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Motivation

» DO
» Higgs sector of compactified A' =4 SYM on S3 x S?
Single matrix - Giant gravitons - LLM liquid droplet
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Hamiltonian and radial sector

» Hamiltonian of d = 2m hermitean matrices X; ,a=1,...,2m:
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» Complexify by introducing complex matrices:
Z1 = X1+iXo 2y = X3+iXy,etc. Label them Zy ,A=1,....m.

» Consider the matrix .

> Zizs.
A=1
Matrix is hermitean and positive definite, and its eigenvalues

pi:r-2 i:l,...,N,,OiZ(),
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have a natural interpretation as the eigenvalues of a matrix
valued radial coordinate.



Radial sector

» This sector dependa only only on the eigenvalues p;. It has an
enhanced U(N)™*! symmetry

Za— VaZaVi, A=1,... m.

» Note:
Z1Z = X} 4 X2 + i[X1, Xa]

» Measure in the innner product of two such wave functions is:
/HHdZAT,-deA,-j = /H dp; T (pi)d[Angular],
A i i

with the "angular” degrees of freedom being integrated out.



Volume element in the radial sector

J(pi) has been obtained in closed form:

J(pi) = Cu Hdp,pf" T er o7 i = py)?
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The antisymmetric product
m—1 m—1
Arm(pi) =[] i % 0% (0i = p))
i>j

generalizes the well known Van der Monde determinant
A =[];5;(pi — pj). and Cr, and Dy, are numerical constants.



Radial Laplacian

» In the radial sector the Laplacian then takes the form:
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» The Hamiltonian acts on symmetric wavefunctions ®(p;) of
the eigenvalues:

Ho(pi) = E®(p))

(_;v%?adial+v(pi)> ®(pi) = E®(pi)



"Radial” fermions

Define the anti-symmetric wavefunction W(p;) as follows:

V(pi) = Drm(pi)®(pi)

The Laplacian operator V%_ .., now acts on W(p;) as:
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However, one has the identity:
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Radial fermions - ctd

» The Hamiltonian acting on W(p;) now takes the form:
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» This is the sum of single particle d + 1 = 2m 4+ 1 dimensional
s-state hamiltonians, with an additional radial dAFF potential.
The coefficient is uniquely determined.

» This first quantized hamiltonian acts on wavefunctions which
are antisymmetric under the exchange of radial coordinates
only, hence their referral to as radial fermions.

> Generalizes single hermitean matrix. Absent when m = 1.



Conformal quantum mechanics

» The conformal quantum mechanical hamiltonian

1 q°
h==p?>+—
2P T o
has a conformal symmetry generated by h and
2 1
k= X? d =3 (xp + px),

with algebra
[d, h] = 2ih [d, k] = —2ik [h, k] = —id
» This is mapped to SO(2,1) generators:
LOZ%(H—FK) Lilzé(H—K:FiD)
with algebra
[Lo, Li1] = £Ly1;  [L-1,L1] =2Lo



Second quantized fermionic picture

> In the single matrix hamiltonian fermionic picture, in terms of
second quantized fields,

H = /dx\uT(x) (;p2 - ;:2) W(x);
K = /dwa(x)X\u(x);
D = 2/dx\UT(x)(xp+px)\U(x),

» with



AdS;

For the higher dimensional case, at the 1st quantized level
(d=2m p, = —i0,)

. 11 de (N2 —1)(d — 2)?
h(pr,r) = 5 pd—iPr’ Ypr+ 8,2
N i N r2
d(pr,r) = rpr_/E; k(prar)ZE
The conformal algebra is satisfied. With second quantized
operators

Lo vy} = 2020

one has as generators
H — /rd—lder(r)B(p,,r)W(r)
K — /rdldr\UT(r)lA((pr,r)lU(r)

D = /rd_lerT(r)E(pr,f)w(r)



More on AdS,
» Simplest way to verify this is to redefine
() =r7 (), Vi)=r7 i)

This is also the redefinition of the fields in terms of which p,
becomes explicitly hermitean. One finds:

/<:/ww W(r)

D = /dr\UT() (rpr + prr)W(r)
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B o p Ne(d —2)* -1, ~
H_./wum£+&2)wq
» The higher dimensional case has been mapped to a

one-dimensional quantum mechanical conformal hamiltionian
with

‘ =~

l\)\l—lw

¢ = {(N(d 2 - 1)

which has the required symmetry.



Density description - Collective Field Theory

» One changes variables from the original variables to the
invariant variables: X, — ¢(C).

> There is a reduction in the number of degrees of freedom. In
the large N limit, the invariant variables are independent.

> There is jacobian J associated with this change of variables
which satisfies

—(9er In NQ(C', C) = w(C) + deQ(C, C)

» The operator Q(C, C') “joins” loops, or words. One may then
write schematically Q(C, C") = > ¢cicr, with C+ '
obtained by adding the two words C and C’. Similarly, w
“splits” loops. Schematically again, w(C) = > ¢crdcn



Collective Field Theory Hamiltonian

» For an Hamiltonian
M
1 o 0

» the Collective Field Hamiltonian takes the form

1. 9  10InJ N O 10InJ
H= 3060 T 2900 M 55060 T 2900

» The leading contribution is

)+ V

H = SN(OQ(C, CON(C) + (3(OQH(C, Chl C) + V)

where
MN(C) =—i

dpc



Density description
» Qur collective field variables are defined as
b = Tre*Xa Ziza _ Z oikr? _ Z ke
i i
o) = [ dhe 0= 300 - 2) = Y60 - i)
i i
» The collective field construction is based on two operators

("joining"-Q(C, C’) and "splitting”- w(C)):

» The leading (in N) form of the collective field hamiltonian is

H' = 2M(C)Q(C, CHN(C') + (%w(C)Q_l(C, Cw(C') + V)

where

(€)= ~igo-



Some technical details
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Hamiltonian
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Contributions to effective potential

Extend to the whole line: ®(r) = 2r¢(r?) = ®(—r). One can use
the identity

[Laso({525) s | @)

Then
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Harmonic potential - L

Ve = 7:/000dr¢3(r)+,\,2(d8_2)2/ooodr [(D(r)]

r2

5 et o)

Rescale to make powers of N explicit

r—VNr &) = VNO(r) p— Nu; N(r) = N(r)/N
Vet = N*Ver  Hiin — Hiin/ N?
Large N background:

_9\2 1/2
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m = 1 Laplacian

» Xi+iXo=Z=RU , Z'=UR
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"Natural metric”

Quadratic fluctuations

¢(r) = ¢olr) + %&w; 0,N(r) = —NP(r);
Then

1 o0 2 00
Hy = 2/0 drepo(r)P?(r) + 7;/0 dréo(r)(0,)?
Metric

dr?
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ds” = ¢o(r)dt o0(0)
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