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Outline

Why Newton-Cartan (NC) ? (-> non-relativistic space-time)
- holography,

- field theory

- gravity

What is NC (& its torsionful generalization TNC) geometry ?
- NC from gauging the Bargmann algebra

How do non-relativistic field theories couple to NC ?

What theory of gravity does one get when making TNC dynamical ?
- connection to Horava-Lifshitz gravity

Outlook



Motivation (Holography)

AdS/CFT has been very successful tool in studying strongly coupled (conformal)
relativistic systems
-> holography beyond original AdS-setup ?

* How general 1s holographic paradigm ?
(nature of quantum gravity, black hole physics, cosmology)

e Examples of potentially holographic descriptions based on non-AdS space-times:
Lifshitz, Schrédinger, warped AdS3 (Kerr/CFT), flat space-time.

' 2
- simplest example appeats to be o  di 1
Lifshitz spacetimes ds” = 2z + 2 (dr +dz )
characterized by anisotropic (non-relativistic) by A\t 2 3 A%

scaling between time and space

* introduced originally to study strongly coupled systems with critical exponent z



Motivation (Holography) cont’d

* for standard AdS setup: boundary geometry is Riemannian just like the bulk geometry

* not generic: in beyond-AdS holography bdry. geometry typically non-Riemannian

Christensen,Hartong,Rollier, NO (1311)
Hartong, Kiritsis, NO (1409)

-> need new approach: prime (simplest) example to gain traction = Lifshitz
(lessons can subsequently be applied to other cases)

Result: torsional Newton-Cartan geometry is the boundary geometry found in
large class of examples in EPD model

-> Lifshitz holography dual to field theories on TNC space-time

by making the resulting non-Riemannian geometry dynamical one gains access to
other bulk theories of gravity (than those based on Riemannian gravity)
- apply holography (e.g. HL gravity)

- interesting in their own right



Different Holographic setups

bulk: Riemannian gravity (GR) non-Riemmanian

gravity
(e.g. HL gravity)

boundary: CFT NR-FT NR-FT
with scaling with scaling

coupling to: | |

Riemannian geometry non-Riemannian



Motivation (Field Theory)

* 1n relativistic Tt very useful to couple to background (Riemannian) geometry
-> compute EM tensors, study anomalies, Ward identities, etc.

- background field methods for systems with non-relativistic (NR) symmetries require
NC geometry (with torsion)

-> there is full space-time diffeomorphism invariance when coupling to the
right background fields
- Recent examples

* Son’s approach to the effective field theory for the FQHE

* non-relativistic (INR) hydrodynamics



Motivation (Gravity)

- interesting to make NC geometry dynamical
-> “new’”’ theotries of gravity Hartong NO (1504)
&

will see: dynamical Newton-Cartan (NC) = Horava-Lifshitz (HL) gravity

: natural geometric framework with full diffeomorphism invariance
& possibly non-trivial consequences for HL gravity

such theories of gravity interesting as
- other bulk theories of gravity in holographic setups
- effective theories (cosmology)



Newton-Cartan makes Galilean local

* NC geometry originally introduced by Cartan to geometrize Newtonian gravity

m)  both Einstein’s and Newton’s theories of gravity admit geometrical formulations
which are diffeomorphism invariant

- NC originally formulated in “metric” formulation

more recently: vielbein formulation (shows underlying sym. principle better)
Andringa,Bergshoetf,Panda,de Roo

Riemannian geometry: tangent space is Poincare invariant

Newton-Cartan geometry: tangent space is Bargmann (central ext. Gal.) invariant

- gives geometrical framework and extension to include torsion
i.e. as geometry to which non-relativistic field theories can couple
(boundary geometry in holographic setup is non-dynamical)

* will next consider dynamical (torsional) Newton-Cartan



Riemannian geometry from gauging Poincare

Poincare = Lorentz + translations (space & time)

[i‘\"jab ) Pc] = 77ac]Db — 771)0P¢1 )
[4‘\[ ab 5 M cd] = nacl“fbd - T’ad*"'fbc - nbci""jad s 'T)bdi\-"f ac -

[conformal = Poincare + dilatation + special conformal]

: 1
mem) gauge Poincare: A, = Paef, + §iw'i[abw,,ab
vielbein spin connection
- adjoint action  §A, = I, A+ [A,, A] A =P, (" + %z\fabaab

- field strength- F pr = 8#-’41/ - BV-A# + [A# ,A,,]

= PuRu*(P) + 5 Mas Ry (M)



Riemannian geometry from gauging Poincare (cont’d)

* find set of trafos that replace local translations by diffeomorphisms

0A, =08A, — & F,, = LA, + 0,5+ [A, Y]
1

with A=A, +X Y= 51\%&,)\“[’ Lorentz

-> vielbein and spin connection transform accordingly

. . _ oab
Lorentz invariant:  9uv = €,€,T]ab

covariant derivative defined via vielbein postulates ->  V ,gu, = 0

R,%P)~TI7? encodes the torsion

[nv]

R, (M) Riemann curvature two-form

- setting torsion = zero gives Riemannian geometry with Levi-Civita connection
(else Riemann-Cartan geometry)

* GRisadiff invariant theory whose tangent space
invariance group is the Poincaré group

* Einstein equivalence principle -> local Lorentz invariance




Relevant non-relativistic algebras

Galilean (Galilean algebra is ¢ to infinity limit of Poincare)

i

I i

H P, Ju G, N

| /
I

Bargmann [Pa, Gy) = Nogp

[H, Gy =P,  [Pa,Gy) =0

Lifshitz

’ ) \ D,H|=2H [D,P,]=P,

H, P, Juy. D, Ga N, K(z=2)

\ J

Schrodinger ID,N]=(2-2)N

Schrodinger = Bargmann + dilatations (+ special conformal for z=2)



Gauging the Bargmann algebra

Galilean (Galilean algebra is ¢ to infinity limit of Poincare)

i

I i

[H,G] =P, [P.,Gy =0
HePanab-.Ga N

| / ﬁ

[Pa:Gb] - N(Sab

I

Bargmann

gauge Bargmann and impose curvature constraints

Ry (H) = Ruw®(P) = Ryy(N) = 0.

. b ~
independent fields: Ty, eZ’ my, hy, = €€,0a

= gauge fields of Hamiltonian, spatial translations and central charge



From Bargmann to NC
Andringa,Bergshoeff,Panda,de Roo

Newtonian gravity is a diff invariant theory whose tangent space is Bargmann

(make Bargmann local)

curvature constraints

symmetry generators | gauge field | parameters | curvatures
time translations H T ¢(z¥) R, (H)
space translations P, e,” (=) R,,°*(P)
boosts G, Wy, A%(z") R,.,%(G)

spatial rotations Jab w,®® A% (z) R, (J)
central charge transf. N my, o(z") R, (N)

Ry (H) = Ryu®(P) = Ruy(N) = 0.

a ~
leaves as independent fields: Tus €y My h,, = ¢eje,du
0r, = LT,
transforming as St = Leel+ AT, + A%, ez

omy,

Lemy, + 00 + A€y,



Newton-Cartan geometry

MIJ gauge field of central extension

time Tu

a
B space

€

NC geometry = no torsion —> Ty = Oyt

TTNC geometry = twistless torsion —» 7, = HSO

TNC geometry no condition onT,

- in TTNC: torsion measured by @y, = E{,’Ty
geometry on spatial slices is Riemannian

of Galilean algebra (Bargmann)

spatial metric:

h“,,—eecsab

notion of absolute time

preferred foliation in
equal time slices



Adding torsion to NC

Christensen,Hartong,Rollier, NO
Hartong Kiritsis,NO/Hartong,NO

- inverse vielbeins (’U“ . eg ) Bergshoeff,Hartong,Rosseel
H — um,a __ 7 _ w, b __ b
vir, = -1, vfe, =0, eht, =0, ene, =9,

can build Galilean boost-invariants o = vF — ™ M, .

hy,, = h“,, — 'ry]\/[,, — TVA/I# .
b = —’U“A/I# — %h"”]\/fyﬂ/f,, .
-introduce Stueckelberg scalar chi

M, = m, — 9,x.

(to ensure N-invariance):

|:> affine connection of TNC l(inert under G,|.N)
g, = ~#0,7, + 0 (Suhuy + Do — Ol

. . 1A
with torsion Fﬁ“’] = —50° (OuTy — OyTy)

V1, =0, VP =0, analogue of metric compatibility



torsion in NC (recent activity)

- NC introduced in problem of FQH  Son (13006)

_TNC first observed as bdry geometry Christensen,Hartong,Rollier, NO (1311)

in z=2 Lifshitz holography - Hartong,Kiritsis,NO (1409)
& generalized to large class with general z

- TTNC introduced in FQH Geracie,Son,Wu,Wu(1407))

- TNC from gauging Schr('jdinger algebra Bergshoeff,Hartong,Rosseel (1409)
- TNC from gauging Bargmann (with torsion) Hartong,NO (1504)

- coupling of non-telativistic field theories to TNC  j.4¢q (1408
(independent of holography) Hartong,Kiritsis,NO (1409)

- TNC related to warped geometry that couples to 2D WCFT

Banerjee Mitra,Mukherjee (1407) (1407)
Bekaert,Morand (1412)

- recent activity using NC/TNC in CM
(strongly-correlated electron system, FQH)

- other approaches

- (I)NC from non-rel limits



Coupling FTs to TNC

EM tensor: T+,

* action functional § — § [f;”, h.‘“’, &)] .
mass current TH

energy current (density +flux)

l / momentum current

5S ~ / 1 ze[EF 67, + P, h*, 60" + T,y B* B* o6h° + T* 5m,)]

/ \

‘ mass density
spatial stress

* important to have torsion in order to describe the most general energy current |

p h : particle number conservation (if extra local U(1))
- from the various

local symmetries: mass current= momentum current (local boosts)

symmetric spatial stress (local rotations)



Diffeomorphism and scale Ward identities

- diffeos -> on-shell WI

-~

V,T", + torsion terms + pV ,® = 0

* conserved currents Oy (eK B TV“) =(. \

for K a TNC Killing vector: extra force term

- 1f theory has scale invariance:
can use TNC analogue of dilatation connection

2€ + Tr Topatial + 2(2 — 1)) p® =0

z-deformed trace WI




intermezzo: geodesics on NC space-time

- worldline action of non-rel particle of mass m on NC background

I—'L AT
S:/dAL:T/dA po” T
2 TpZP

d2 " dz¥ dxP

* gives the geodesic equation with NC connection o T ey v —

Doy

* reduces to Newton’s law 72 + 6ijaj(b =0,

A-”[t = dt M+® .
AII E d, 1‘1 )

provided we take

for flat NC space-time: zero Newtonian potential

symmetries of flat NC = conformal Killing vectors (spanning Lifshitz) + extra




Global symmetries for non-rel FTs on flat NC

* novel phenomenon:
notion of global symmetries depends on type of matter fields (and their couplings)

two scenarios when coupling non-rel FT to TNC background
1) theory has internal local U(1) related to particle #
ii) not

one finds for non-rel. FTs on flat NC:

-> 1) mechanism that enhances Lif with:
particle # + Galilean boosts (+ special conformal)
example: Schrodinger model (+ deformations)

-> 11) no sym. enhancement (only Lif symmetry)
example: Lifshitz model

* interplay between conserved currents and space-time isometries is different
compared to relativistic case: same mechanism seen in Lifshitz holography !




Dynamical Newton-Cartan geometry

so far: (I)NC geometry was non-dynamial:
- what happens when we allow it to fluctuate ?

* whatis the theory of gravity that incorporates local Galilean symmetry ?
(Einstein equivalence principle, but applied to Galilean instead of Lorentz)

recently shown that:

* dynamical NC geometry = projectable HL gravity

* dynamical TTNC geometry = non-projectable HLL gravity

* Horava-Lifshitz gravity was originally introduced as non-Lorentz invariant
and renormalizable UV completion of gravity
- phenomenologically viable ?
- interesting theoretically as alternate bulk gravity theories
relevant to 1) holography for strongly coupled non-relativistic systems
i1) alternate theories in cosmology



NC/TTNC gravity

TNC geometry 1s a natural geometrical framework underlying HLL gravity

- NC quantities combine into: Quw = —TuTy + by

- ADM parametrization of metric used in HL. gravity:

ds® = g, dztds’ = —N2dt? + ; (dz* + N'dt) (da? + Nidt)

relation:

T, ~ lapse | iz.,,,, ~ spatial metric , m, ~ shift + Newtonian potential.

some features:

- khronon field of BPS appears naturally 7, = ¥d,T Blas,Pujolas,Sibiryakov(2010)
NC (no torsion): N = N(t) projectable HL. gravity
TTNC: N = N(t, ) non-projectable HL. gravity

- U(1) extension of HMT emerges naturally as Bargmann U(1)

- new perspective (via chi field) on nature of U(1) symmetry
Horava,Melby-Thompson(2010)



Effective actions reproduce HL

* covariant building blocks:

-~

- extrinsic cutvature:  h,,,V, 07 = —K, spatial curvature R, ,”.

- covariant detivative, torsion vector @y , inverse spatial metric h*”

- tangent space invariant integration measure e = det(7,, ey)

-> construct all terms that are relevant or marginal (up to dilatation weight d+z)

-in 2+1 dimensions for 1 < z < 2

S = / &ze [C (RPR KK py — A (R K,)?) — V]

™ kinetic terms (274 order)

potential:
—V =20+ 1M aua, + coR + 0,9 [CIO (h""a,,a,,).2 + c11h*?a,a,V, (K7 a,)
+012V,, (h-#p(l-p) V# (h”aa) + 013R2 -+ 014RV,, (h."”au) + cls’Rh""a.,,a,,]



Perspectives for HL gravity

new perspectives on HL:

- different vacuum (flat NC space-time): reexamine issues with HL gravity

- IR effective theory for non-relativistic field theories

- insights into non-relativistic quantum gravity corner of [k, G, 1/¢) cube ?

* relevance for cosmology ?

alternate theories of gravity in cosmological scenarios, effective theories for inflation

* examine TNC gravity (general torsion)
* relation with vector khronon of



TNC in NR hydro & fluid/gravity correspondence

¢ TNC of growing interest in cond-mat (str-el, mes-hall) literature

developments in Lifshitz holography can drive development of
tools to study dynamics and hydrodynamics of non-rel. systems

(in parallel to progress in the last many years in relativistic fluids and
superfluids inspired from the fluid/gravity correspondence in AdS)

TNC right ingredients to start constructing effective TNC theories
and their coupling to matter (e.g. QH-effect)

organizing principle for derivative expansion of stress tensot/mass current
(transport coefficients)
- consider boosted Lifshitz black branes & perturb



Outlook

employ similar techniques to Schrodinger, warped AdS, flat space holography
adding charge (Maxwell in the bulk)

adding other exponents (hyperscaling, matter scaling)

applications to non-rel. hydrodynamics:
fluid/gravity: black branes with zero/non-zero particle no. ? Galilean perfect fluids
flat space holography: gauging of Caroll group and ultra-relativistic gravity
NC supergravity, NC in string theory
revisit HL. gravity using TNC language/connections with NR String Theory

etfective TNC theories and their coupling to matter (e.g. QH-effect)



The end



