
Black Hole Microstates Vishnu Jejjala

Lecture 1

1. General relativity describes the dynamical response of spacetime to energy and, conversely, the

dynamical response of matter to the curvature of spacetime. Einstein proposed our modern

theory of classical gravity exactly one hundred years ago. Since then, the gravitational interac-

tion has been studied from sub-millimeter distances to cosmic scales, and so far, no experiment

has invalidated general relativity. One of the surprising features of the theory is that it allows

for so-called singular solutions, which are solutions where the curvature of spacetime becomes

very large. Such solutions are realized in our own Universe. Black holes are the paradigmatic

examples.

The Einstein equation is

Gµν := Rµν −
1

2
Rgµν =

8πGN
c4

Tµν . (1)

We observe the left hand side is purely geometric while the right hand side describes the matter

in the theory. Taking the trace of both sides R = −8πGN
c4

T . Plugging this in to (1), we can

equivalently write the Einstein equation as

Rµν =
8πGN
c4

(
Tµν −

1

2
Tgµν

)
. (2)

When Tµν = 0, we are in vacuum. Here, the Einstein equation is simply

Rµν = 0 . (3)

The Schwarzschild metric is the unique spherically symmetric solution to the vacuum Einstein

equation:

ds2 = −
(

1− 2GNM

rc2

)
c2dt2 +

(
1− 2GNM

rc2

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) . (4)

The Schwarzschild radius is

RS =
2GNM

c2
. (5)

The parameter M in the metric line element specifies the mass of the black hole. Note that as

M → 0, we recover the Minkowski metric. Far away from the mass M , as r →∞, we also have

the flat metric on R1,3. This property is referred to as asymptotic flatness.

2. Exercise: Consider the vacuum Einstein equation with non-zero cosmological constant Λ.

Guess a spherically symmetric Schwarzschild solution in this spacetime and show that it solves

the vacuum Einstein equations with Λ 6= 0.

The vacuum Einstein equation is

Rµν −
1

2
gµνR+

Λ

c2
gµν = 0 . (6)

In our conventions, [Λ] = [time]−2. Let us work in d spacetime dimensions. Taking the trace of

both sides

R =
2d

d− 2

Λ

c2
= constant . (7)
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We know that de sitter (anti-de Sitter) space is the maximally symmetric solution to the Einstein

equation with constant positive (respectively, negative) curvature. These are hyperboloids in

R1,d and R2,d−1, respectively:

−(X0)2 +
d∑
i=1

(Xi)2 = L2 (dS) , (8)

(X0)2 + (Xd)2 −
d−1∑
i=1

(Xi)2 = L2 (AdS) . (9)

As these are Einstein spaces,

Rµν = ±d− 1

L2
gµν =⇒ R = ±d(d− 1)

L2
=⇒ Λ = ±(d− 1)(d− 2)

2L2
. (10)

The plus sign is dS, and the minus sign is AdS. We can see that (8) is solved by

X0 =
√
L2 − r2 sinh

ct

L
, Xd =

√
L2 − r2 cosh

ct

L
, Xi = rωi , (11)

where ωi=1,...,d−1 are the angular variables on the unit sphere Sd−2 ⊂ Rd−1. In static coordinates,

the metric of de Sitter space is then induced from the metric on R1,d:

ds2 = −
(

1− r2

L2

)
c2dt2 +

(
1− r2

L2

)−1

dr2 + r2 dΩ2
d−2 . (12)

Similarly, for AdS, we have

X0 =
√
L2 + r2 sin

ct

L
, Xd =

√
L2 + r2 cos

ct

L
, Xi = rωi ,

d−1∑
i=1

ω2
i = 1 , (13)

=⇒ ds2 = −
(

1 +
r2

L2

)
c2dt2 +

(
1 +

r2

L2

)−1

dr2 + r2 dΩ2
d−2 . (14)

The spherically symmetric form of the metric is

ds2 = −f(r)c2dt2 + f(r)−1dr2 + r2 dΩ2
d−2 . (15)

For large values of L, it is difficult to distinguish dS or AdS from flat space. Thus, the natural

ansatz is

f(r) = 1∓ r2

L2
− CdGdM

rd−3c2
, (16)

where Cd is some dimension dependent numerical constant. The powers of r are determined by

the gravitational potential in d dimensions. It turns out that

Cd =
16π

(d− 2)Sd−2
, Sn−1 =

2π
n
2

Γ(n2 )
. (17)

Here, Sn is the area of a unit n-sphere. We can check that C4 = 2 as required. Verifying that

this guess is correct by plugging in to the vacuum Einstein equation is left to you.

3. We notice that two potential singularities occur in the Schwarzschild metric. These are at

r = RS , r = 0 , (18)
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corresponding to where the metric functions diverge. We determine whether these are coordinate

singularities or physical singularities by probing the behavior of curvature invariants, in which

all of the indices are contracted so that we have a basis independent scalar quantity. Since

Rµν = 0, it follows the Ricci scalar R = 0, so this is not a good invariant to test. A non-

vanishing curvature invariant turns out to be

RµνρσRµνρσ =
12R2

S

r6
. (19)

At r = RS , this is RµνρσRµνρσ = 12/R4
S , which is finite, whereas RµνρσRµνρσ blows up at

r = 0. All of the other non-trivial curvature invariants that we can write share this property. A

clever choice of coordinates removes the singularity at r = RS , whereas this is not possible for

r = 0. This is problematic because at the singularity one of the central assumptions of general

relativity, that geometry is smooth, breaks down. General relativity is a classical theory and is

not the end of physics. We have so far nowhere invoked quantum mechanics. Because general

relativity and quantum mechanics are incompatible — the former is non-renormalizable because

the coupling GN ∼ L3M−1T−2 has negative mass dimension — we need to extend both theories.

It is expected that a fully quantum mechanical description of gravitation explains the physics

at the spacetime singularities such as those we encounter in black holes and cosmology. We

will offer a scenario in string theory wherein the classical singularity of certain supersymmetric

black holes is explained as an artifact of gravitational thermodynamics.

4. Consider the equation for escape velocity in Newtonian theory:

1

2
mv2

e −
GNMm

r
= 0 =⇒ ve =

√
2GNM

r
. (20)

Now suppose that the escape velocity was the speed of light c. We have r = RS . For distances

smaller than RS even light cannot escape the attractive force of gravity.

The event horizon represents the boundary beyond which events in the interior spacetime

cannot affect an observer in the exterior spacetime. It is the point of no return. The horizon

is a null surface, meaning that normal vectors to the surface are null (they have length zero

with respect to the local Lorentzian metric). For our purposes, we define gtt = 0 as specifying

the static limit and grr = 0 as defining the horizon. These are coincident for the Schwarzschild

solution. From the metric (4), we see that

grr =

(
1− RS

r

)
=⇒ grr = 0 when r = RS . (21)

In the classical theory, the horizon at r = RS shields us from the singularity. This observation

is in accord with the cosmic censorship conjecture, which argues that naked singularities cannot

form in gravitational collapse from generic states under the dominant energy condition.

5. Birkhoff’s theorem states that (4) is the unique, spherically symmetric solution to the vacuum

Einstein equation. The metric (4) is well behaved for R > RS (exterior region) and also for

0 < r < RS (interior region). The locus R = RS is the event horizon of the Schwarzschild

black hole. It is a null surface that separates the exterior region from the interior region. At

R = RS , there is a coordinate singularity. The geometry has a genuine singularity at r = 0.
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This metric is both static and stationary. The former is a subset of the latter. For a stationary

solution, there is a Killing vector that is timelike near infinity. This Killing vector is ∂t, and we

can choose coordinates so that the metric is

ds2 = g00({xk})dt2 + 2g0i({xk})dt dxi + gij({xk})dxidxj . (22)

In particular, the metric is independent of the time coordinate. It can, however, include func-

tions of the spatial coordinates, {xk} = x1, . . . , xd−1.

For a static solution, the timelike Killing vector is orthogonal to a family of hypersurfaces. The

hypersurfaces to which the timelike Killing vector is orthogonal are defined by t = constant. We

can write the metric so that there are no off diagonal components in the metric linking space

with time:

ds2 = g00({xk})dt2 + gij({xk})dxidxj . (23)

Static spacetimes are stationary and also invariant under time reversal, which is the map t→ −t.
While the stationary metric does the same thing at every time, the static metric does nothing

at all at any time. The Kerr metric is stationary but not static:

ds2 = −
(

1− RSr

ρ2

)
c2dt2 +

ρ2

∆
dr2 + ρ2dθ2 +

(
r2 + α2 +

RSrα
2

ρ2
sin2 θ

)
sin2 θdφ2

−2RSrα sin2 θ

ρ2
c dt dφ , (24)

where

α =
J

Mc
, ρ2 = r2 + α2 cos2 θ , ∆ = r2 −RSr + α2 . (25)

The parameter J describes the angular momentum of a spinning black hole. There is a dt dφ

cross term in the metric. These are the astrophysical black holes that astronomers observe in

the sky. There are other solutions similar to Schwarzschild and Kerr with electric charges, for

example the Reissner–Nordström black hole and the Kerr–Newman black hole.

There is a no hair theorem which in four dimensions states that once the mass, electric charge,

and angular momentum are fixed, the metric of the black hole is determined uniquely in

Einstein–Maxwell theory. The horizon always has a spherical topology. In higher dimensions,

there are always black holes with horizon topology Sd−2. These are the Myers–Perry solutions,

which are the analog of the Kerr black hole. In fact, in five dimensions, these black holes can

have two independent angular momenta, J1 and J2. This is because there are bd−1
2 c orthogonal

planes of rotation in d spacetime dimensions. The no hair theorem fails in higher dimensions,

however. The gravitational self-attraction of a black ring can exactly balance the centrifugal

force so that a solution with horizon topology S2 × S1 is possible for d = 5:

Ugrav ∼ −
GdM

rd−3
, Ucent ∼

J2

M2r2
. (26)

The black ring was discovered in 2001 by Emparan and Reall.

Lecture 2

6. Black holes were studied in semiclassical gravity in the 1970s. By semiclassical we mean that

we treat the matter sector as a quantum field theory on a curved spacetime, which is a solution

to general relativity. We treat the gravitational field classically, however. In this context, it
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was realized that black holes are thermodynamic objects. The laws of black hole mechanics are

stated in analogy to the laws of ordinary thermodynamics.

The zeroth law of thermodynamics states that the temperature T at equilibrium is constant.

For a black hole, there is a quantity called surface gravity that describes the gravitational

acceleration at the surface. On Earth, this is g ≈ 9.81 m/s2. Depending upon where we are on

the Earth, which has an equatorial bulge, this figure changes slightly. Remarkably, the surface

gravity κ of a stationary black hole is constant everywhere on the horizon. This is the zeroth

law of black hole mechanics. When κ = 0, the black hole is said to be extremal ; it is

non-extremal otherwise. For the Kerr solution,

J ≤ GNM
2

c
. (27)

This inequality is saturated at extremality. When we say that the surface gravity is zero, we

mean that rotation balances gravitational attraction.

The first law of thermodynamics expresses the conservation of energy. We have a state function,

the entropy, which is a function of energy, volume, and particle number. Inverting this to write

E(S, V,N), we then have

dE =
∂E

∂S

∣∣∣∣
V,N

dS +
∂E

∂V

∣∣∣∣
S,N

dV +
∂E

∂N

∣∣∣∣
S,V

dN = T dS − P dV + µ, dN , (28)

where E is energy, T is temperature, S is entropy, P is pressure, V is volume, µ is chemical

potential, and N is particle number.

The no hair theorem for black holes explains that in Einstein–Maxwell theory, a solution with

spherical horizon topology is specified by knowing the mass M , angular momentum J , and

electric charge Q. These quantities give us the area of the event horizon:

A = 4π

2G2
NM

2

c4
− GNQ

2

4πε0c4
+

2GNM

c2

√
G2
NM

2

c4
− GNQ2

4πε0c4
− J2

M2c2

 . (29)

Inverting this, we can express the mass of a black hole as a function of area, angular momentum,

and electric charge:

M =

√
π

A

[
c4

G2
N

(
A

4π
+
GNQ

2

4πε0c4

)2

+ 4
J2

c2

] 1
2

. (30)

Differentiating, we find the first law of black hole mechanics:

dE = d(Mc2) =
κc2

8πGN
dA+ Ω dJ + Φ dQ , (31)

where the left hand side describes the differential change in the energy. On the right hand

side, Ω is the angular velocity and Φ is the electric potential. In analogy to the first law

of thermodynamics, the Hawking temperature and Bekenstein–Hawking entropy are

identified as

TH =
~κ

2πkBc
, SBH =

AkBc
3

4~GN
. (32)

This means extremal black holes have zero temperature. Sending ~ → 0, the temperature

vanishes. All classical black holes are extremal. Temperature is a semiclassical property that

we have invoked quantum mechanics to define.
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This is the first appearance of kB and ~ in our story. The kB is not mysterious — it simply

sets the units of entropy and temperature. The ~ indicates that the entropy of a black hole is

an intrinsically quantum effect. It tells us that entropy counts the quantum states of a system.

We expect the number of states is

Γ = exp

(
SBH
kB

)
⇐⇒ SBH = kB log Γ . (33)

In the general setting, we do not know what black hole statistical physics is, so the identification

of the quantum states of a black hole is still mysterious. We will explore progress on this problem

in highly symmetric settings.

The second law of thermodynamics states that entropy is a non-decreasing function in time:

∆S ≥ 0. We can imagine taking a highly entropic object of low energy and throwing it into

a black hole. What happens to the entropy of the Universe then? The weak energy condition

demands that for every timelike vector tµ,

Tµνt
µtν ≥ 0 . (34)

This implies that the density ρ ≥ 0 and the combination of density and pressure ρc2 + P ≥ 0.

As a consequence of the weak energy condition

dA

dt
≥ 0 . (35)

It is tempting then to take seriously the identification of entropy with horizon area. If we take

an ordinary thermodynamic system and throw it into a black hole, the entropy of the Universe

seemingly decreases because an external observer cannot probe behind the horizon. In order to

account for this, we must write a generalized second law of black hole mechanics so that

in any physical process

∆SBH + ∆SX ≥ 0 . (36)

Here, ∆SX is the change in the entropy of the rest of the Universe.

In ordinary thermodynamics, the entropy is an extensive state variable. It adds for independent,

non-interacting systems. If we increase the size of the system by a factor λ, the entropy S → λS

in response. The intensive quantities, temperature, pressure, etc., are independent of the system

size. According to (32), the entropy of a black hole (the logarithm of the number of states)

scales with the area of the event horizon rather than the volume contained within the event

horizon. This is a dramatic revision of the expected behavior of thermodynamic systems.

The third law of thermodynamics states that we cannot reduce the entropy of a system to its

absolute zero value at which the entropy enumerates the degeneracy of the ground state. The

analogous statement in gravity, third law of black hole mechanics is that it is not possible

to form a black hole with vanishing surface gravity in a finite number of steps without violating

energy conditions. Note that black holes can have finite area and therefore finite entropy at

zero temperature.

7. Let us contemplate the collapse process in the context of the following gedankenexperiment. In

quantum mechanics, we can always prepare a pure state. Suppose two degenerate pure states

|ψ1〉 and |ψ2〉 have the same mass M , angular momentum J , and electric charge Q. The two

states may differ in their other properties, for instance their shape and size. Let us dial the
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Newton constant to make gravity stronger. Most objects (for example, the solar system) would

become smaller as the strength of the gravitational interaction, the coupling GN , is increased.

When the mass occupies a volume smaller than 4
3πR

3
S , it collapses to a black hole. Note that

once the black hole forms, as RS ∝ GN , it becomes larger as we make gravity stronger. Again,

we see that black holes behave in a counterintuitive manner.

Both |ψ1〉 and |ψ2〉 collapse to a geometry with the same metric. According to the no hair

theorem, any black hole with the quantum numbers (M,J,Q) specifies the same spacetime. A

näıve guess is that the entropy of a black hole enumerates all the possible initial states with

the quantum numbers (M,J,Q). Entropy therefore parametrizes our ignorance about the true

initial quantum state of the system that formed the black hole in the first place.

There is a problem, however. Quantum mechanics is a unitary theory, so it must preserve

information about the initial pure state. We know that according to the Schrödinger equation:

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉 . (37)

For a time independent Hamiltonian,

|ψ(t)〉 = e−iHt/~|ψ(0)〉 . (38)

The data about the initial state cannot therefore be lost. How do we recover this information

from a black hole? For an external observer, it seems that data about the initial state has

disappeared once the black hole forms. This is the information paradox in a nutshell.

8. The vacuum in a quantum theory is dynamical. The Heisenberg uncertainty principle tells us

that

∆E∆t ≥ ~
2
. (39)

(Aharonov and Bohm tell us that we need to be careful with energy/time uncertainty relations,

but let us accept this as more or less true.) In a short time, ∆t, we can therefore have large

uncertainties in the vacuum energy. This is sufficient to pair create a particle and an antiparticle.

Let us imagine this process happens near the horizon of a black hole. Suppose the particle,

say the electron, crosses the horizon. By momentum conservation, the positron travels in the

opposite direction, toward the spatial asymptopia. From the perspective of an observer at

infinity, the black hole seems to be emitting particles and thereby shedding mass. We can

interpret this as a particle escaping quantum mechanically by tunneling through an infinite

potential barrier at the horizon. This is Hawking radiation. We obtain this by applying

quantum mechanical reasoning in a semiclassical description of the black hole geometry.

Note that the process is only sensitive to the geometry near the horizon, which is the same for

all black holes with given (M,J,Q) quantum numbers. Thus, the Hawking radiation process

does not know about any microstructure that may exist near the singularity. The temperature

of the radiation is TH , which means that extremal black holes do not radiate. The surface

gravity of the Schwarzschild solution is

κ =
c4

4GNM
. (40)

Plugging this expression into (32), we determine that

TH =
~c3

8πGNMkB
. (41)
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For the Schwarzschild solution Hawking radiation is perfect blackbody radiation emitted isotrop-

ically at this characteristic temperature (41). These numbers are typically tiny: a solar mass

black hole has a Hawking temperature of 10−8 K. This is comparable to the lowest temperatures

achieved in a laboratory.

Because the black hole is not in thermal equilibrium with its surroundings, it loses mass and

decreases in size. As the mass appears in the denominator of (41), the temperature increases as

the black hole evaporates. Light black holes are hotter than more massive black holes. A black

hole has negative specific heat. This evaporation process is depicted in Figure 1.

Figure 1: A black hole evaporates through Hawking radiation.

9. Exercise: Calculate how long it takes for a solar mass black hole to evaporate.

The surface area of the Schwarzschild black hole is

A = 4πR2
S =

16πG2
NM

2

c4
. (42)

According to the Stefan–Boltzmann law, the power emitted by the black hole is P = AσT 4
H :

P =
16πGNM

2

c4

π2k4
B

60~3c2

(
~c3

8πGNMkB

)4

=
~c6

15360πG2
NM

2
. (43)

Suppose no matter falls into the black hole during the evaporation process. Then the power is

P = −d(Mc2)

dt
=

~c6

15360πG2
NM

2
=⇒ dt = −

15360πG2
N

~c4
M2 dM . (44)

Integrating this expression, we find that the evaporation time for a black hole is∫ tev

0
dt =

15360πG2
N

~c4

∫ M0

0
dM M2

tev =
15360πG2

N

~c4

M3
0

3
=

5120πG2
NM

3
0

~c4
, (45)

where M0 is the mass of the black hole at the time it was formed. These time scales are typically

huge: a solar mass black hole takes 1057 Gyr to evaporate. By comparison, the Universe is only

13.8 Gyr old. [N.B. We cheated. The cosmic microwave background (CMB) has a temperature

T = 2.725 K. Only black holes with a present day temperature greater than this can evaporate.

Black holes at a lower temperature (such as solar mass black holes) will eventually come into

thermal equilibrium with the CMB, which acts as a heat bath, and never fully evaporate.]
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Suppose an observer at infinity very carefully collects all the Hawking radiation the black hole

emits. How does this recover the data about the initial state that formed the black hole in the

first place? This is a restatement of the information paradox. To date, there isn’t an exact

answer to this puzzle. Because we believe in the primacy of quantum mechanics, the puzzle

must have a resolution in quantum gravity. In string theory, certain dualities ensure unitarity,

but the recipe whereby the information is recovered is still to be determined. The hope is that

investigations in this direction will lead us to an understanding of the quantum states of a black

hole that explain the entropy. This is what we turn to in the next lecture.

10. The expressions above included ~ to emphasize the quantum nature of entropy. For the sake

of my sanity, we will now switch to natural units, where ~ = c = kB = 1
4πε0

= 1. In these

units [length] = [time] = [energy]−1 = [mass]−1 = [temperature]−1, [angular momentum] =

[charge] = [length]0, and [GN ] = [length]2. The four dimensional reduced Planck mass is

MP = 2.435 × 1018 GeV. (By comparison, the beam energy at LHC is 13 TeV.) This is the

ultraviolet scale at which quantum gravity effects manifest. We will assume that the string scale

is near the Planck scale.

11. Recall that the partition function in the canonical ensemble is the sum over Boltzmann factors

for each of the states:

Z =
∑
j

e−βEj =
∑
j

〈j|e−βH |j〉 = tr e−βH . (46)

Here, Ej is the energy of a state |j〉 and β is the inverse temperature, which is held fixed. Let

us compare this expression to the propagator at time τ = −iβ:

K(q′,−iβ; q, 0) = 〈q′|e−iH(−iβ)|q〉 = 〈q′|e−βH
∑
j

|j〉〈j|q〉 =
∑
j

e−βEj 〈q′|j〉〈j|q〉 . (47)

The time is imaginary due to analytic continuation. If we put q′ = q and integrate over the

position, ∫
dq K(q,−iβ; q, 0) =

∑
j

e−βEj 〈j|
∫
dq |q〉〈q|j〉 = Z . (48)

The partition function of a statistical system is the integral of the propagator evaluated at

imaginary time. The time evolution operator in quantum mechanics maps to the basic object

in statistical physics.

In quantum field theory, we can recast the previous expression as

tr e−βH =

∫
dq

∫
[DΦ] e−SE [Φ] , (49)

where Φ(β) = Φ(0) = q is the boundary condition on the field Φ. The periodicity in Euclidean

time tE is identified with the inverse temperature.

Remember that the Schwarzschild metric is

ds2 =

(
1− RS

r

)
dt2 +

(
1− RS

r

)−1

+ r2 dΩ2
2 , RS = 2GNM . (50)

Let us perform a change of coordinates z = r − RS . Assuming that z � RS yields the metric

in the near-horizon limit. In this limit, the metric at a fixed angle on S2 becomes

ds2 ≈ − z

RS
dt2 +

RS
z
dz2 (51)
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up to corrections that are O(R−1
S ). For convenience, let us define ρ2 = 4RSz and rewrite the

metric in terms of the surface gravity κ:

ds2 = −κ2ρ2dt2 + dρ2 , κ =
1

2RS
. (52)

Analytically continuing time: t 7→ −itE , we find

ds2 = κ2ρ2dt2E + dρ2 . (53)

Notice that κ tE is just an angle θ. This is the metric in polar coordinates so long as θ ∈ [0, 2π).

The Euclidean time then has periodicity

β =
2π

κ
= 8πGNM =⇒ TH =

1

8πGNM
. (54)

Lecture 3

12. The remainder of the notes are based on Mathur, hep-th/0502050.

We will consider BPS states in string theory. These saturate some bound relating charge to

mass; supersymmetric states of this type typically fall in short multiplets of the algebra. For

definiteness, let us start in critical type IIA string theory. This is a theory of closed and

oriented superstrings in ten dimensions in which left and right movers transform under separate

spacetime supersymmetries with opposite chiralities. We have F1-strings, NS5-branes, and Dp-

branes, for p even. Suppose we have a compact circle y ∼ y + 2πR. A one charge black hole

is obtained from wrapping a fundamental string about this circle. Suppose such a string has

winding number n1. The metric is

ds2 = H1(r)−1(−dt2 + dy2) +
8∑
i=1

(dxi)2 , H1(r) =

(
1 +

Q1

r6

)
= e−2φ , (55)

where r = δijx
ixj . In the limit r → 0, the dilaton behaves as follows:

φ = −1

2
log

(
1 +

Q1

r6

)
−→ −∞ . (56)

The length of the y circle goes to zero, so the horizon vanishes. From the M-theory perspective,

we interpret the fundamental string as an M2-brane wrapping y and R10. The tension in the

brane collapses the R10 cycle, and thus gs ∼ eφ goes to zero. As the F1-string has 28 oscillator

ground states, the entropy is S = log(256), which is independent of n1.

To construct a two charge black hole, let us consider the space S1 × T 4 × R5. We wrap the

F1-strings on the S1 and NS5-branes on S1 × T 4. The metric is

ds2 = H1(r)−1(−dt2 +dy2)+

4∑
a=1

(dza)2 +H5(r)

4∑
i=1

(dxi)2 , Hi(r) = 1+
Qi
r2

, e2φ =
H5

H1
,

(57)

where the za parameterize the T 4. As r → 0, the dilaton becomes

φ =
1

2
log

Q5

Q1
. (58)

The y circle still shrinks to zero size, so again the horizon vanishes.
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Let us a third charge, representing momentum along the y circle. The contribution to the

energy of np units of momentum on the compact direction is np/R, which counteracts the linear

increase in energy with the winding number. Here, the metric is

ds2 = H1(r)−1[−dt2 + dy2 +K(dt+ dy)2] +
4∑

a=1

(dza)2 +H5(r)
4∑
i=1

(dxi)2 , (59)

Hi(r) = 1 +
Qi
r2

, e2φ =
H5

H1
, K =

Qp
r2

, e2φ =
H5

H1
. (60)

We can now compute the length of the string wrapping the y circle at r = 0:

L = (2πR)

√
K

H1
≈ 2πR

√
Qp
Q1

. (61)

In the transverse directions, the metric is

H5(r)
4∑
i=1

(dxi)2 ≈ Q5(
dr2

r2
+ dΩ2

3) , (62)

which means that the area of the sphere as r → 0 is A = Q
3/2
5 S3, where S3 = 2π2. The area of

the horizon in string frame is then

AS =

[
2πR

(
Qp
Q1

) 1
2

][
2π2Q

3
2
5

] [
(2π)4V

]
, (63)

where the last factor is the volume of T 4. The Einstein metric and the string sigma model

metric differ by a dilaton dependent Weyl transformation: gEµν = e−φ/2gSµν . Thus, in Einstein

frame, the area is

A = AS
Q1

Q5
= (2π2)(2πR)((2π)4V )

√
Q1Q5Qp . (64)

Noting that

G5 =
G10

(2πR)((2π)4V )
, (65)

we have

SBH =
A

4G10
=

(2π2)(Q1Q5Qp)
1
2

4G5
. (66)

The ten dimensional Newton constant is G10 = 8π6g2
sα
′4. On dimensional grounds

Q1 =
g2
sα
′3

V
n1 , Q5 = α′n5 , Qp =

g2
sα
′4

V R2
np . (67)

Then

SBH = 2π
√
n1n5np . (68)

13. Let the y direction be x5 and the T 4 be parameterized by x6, . . . , x9. A T-duality on the x6

direction gives us a system of F1/NS5/P in type IIB. Now, performing an S-duality, we have

D1/D5/P. Through dualities, we can permute these charges.

11
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Exercise: Using T-duality and S-duality, map D1/D5/P to P/F1/NS5.

S : F1/NS5/P

T56 : P/NS5/F1

S : P/D5/D1

T6789 : P/D1/D5

S : P/F1/NS5

14. In calculating the entropy, we will need to enumerate quantum states. We can do this in two

dimensional CFTs by examining the leading term in the high temperature expansion of the

partition function. This enables us to solve certain counting problems in a large-N limit.

Let us take a step backward and examine the partitions of positive integers m. A partition is

a collection of positive integers {m1, . . . ,mk} such that
∑k

i=1mi = m. For example, {4, 7} is

one possible way of partitioning 11. The expression p(m) counts the number of partitions of m.

Let us suppose that there is a function f(q) such that the coefficients in its Taylor expansion

are p(m). What does this function look like? We write

∞∑
m=0

p(m)qm = (1 + q1 + q1+1 + q1+1+1 + . . .)(1 + q2 + q2+2 + q2+2+2 + . . .) . . .

=

∞∏
n=1

(1 + qn + q2n + . . .) (69)

=
∞∏
n=1

1

1− qn
.

Suppose we wish to extract the q5 term from the right hand side of the first expression. We

have

q1+1+1+1+1 , q1+1+1q2 , q1+1q3 , q1q2+2 , q1q4 , q2q3 , q5 . (70)

These are the seven integer partitions of 5. Thus, p(5) = 7. The final expression in (69) is the

generating function for the partitions of the integers. It was first written down by Euler, who

also proved the pentagonal number theorem:

∞∏
n=1

(1− qn) =
∞∑

k=−∞
(−1)kqgk , gk =

k(3k − 1)

2
= 0, 1, 2, 5, 7, 12, 15, . . . , (71)

where gk is the k-th generalized pentagonal number. The expression is convergent for |q| < 1,

but we can equally think of it is a formal power series. It is a special case of Jacobi’s triple

product identity. We can apply (71) to recast (69) as( ∞∑
k=−∞

(−1)kqgk

)( ∞∑
m=0

p(m)qm

)
= 1 . (72)

We can then use this result to derive a recursive expression for the number of partitions of n:

p(n) =
∞∑

k=−∞
(−1)k−1p(n− gk) . (73)

This remains the most efficient method for computing the integer partitions.
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Hardy and Ramanujan derived an asymptotic expression for p(n):

p(n) ∼ 1

4
√

3n
e
π
√

2n
3 , as n→∞ . (74)

(This was later refined by Rademacher, who found a convergent infinite series for p(n).) The

logarithm of the asymptotic expression (74) is

log p(n) ∼ π
√

2n

3
− log(4

√
3n) ∼ 2π

√
n

6
. (75)

Physicists call this the Cardy formula.

15. To compute the entropy of the F1/P bound state, we have

m2 =
(

2πRTn1 +
np
R

)2
+ 8πTNR =

(
2πRTn1 −

np
R

)2
+ 8πTNL . (76)

In order to preserve supersymmetry, only the left moving modes are turned on, so NR = 0.

Then,

m = 2πRTn1 +
np
R

, 8πT (NL − n1np) = 0 . (77)

The oscillator level NL = n1np is partitioned among 8 bosonic and 8 fermionic oscillators

corresponding to the transverse directions. The central charge is then c = 8 + 1
2 · 8 = 12. The

number of states is then given to us by the Cardy formula:

N ∼ exp

(
2π

√
c

6
NL

)
= e2

√
2π
√
n1np . (78)

To compute the entropy of the D1/D5/P bound state, let us work in the frame where we have

P/F1/NS5. Suppose there is only one NS5 brane. As the F1 string lies along the NS5, it can

only vibrate in this surface. There are four transverse oscillatory modes. The central charge is

c = 4 + 1
2 · 4 = 6, so the Cardy formula computes the entropy as

S = 2π
√
n1np . (79)

Because of duality, we know that the answer must be symmetric under interchange of n1, n5,

and np, which means

S = 2π
√
n1n5np . (80)

This matches SBH from before.

16. Lunin and Mathur then construct explicit microstate geometries. We need these geometries in a

strong coupling regime in which the black hole exists, so the previous weak coupling expressions

we have written are not good enough. Indeed, the enumeration of states we have seen earlier

is at zero coupling, but the number is protected by the BPS condition. This is essentially the

Strominger–Vafa computation of the entropy.

For the D1/D5 system, the solutions are

ds2 =

√
H

1 +K
[−(dt−Aidxi)2 + (dy+Bidx

i)2] +

√
1 +K

H
dxidxi +

√
H(1 +K)dzadza , (81)

13
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where

H−1 = 1 +
µ2Q1

µLT

∫ µLT

0

dv

|~x− µ~F (v)|2
, (82)

K =
µ2Q1

µLT

∫ µLT

0

dv (µ2Ḟ (v))2

|~x− µ~F (v)|2
, (83)

Ai = −µ
2Q1

µLT

∫ µLT

0

dv µḞi(v)

|~x− µ~F (v)|2
, (84)

dB = − ∗4 dA . (85)

I won’t explain this in detail, but it suffices to say that the functions F in the previous expressions

describe the profile of the effective string. Quantizing the vibrational modes should recover the

Bekenstein–Hawking entropy that we noted previously. The near horizon geometry of these

solutions is AdS3 × S3. By the gauge/gravity correspondence, we should be able to construct

eSBH states in CFT2 with the same macroscopic charges as the black hole. This has been done

for the D1/D5 system. The D1/D5/P system, which we have seen has a non-zero horizon area

in supergravity, is more difficult. The state of the art up to a few years ago was that the

number of explicit solutions scaled like Q
5
4 � Q

3
2 . In the past year, work by Bena, Giusto,

Russo, Shigemori, and Warner suggest that there may be superstrata solutions whose number

scale like Q
3
2 .

17. The heuristic picture is depicted in Figure 2.

Figure 2: The fuzzball picture of a black hole.

In the classical solution, the near horizon geometry is AdS3 × S3. There is a horizon and the

inner region contains a singularity. The solutions (81) in string theory are qualitatively different.

The lessons from this investigation are as follows.

• There are many horizonless configurations with the same global charges as the black hole.

Their metrics are the same up to where the horizon appears in the supergravity theory,

but differ from each other in the capped region.

• The individual microstates for which supergravity is sensible are regular solutions. They

have no horizons or singularities.

14
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• The generic state is intrinsically quantum. It doesn’t make sense to speak of geometry in

the interior region. Thus, a typical state is characteristically stringy all the way to the

effective horizon and well approximated by the black hole metric in the exterior.

• Horizons and singularities in the classical picture are effective notions in gravity that arise

from a thermodynamic averaging or coarse-graining over the individual microstates.

• There is a new scale in quantum gravity. Stringy physics manifest not at `P but at

Nα`P ∼ Rh, where N is a large number.

• Like the black hole, as the gravitational constant GN is increased, the fuzzball solutions

grow. Only string theory has geometries that behave in this manner (cf. Horowitz).

• The origin of entropy lies in the inability of a semiclassical observer to distinguish the

different stringy microstates.

• We can quantize the moduli space to find eSBH solutions.

• We can as well construct explicit states in CFT with the same charges as the black hole.

• These ideas do not depend on supersymmetry or extremality (cf. JMaRT solutions).

• Many of these notions can be made precise by studying superstars (bound states of N

giant gravitons) in AdS5 × S5. Here, the gauge theory dual is N = 4 super-Yang–Mills

theory with gauge group SU(N), a well studied and well understood superconformal field

theory.

• The AMPS firewall paradox is another argument that supports stringy physics at the

horizon scale.

• Much work remains to be done. Please join the adventure.
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