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2 to 3 Giant Graviton Interaction




M2-brane Junction Ending on 3 M5-branes



This talk

A study of interaction vertices of multi-graviton bound states,
“giant gravitons”, both in gravity and field theory in AdS/CFT

Giant graviton interactions as instantons in type IIB pp-wave
matrix model of Sheikh Jabbari (A gravity description)

Precise agreements between gravity and CFT descriptions
(CFT results by Corley-Jevicki-Ramgoolam, Takayanagi?)

As a technical byproduct solitons describing M2-branes ending
on multiple M5-branes



An Overview

IIB on AdS, x S5 N=4SYM

GG with J Schur.polyn.omials
of dimension J

m to n GG interactions (J[0.(2) ] 04, (2))
il k=1

PP-wave limit
- 06N L Y

Instantons 1n IIB pp-wave Correlators = exp(- S)
matrix model (SJ) . m
(An alternative to BMN o m(z: J2=> J7)

k=1 7o

I1B strings on pp-wave)
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Giant gravitons are multi-graviton states with angular
momentum J in S° and best described by D3-branes.

Come in two varieties: (1) sphere giants, $° D3-branes in S°
and (2) dual (AdS) giants, S° D3-branes in AdS:.

Arguably, the most natural description of gravitons in
AdS; X §° forming an orthogonal basis of multi-graviton
states.

Dual to Schur polynomial (multi-trace) operators in CFT.
(Schur poly = orthogonal basis for multi-trace operators)
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via Myers effect

Gravitons with total J Gravitons reorganize
immersed in F themselves into a spherical
D3-branes of size J/N
/ 1 = .
O; ~0;5+0,;_50 OF — . Z wnlo)y 28 77
_|_..._|_((91)J 5 S; _

R = Young diagrams w/ J boxes
- J g diag
O;=1Tr~ = types of GG j




Sphere giants — §° D3-branes in S°

S

o iGG
radius sin® -

SYM complex scalar

7 = |Ze"

R = anti-symmetric rep
with J< N

S3

radius sin®

dQ: = cos? Odip* + dO* + sin* 6dQ)3
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Dual (AdS) giants — S° D3-branes in AdS”

R = symmetric rep w/o0 bound on J

ds* g g = ;dgoshQ pdt? + dp? + sinh? pdﬁg




(Giant graviton mteraction
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GG = Schur Polynomial operator

® Schur polynomial 1s an orthogonal polynomaial.

® Rotation in $° with angular momentum J
= order Jpoly of Z= |Z|e¢*where v =t
® Schur poly of Z 1s multi-trace:

N

1 11 12 1
XR(Z) S j Z XR(O) Z Z’ia(l)Z’io(m ”.Z’i;f](ﬂ

O'ESJ 7:177:27'”77:J:1

x g( 0) = Tr o = character of sym group S;
R = rep of §, classified by Young diagrams w/ J boxes



Correlators of Schur polynomials

® Tree-level exact w/0 any A4 corrections

® The 1 to n (normalized) correlator with R = A (all
sphere giants) is as simple as (suppressing spacetime
dependence)
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where J; + ... +J =JandJ  ,=J Instanton action
in a gravity description

® In the pp-wave limit

RHS — 6_'ﬁ(‘]2_ . Jzz)



Correlators of Schur polynomials —cont’d

® The m to n (normalized) correlator with R = A4 (all
sphere giants) at large NV
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Where g+ 4 = 4+ 1

n
Instanton action

in a gravity description

® In the pp-wave limit

Bl O ()
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Giant graviton mteraction vertices
1n gravity

(Instantons 1n type 1B pp-wave M M)

J




Type IIB pp-wave matrix model

® The pp-wave limit 1s the geometry zooming in the
vicinity of the trajectory of a particle rotating very
fast along the equator of S°. The angular momentum
J = N2 for a finite lightcone momentum p™.

® Type IIB string theory on the pp-wave reduces to a
2d free massive theory (BMN).

® An alternative gravity/stringy description was
proposed by Sheikh-Jabbari and dubbed the “tiny
graviton” matrix model.



Type IIB pp-wave matrix model — cont’d

® The “tiny graviton” matrix model is the low energy
effective theory of a D3-brane on the pp-wave:

1 1 (dX! : 1 2 2 i i J K :
o 5(?) .
+§—R @ e a0 e e e ]

Js

(in 4, = 0 gauge & only the bosonic part shown)

I=12,...,8; i=1,2,3,4 (AdS; part), a = 5,6,7,8 (S° part)
&« = mass parameter = 5-form flux
X—= X—+2nR
T5 ~ ((/)/5))
< “Quantization”
ax gy g0
e e - - il x|

Nambu bracket 4-Lie bracket of U(J) matrices




The BPS-like equation

® The advertized instantons are solutions to the BPS-like
equation:

dX* 1R

Looet e g be e e e
dt I 3'93 [ ) ) ) 5]

(= 5,6,7,8 & Gauss constraint automatically satisfied)

® The vacua correspond to a cluster of fuzzy $”’s:

X, —diag| o ()” “%(k)”) o=

® The on-shell action:

1 REo d 21R
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The BPS-like equation — cont’d

® The instanton action with m initial $°’s and 7 final S%’s

corresponding to the m to n interaction :

P 2 oy L - 2 . /N2
SE = & ZTI“JxJ [ X, (+00)? — X;(—00)*] = N (; Ji; — Z(‘]z)
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This 1s the sought-after instanton action which precisely

agrees with the CFT (antisymmetric) Schur correlators
in the pp-wave limit!

)



Construction of 1stantons




BPS equation = 4d Laplace equation

(Poisson’s equation)

® Remarkably, explict instanton solutions can be constructed
in the “classical/continuum limit” (large J).

[generalization of Kovacs- Sato-Shimadal]
. I J K 1 J I
g [xX, X XE ] o IxD X xEL

® After change of variables
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BPS equation = 4d Laplace equation — cont’d

(Poisson’s equation)

® The solutions to the continuum BPS equation represent
3d surfaces in 4d parametrized by o , evolving 1n time s.

® The surfaces at a constant time slice
s = s(21, 22, 23, 24)

which can be interpreted as an electrostatic potential
with a uniform electric flux density

Urio T . 272 4 -
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Electrostatic potential and giants

® The Coulomb potential 1s obviously a solution:

— Dt . Q . CQ6_2M7§

. |’g_50|2 |X—X0|2
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which implies Q at s = +oo is the S°radius of the initial
GGs whereas Q at s = 0 1s the S’ radius of the final
GGs.

v" The charge source = giant at t = -

v The asymptotic infinity = giant at £ = +

This sets the boundary conditions



/ Riemann space

(higher dim generalization of Riemann surface)

branch cut B,

cf. Interval /1n 2d 1 I
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The m to n giant graviton interaction

1st sheet

2nd sheet

= electric charge : |




The coordinate system (bipolar)
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&n) =

inh p, sin 6
cosh p — COSH(Sm )

where p = In(r/r’)

o =

29 = £COS @
< 23 = £sIn ¢ cos w
24 = Esin @ sinw

Ist sheet
2nd sheet

o B
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Electrostatic potential 1n 4d Riemann space

® The Coulomb potential corresponds to placing a point
charge on every single Riemann sheet at the same
location.

® A single charge potential can be distilled by a contour

integral trick:
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Coulomb potential




Electrostatic potential 1n 4d Riemann space

® By deforming the contour the Coulomb potential is
expressed as the sum of potentials in each sheet:

Electrostatic potential generated by
a single charge on the 2nd sheet.




The m to n GG 1nteraction in equation

® The electrostatic potential of a single charge in the #n-
sheeted Riemann space

A0 = ) sinh (Cosh2 S o 9_290)
- A2 R? n sinha (cosh 5 o %)

® The electrostatic potential corresponding to the m to n
GG 1nteraction

5.2 — Zsjl)zﬁg—l—%r(l—l))
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2 to 3 Giant Graviton Interaction




1 to 2 Giant Graviton Interaction




2 to 4 Giant Graviton Interaction
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M2-branes ending on multiple
MJS-branes




The Basu-Harvey equation

® The BPS equation is identical to the Basu-Harvey eq.
which was proposed to describe M2-branes ending on
M5-branes.

® Applying out technique in the continuum limit, we can
construct generic M2 ending on M5 in a surprisingly
simple manner.

® A key 1s the boundary conditions which are quite
different from the GG case.

(!
Near each M5-brane \ Z(Zi a0 = .




The funnel
M2-branes stretched between 2 M5-branes

M5

An infinite number of M2-branes
expanded into a squashed sphere
& stretched between M5s

M35



Itiple M5-branes
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junctions en

M2-branes

Filled with “constant”
electrostatic potential
w/0 charge sources




M2’s ending on MS5’s 1n equation

® Somewhat surprisingly, the constant electrostatic potential
can be distilled to a sum of nontrivial potentials.
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M2’s ending on M5’s 1n equation — cont’d

® Multiple M5-branes located at s = s, and connected by a
bundle of M2-branes:

i sk sinh £ (cosh p — cos 6)

. (9+2(2n—/<)7f))

s(7) =

r—o 2n sinh p (COSh2 -

which 1s the electrostatic S N .. __ N
potential corresponding to




M2-brane junction ending on 3 M5-branes

M35

M35

An infinite number of M2-branes M5
expanded into a squashed sphere
& forming a 3-pronged junction



Good chance to make progress in the construction
of the multiple M5-theory, the non-abelian (2,0)
CFT, from the BLG theory

Interesting to explore possible connection of 3 M2-
brane junction to SYK-like tensor models?
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Thank you!
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