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2 to 3 Giant Graviton Interaction	



M2-brane Junction Ending on 3 M5-branes	



 

l  A study of  interaction vertices of  multi-graviton bound states, 
“giant gravitons”, both in gravity and field theory in AdS/CFT 

l  Giant graviton interactions as instantons in type IIB pp-wave 
matrix model of  Sheikh Jabbari (A gravity description) 

l  Precise agreements between gravity and CFT descriptions  
(CFT results by Corley-Jevicki-Ramgoolam, Takayanagi2) 

ü  As a technical byproduct solitons describing M2-branes ending 
on multiple M5-branes	



 IIB on AdS5 × S5	

Instantons in IIB pp-wave 
matrix model (SJ) 

(An alternative to BMN 
IIB strings on pp-wave) 

Correlators ≈ exp(- S)     

An Overview	

N = 4 SYM	

GG with J	 Schur polynomials 
of  dimension J	

m to n GG interactions	

PP-wave limit 
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l  Giant gravitons are multi-graviton states with angular 
momentum J in S5 and best described by D3-branes. 

l  Come in two varieties: (1) sphere giants, S3 D3-branes in S5 
and (2) dual (AdS) giants, S3 D3-branes in AdS5. 

l   Arguably, the most natural description of  gravitons in  
      AdS5 × S5 forming an orthogonal basis of  multi-graviton  

      states.   

 
l   Dual to Schur polynomial (multi-trace) operators in CFT. 

      (Schur poly = orthogonal basis for multi-trace operators)  



via Myers effect	

Gravitons reorganize  
themselves into a spherical 

D3-branes of  size J/N	

Gravitons with total J 
immersed in F5  	
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Sphere giants – S3 D3-branes in S5	

d⌦2
5 = cos

2 ✓d 2
+ d✓2 + sin

2 ✓d⌦2
3

GG	

GG	

Z = |Z|ei 
SYM complex scalar	

R = anti-symmetric rep 
with J ≤ N 	



AdS5

5
S

Dual (AdS) giants – S3 D3-branes in AdS5	

ds2AdS = � cosh

2 ⇢dt2 + d⇢2 + sinh

2 ⇢de⌦2
3

GG	

R = symmetric rep w/o bound on J	





GG = Schur Polynomial operator	

l  Schur polynomial is an orthogonal polynomial. 

l   Rotation in S5 with angular momentum J   
    è order J poly of  Z = |Z|eit where ψ = t 

l  Schur poly of  Z is multi-trace:	
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χR(σ) = Trσ= character of  sym group SJ  
 R = rep of  SJ classified by Young diagrams w/ J boxes	



Correlators of  Schur polynomials	

l  Tree-level exact w/o anyλ corrections 

l  The 1 to n (normalized) correlator with R = A (all 
sphere giants) is as simple as (suppressing spacetime 
dependence) 

 
l  In the pp-wave limit 	
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Instanton action 
in a gravity description	



Correlators of  Schur polynomials –cont’d	

l   The m to n (normalized) correlator with R = A (all 
sphere giants) at large N 

 
 
 
 
l  In the pp-wave limit 	

where J’1 + … + J’m = J1 + … + Jn	
Instanton action 

in a gravity description	
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Type IIB pp-wave matrix model	

l  The pp-wave limit is the geometry zooming in the 
vicinity of  the trajectory of  a particle rotating very 
fast along the equator of  S5. The angular momentum 
J ≈ N1/2 for a finite lightcone momentum p+.  

l  Type IIB string theory on the pp-wave reduces to a 
2d free massive theory (BMN). 

l  An alternative gravity/stringy description was 
proposed by Sheikh-Jabbari and dubbed the “tiny 
graviton” matrix model. 



Type IIB pp-wave matrix model – cont’d	

l  The “tiny graviton” matrix model is the low energy 
effective theory of  a D3-brane on the pp-wave: 
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The BPS-like equation	

l  The advertized instantons are solutions to the BPS-like 
equation:  

 
l  The vacua correspond to a cluster of  fuzzy S3’s: 

l  The on-shell action: 
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The BPS-like equation – cont’d	

l  The instanton action with m initial S3’s and n final S3’s 

corresponding to the m to n interaction : 
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This is the sought-after instanton action which precisely 
agrees with the CFT (antisymmetric) Schur correlators 
in the pp-wave limit! 	





BPS equation = 4d Laplace equation	

l  Remarkably, explict instanton solutions can be constructed 
in the “classical/continuum limit” (large J).  

                                                          [generalization of  Kovacs- Sato-Shimada] 
 
 
 
 

l  After change of  variables 
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BPS equation = 4d Laplace equation – cont’d	

l  The solutions to the continuum BPS equation represent 
3d surfaces in 4d parametrized byσa evolving in time s. 

l   The surfaces at a constant time slice 

      which can be interpreted as an electrostatic potential   
      with a uniform electric flux density 
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Electrostatic potential and giants 	

l  The Coulomb potential is obviously a solution: 

     which implies Q at s = +∞ is the S3 radius of  the initial 
     GGs whereas Q at s = 0 is the S3 radius of  the final  
     GGs.  

e�2µt = s =
Q
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ü   The charge source = giant at t = - ∞ 

ü   The asymptotic infinity = giant at t = +∞ 	

This sets the boundary conditions	



Riemann space  
(higher dim generalization of  Riemann surface)	
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The m to n giant graviton interaction	
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The coordinate system (bipolar)	
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Electrostatic potential in 4d Riemann space	

Coulomb potential           = 	
1

R2

l  The Coulomb potential corresponds to placing a point 
charge on every single Riemann sheet at the same 
location. 

l  A single charge potential can be distilled by a contour 
integral trick: 
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Electrostatic potential in 4d Riemann space	

= 	

l  By deforming the contour the Coulomb potential is 
expressed as the sum of  potentials in each sheet: 
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Electrostatic potential generated by 
a single charge on the 2nd sheet. 	



The m to n GG interaction in equation	

l  The electrostatic potential of  a single charge in the n-
sheeted Riemann space 

l  The electrostatic potential corresponding to the m to n 
GG interaction 
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2 to 3 Giant Graviton Interaction	



1 to 2 Giant Graviton Interaction	



2 to 4 Giant Graviton Interaction	





The Basu-Harvey equation	

l  The BPS equation is identical to the Basu-Harvey eq. 
which was proposed to describe M2-branes ending on 
M5-branes.  

l  Applying out technique in the continuum limit, we can 
construct generic M2 ending on M5 in a surprisingly 
simple manner. 

l  A key is the boundary conditions which are quite 
different from the GG case. 

Near each M5-brane	
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M5	

M5	

An infinite number of  M2-branes 
expanded into a squashed sphere 
& stretched between M5s  	

The funnel 
M2-branes stretched between 2 M5-branes	
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M2-branes junctions ending on multiple M5-branes	

Filled with “constant”  
electrostatic potential 
w/o charge sources	

1st M5	

2nd M5	

3rd M5	

N-th M5	



M2’s ending on M5’s in equation	

l  Somewhat surprisingly, the constant electrostatic potential 
can be distilled to a sum of  nontrivial potentials. 
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M2’s ending on M5’s in equation – cont’d	
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l  Multiple M5-branes located at s = sk and connected by a 
bundle of  M2-branes:  

which is the electrostatic 
potential corresponding to	



M2-brane junction ending on 3 M5-branes	

M5	

M5	

M5	An infinite number of  M2-branes 
expanded into a squashed sphere 
& forming a 3-pronged junction  	



l  Good chance to make progress in the construction 
of  the multiple M5-theory, the non-abelian (2,0) 
CFT6, from the BLG theory  

 
 
l  Interesting to explore possible connection of  3 M2-

brane junction to SYK-like tensor models?	




