Giant Graviton Interactions in the PP-wave Limit

(8th Joburg Workshop on String Theory, March 2017)

Shinji Hirano

(University of the Witwatersrand, MITP)

In preparation with Yuki Sato (Chulalongkorn University)

Main Results

2 to 3 Giant Graviton Interaction

M2-brane Junction Ending on 3 M5-branes

This talk

- A study of interaction vertices of multi-graviton bound states, "giant gravitons", both in gravity and field theory in AdS/CFT
- Giant graviton interactions as instantons in type IIB pp-wave matrix model of Sheikh Jabbari (A gravity description)
- Precise agreements between gravity and CFT descriptions (CFT results by Corley-Jevicki-Ramgoolam, Takayanagi²)
- As a technical byproduct solitons describing M2-branes ending on multiple M5-branes

An Overview

IIB on
$$AdS_5 \times S^5$$

GG with J

m to *n* GG interactions

$$N = 4 \text{ SYM}$$

Schur polynomials of dimension *J*

$$\langle \prod_{i=1}^{m} \mathcal{O}_{J_i}(Z) \prod_{k=1}^{n} \mathcal{O}_{J'_k}(\bar{Z}) \rangle$$

PP-wave limit

$$J \sim \mathcal{O}(\sqrt{N}) \& J^2/N \gg 1$$

Instantons in IIB pp-wave matrix model (SJ)
(An alternative to BMN IIB strings on pp-wave)

Correlators $\approx \exp(-S)$

$$S = \frac{1}{4N} \left(\sum_{k=1}^{n} J_k^{2} - \sum_{i=1}^{m} J_i^2 \right)$$

Giant Gravitons

- Giant gravitons are multi-graviton states with angular momentum J in S^5 and best described by D3-branes.
- Come in two varieties: (1) sphere giants, S^3 D3-branes in S^5 and (2) dual (AdS) giants, S^3 D3-branes in AdS₅.
- Arguably, the most natural description of gravitons in $AdS_5 \times S^5$ forming an orthogonal basis of multi-graviton states.
- Dual to Schur polynomial (multi-trace) operators in CFT.
 (Schur poly = orthogonal basis for multi-trace operators)

Gravitons with total J immersed in F_5

Gravitons reorganize themselves into a spherical D3-branes of size *J/N*

$$\mathcal{O}'_J \sim \mathcal{O}_J + \mathcal{O}_{J-J'}\mathcal{O}_{J'} + \dots + (\mathcal{O}_1)^J$$
 $\mathcal{O}_J \equiv \operatorname{Tr} Z^J$

$$\mathcal{O}_{J}^{R} = \frac{1}{J!} \sum_{\sigma \in S_{J}} \chi_{R}(\sigma) \sum_{i=1}^{N} Z_{i_{\sigma(1)}}^{i_{1}} \cdots Z_{i_{\sigma(J)}}^{i_{J}}$$

Sphere giants – S^3 D3-branes in S^5

Dual (AdS) giants – S^3 D3-branes in AdS⁵

Giant graviton interaction vertices in CFT

(CFT Schur correlators)

GG = Schur Polynomial operator

- Schur polynomial is an orthogonal polynomial.
- Rotation in S^5 with angular momentum J• order J poly of $Z = |Z| e^{it}$ where $\psi = t$
- Schur poly of *Z* is multi-trace:

$$\chi_R(Z) = \frac{1}{J!} \sum_{\sigma \in S_J} \chi_R(\sigma) \sum_{i_1, i_2, \dots, i_J = 1}^{N} Z_{i_{\sigma(1)}}^{i_1} Z_{i_{\sigma(2)}}^{i_2} \dots Z_{i_{\sigma(J)}}^{i_J}$$

 $\chi_R(\sigma) = \text{Tr } \sigma = \text{character of sym group } S_J$ $R = \text{rep of } S_J \text{ classified by Young diagrams w/ } J \text{ boxes}$

Correlators of Schur polynomials

- Tree-level exact w/o any λ corrections
- The 1 to n (normalized) correlator with R = A (all sphere giants) is as simple as (suppressing spacetime dependence)

$$\frac{\left\langle \prod_{i=1}^{n} \chi_{A_{J_i}}(Z) \chi_{A_J}(\bar{Z}) \right\rangle}{\prod_{i=1}^{n+1} ||\chi_{A_{J_i}}(Z)||} = \sqrt{\frac{(N-J_1)!(N-J_2)!\cdots(N-J_n)!}{(N-J)!(N!)^{n-1}}}$$

where
$$J_1 + \ldots + J_n = J$$
 and $J_{n+1} = J$

• In the pp-wave limit

Instanton action in a gravity description

RHS
$$\rightarrow e^{-\frac{1}{4N}(J^2 - \sum_{i=1}^n J_i^2)}$$

Correlators of Schur polynomials –cont'd

• The m to n (normalized) correlator with R = A (all sphere giants) at large N

$$\begin{split} \frac{\langle \prod_{i=1}^{n} \chi_{A_{J_{i}}}(Z) \prod_{k=1}^{m} \chi_{A_{J'_{k}}}(\bar{Z}) \rangle}{\prod_{i=1}^{n} ||\chi_{A_{J_{i}}}(Z)|| \prod_{k=1}^{m} ||\chi_{A_{J'_{k}}}(\bar{Z})||} \\ &\simeq \sqrt{\frac{(N-J'_{1})!(N-J'_{2})! \cdots (N-J_{n})!}{(N!)^{n+m}}} \prod_{k=1}^{n} \frac{(N+k-1)!}{(N-J_{k}+k-1)!} \end{split}$$

where
$$J'_{1} + ... + J'_{m} = J_{1} + ... + J_{n}$$

• In the pp-wave limit

Instanton action in a gravity description

RHS
$$\rightarrow e^{-\frac{1}{4N}(\sum_{k=1}^{n} J_k^2 - \sum_{i=1}^{m} (J_i')^2)}$$

Giant graviton interaction vertices in gravity

(Instantons in type IIB pp-wave MM)

Type IIB pp-wave matrix model

- The pp-wave limit is the geometry zooming in the vicinity of the trajectory of a particle rotating very fast along the equator of S^5 . The angular momentum $J \approx N^{1/2}$ for a finite lightcone momentum p^+ .
- Type IIB string theory on the pp-wave reduces to a 2d free massive theory (BMN).
- An alternative gravity/stringy description was proposed by Sheikh-Jabbari and dubbed the "tiny graviton" matrix model.

Type IIB pp-wave matrix model – cont'd

• The "tiny graviton" matrix model is the low energy effective theory of a D3-brane on the pp-wave:

$$L_{B} = \frac{1}{R} \operatorname{Tr} \left[\frac{1}{2} \left(\frac{dX^{I}}{dt} \right)^{2} - \frac{1}{2} \mu^{2} X_{I}^{2} - \frac{R^{2}}{12g_{s}^{2}} \left[X^{I}, X^{J}, X^{K}, \Upsilon_{5} \right]^{2} + \frac{\mu R}{6g_{s}} \left(\epsilon^{ijkl} X^{i} \left[X^{j}, X^{k}, X^{l}, \Upsilon_{5} \right] + \epsilon^{abcd} X^{a} \left[X^{b}, X^{c}, X^{d}, \Upsilon_{5} \right] \right) \right]$$

 $(in A_0 = 0 \text{ gauge } \& \text{ only the bosonic part shown})$

$$I=1,2,...,8;$$
 $i=1,2,3,4$ (AdS₅ part), $a=5,6,7,8$ (S⁵ part)
 $\mu=\max$ parameter = 5-form flux
 $X-\approx X-+2\pi R$
 $\Upsilon_5\approx "\gamma_5"$

♦"Quantization"

$$\left\{ X^I, X^J, X^K \right\}_{\mathrm{NB}} \equiv \epsilon^{\alpha\beta\gamma} \frac{\partial X^I}{\partial \sigma^\alpha} \frac{\partial X^J}{\partial \sigma^\beta} \frac{\partial X^K}{\partial \sigma^\gamma} \rightarrow -iJ \left[X^I, X^J, X^K, \Upsilon_5 \right]$$
 Nambu bracket 4-Lie bracket of $\textit{U(J)}$ matrices

The BPS-like equation

• The advertized instantons are solutions to the BPS-like equation:

$$\frac{dX^{i}}{dt} \pm \mu X_{i} \pm \frac{iR}{3!g_{s}} \epsilon^{ijkl} \left[X^{j}, X^{k}, X^{l}, \Upsilon_{5} \right] = 0$$

(i = 5,6,7,8 & Gauss constraint automatically satisfied)

• The vacua correspond to a cluster of fuzzy S^3 's:

$$X_i = \text{diag}("\gamma_i^{(1)}", \cdots, "\gamma_i^{(k)}") \quad \dot{X}_i = 0$$

• The on-shell action:

$$S_E = \mp \frac{1}{2R} \int_{-\infty}^{+\infty} dt \operatorname{Tr} \frac{d}{dt} \left(\mu X_i^2 + \frac{2iR}{4!g_s} \epsilon^{ijkl} X^i \left[X^j, X^k, X^l, \Upsilon_5 \right] \right)$$

The BPS-like equation – cont'd

• The instanton action with m initial S^3 's and n final S^3 's corresponding to the m to n interaction :

$$S_E = -\frac{\mu}{4R} \sum_{i=1}^4 \text{Tr}_{J \times J} \left[X_i (+\infty)^2 - X_i (-\infty)^2 \right] = \frac{1}{4N} \left(\sum_{k=1}^n J_k^2 - \sum_{i=1}^m (J_i')^2 \right)$$

This is the sought-after instanton action which precisely agrees with the CFT (antisymmetric) Schur correlators in the pp-wave limit!

Construction of instantons

BPS equation = 4d Laplace equation

(Poisson's equation)

• Remarkably, explict instanton solutions can be constructed in the "classical/continuum limit" (large *J*).

[generalization of Kovacs- Sato-Shimada]

$$-iJ\left[X^{I},X^{J},X^{K},\Upsilon_{5}\right] \rightarrow \left\{X^{I},X^{J},X^{K}\right\}_{\mathrm{NB}}$$

After change of variables

$$\frac{\partial z^{i}}{\partial s} = -\frac{2\pi^{2}}{J} \epsilon^{ijkl} \frac{\partial z^{j}}{\partial \sigma_{1}} \frac{\partial z^{k}}{\partial \sigma_{2}} \frac{\partial z^{l}}{\partial \sigma_{3}}$$

where
$$z^i = \sqrt{\frac{R}{4\pi^2 \mu g_s}} e^{\mu t} X^i$$
 and $s = e^{-2\mu t}$

BPS equation = 4d Laplace equation – cont'd (Poisson's equation)

- The solutions to the continuum BPS equation represent 3d surfaces in 4d parametrized by σ_a evolving in time s.
- The surfaces at a constant time slice

$$s = s(z_1, z_2, z_3, z_4)$$

which can be interpreted as an electrostatic potential with a uniform electric flux density

$$d\sigma_1 \wedge d\sigma_2 \wedge \sigma_3 = -\frac{2\pi^2}{J} \frac{\partial s}{\partial z_i} \epsilon^{ijkl} dz^j \wedge dz^k \wedge dz^l = -\frac{2\pi^2}{J} \vec{\nabla} s \cdot d\vec{A}$$

Electrostatic potential and giants

• The Coulomb potential is obviously a solution:

$$e^{-2\mu t} = s = \frac{Q}{|\vec{z} - \vec{z}_0|^2} = \frac{cQe^{-2\mu t}}{|\vec{X} - \vec{X}_0|^2}$$

which implies Q at $s = +\infty$ is the S^3 radius of the initial GGs whereas Q at s = 0 is the S^3 radius of the final GGs.

- ✓ The charge source = giant at $t = -\infty$
- ✓ The asymptotic infinity = giant at $t = +\infty$

This sets the boundary conditions

Riemann space (higher dim generalization of Riemann surface)

The *m* to *n* giant graviton interaction

The coordinate system (bipolar)

$$(\xi, \eta) = \frac{a}{\cosh \rho - \cos \theta} (\sinh \rho, \sin \theta)$$

where
$$\rho = \ln(r/r')$$

$$\begin{cases} z_1 = \eta \\ z_2 = \xi \cos \phi \\ z_3 = \xi \sin \phi \cos \omega \\ z_4 = \xi \sin \phi \sin \omega \end{cases}$$

1st sheet $-\pi \le \theta \le \pi$ 2nd sheet $\pi \le \theta \le 3\pi$ \vdots

Electrostatic potential in 4d Riemann space

• The Coulomb potential corresponds to placing a point charge on every single Riemann sheet at the same location.

• A single charge potential can be distilled by a contour integral trick:

Coulomb potential
$$\frac{1}{R^2} = \frac{\overset{\times \times \times \cdots \times}{\overset{\times}{C_{\theta}}}}{\times \times \times \cdots \times}$$

Electrostatic potential in 4d Riemann space

 By deforming the contour the Coulomb potential is expressed as the sum of potentials in each sheet:

The *m* to *n* GG interaction in equation

• The electrostatic potential of a single charge in the *n*-sheeted Riemann space

$$s_n^{(J)}(\vec{z}) = \frac{J}{4\pi^2 R^2} \frac{\sinh\frac{\alpha}{n} \left(\cosh^2\frac{\alpha}{2} - \cos^2\frac{\theta - \theta_0}{2}\right)}{n \sinh\alpha \left(\cosh^2\frac{\alpha}{2n} - \cos^2\frac{\theta - \theta_0}{2n}\right)}$$

• The electrostatic potential corresponding to the *m* to *n* GG interaction

$$s_{m,n}(\vec{z}) = \sum_{l=1}^{m} s_n^{(J_l)}(\vec{z}; \theta_0 + 2\pi(l-1))$$

2 to 3 Giant Graviton Interaction

1 to 2 Giant Graviton Interaction

2 to 4 Giant Graviton Interaction

M2-branes ending on multiple M5-branes

The Basu-Harvey equation

- The BPS equation is identical to the Basu-Harvey eq. which was proposed to describe M2-branes ending on M5-branes.
- Applying out technique in the continuum limit, we can construct generic M2 ending on M5 in a surprisingly simple manner.
- A key is the boundary conditions which are quite different from the GG case.

Near each M5-brane

$$\sqrt{\sum_{i=1}^{4} (z_i - a_i)^2} = \frac{C}{\sqrt{s - s_0}}$$

The funnel M2-branes stretched between 2 M5-branes

M5

An infinite number of M2-branes expanded into a squashed sphere & stretched between M5s

M2-branes junctions ending on multiple M5-branes

M2's ending on M5's in equation

• Somewhat surprisingly, the constant electrostatic potential can be distilled to a sum of nontrivial potentials.

M2's ending on M5's in equation – cont'd

• Multiple M5-branes located at $s = s_k$ and connected by a bundle of M2-branes:

$$s(\vec{z}) = \sum_{k=0}^{n-1} \frac{s_k \sinh \frac{\rho}{n} (\cosh \rho - \cos \theta)}{2n \sinh \rho \left(\cosh^2 \frac{\rho}{2n} - \cos^2 \frac{(\theta + 2(n-k)\pi)}{2n}\right)}$$

which is the electrostatic potential corresponding to

M2-brane junction ending on 3 M5-branes

 Good chance to make progress in the construction of the multiple M5-theory, the non-abelian (2,0)
 CFT₆, from the BLG theory

• Interesting to explore possible connection of 3 M2brane junction to SYK-like tensor models? Thank you!