left[J_{+}, J_{-}\right]=J_{3}, \quad\left[J_{3}, J_{ \pm}\right]= \pm 2 J_{ \pm}
$$

When acting on the restricted Schur polynomials

$$
J_{+}=\operatorname{Tr}\left(Y \frac{d}{d Z}\right), J_{-}=\operatorname{Tr}\left(Z \frac{d}{d Y}\right), J_{3}=\operatorname{Tr}\left(Y \frac{d}{d Y}\right)-\operatorname{Tr}\left(Z \frac{d}{d Z}\right)
$$

From the algebra, eigenvalues of the $s u(2)$ generators are integers
\Rightarrow they don't pick up λ corrections

Restrictions imposed by $S U(2)$ Symmetry Algebra

Use the explicit form for the J_{\mp}, J_{3}. Work with two rows.
Ansatz:

$$
D O_{r_{1}, j, j}^{(n, m)}=\sum_{a=-p}^{p} \sum_{b=-p}^{p} \beta_{r_{1}, j, j 3}^{(n, m)}(a, b) O_{r_{1}+a, j+b, j^{3}}^{(n, m)}
$$

Now the requirement $\left[D_{p}, J_{ \pm}\right]=\left[D_{p}, J_{3}\right]=0$ gives recursion relations for the $\beta_{r_{1}, j, j}^{(n, m)}(a, b)$. Also $D=D^{\dagger}$.
No unique solution:

$$
D \rightarrow \kappa_{1} D+2 k_{0} \mathbf{1}
$$

k_{0} fixed by requiring lowest eigenvalue is zero. Using distant corners approximation the form of $M_{s \mu_{1} \mu_{2} ; u \nu_{1} \nu_{2}}^{(i j)}$ is fixed to all loops. (dMK, Graham, Messamah)

Restrictions imposed by $S U(2)$ Symmetry Algebra: Result

To obtain restrictions on $\Delta_{i j}$ one needs the exact form for $J_{ \pm}$. Can be computed for small m.

$$
D \chi_{R,(r, s) \mu_{1} \mu_{2}}=-\left(\sum_{n=1} c_{n} \lambda^{n}\right) \sum_{u \nu_{1} \nu_{2}} \sum_{i<j} M_{s \mu_{1} \mu_{2} ; \mu \nu_{1} \nu_{2}}^{(i j)} \Delta_{i j} \chi_{R,(r, u) \nu_{1} \nu_{2}}
$$

(dMK, Hasina-Tahiridimbisoa)

Summary

Families of operators with definite scaling dimension labeled by permutations - giant gravitons with open strings attached.

Dilatation operator reduces to decoupled harmonic oscillators.

$$
\begin{gathered}
O_{\vec{n}}(\sigma)=\sum_{s, \mu, \nu} \sum_{i j} \sqrt{d_{s}} \sum_{r} \Gamma_{i j}^{s}(\sigma) B_{j \mu} B_{i \nu} \psi_{H O, \vec{n}}(r) \chi_{R,(r, s) \mu \nu}(Z, Y) \\
\chi_{R,(r, s) \alpha \beta}(Z, Y)=\frac{1}{n!m!} \sum_{\psi \in S_{n+m}} \operatorname{Tr}_{(r, s) \alpha \beta}\left(\Gamma^{R}(\psi)\right) \operatorname{Tr}\left(\psi Z^{\otimes n} \otimes Y^{\otimes m}\right) \\
R \vdash m+n \quad r \vdash n \quad s \vdash m \quad \sigma \in H \backslash S_{m} / H \\
\Delta=\Delta_{0}+f(\lambda) \sum_{i} n_{i} \omega_{i}
\end{gathered}
$$

The action of the dilatation operator is tightly constrained by symmetry.

Thanks for your attention!

