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Corrections to Black Hole Entropy

e Most precision studies of BHs in string theory focus on BPS
black holes (and their near BPS relatives).

e Conventional wisdom: far from BPS there are large and
complicated corrections.

e This talk: explicitly compute quantum corrections to black hole
entropy far from the BPS limit.

e Generally the corrections are found to be fairly complicated, as
expected.

e But they greatly simplify in some environments.



Environmental Dependence

e Black holes are often solutions to many different theories.

e For example, Kerr-Newman black holes are usually considered
solutions to the Einstein-Maxwell theory
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e A simple variation: augment the theory by adding a field that
appears only quadratically in the action (such as a fermion 1).)

e The solution is “the same” because it is consistent to assume
that the additional field vanishes ¢ = 0.

e Environmental dependence: corrections depend on such
additional fields (for example, these fields run in quantum loops).

e This talk: Kerr-Newman black holes simplify in an
environment with \' > 2 supersymmetry.



This Talk

e Embedding of Kerr-Newman black holes into theories with
N > 2 SUSY.

e Quantum corrections to black hole entropy: explicit computation.
e Discussion: a non-renormalization theorem.
Collaborators: Anthony M. Charles and Daniel R. Mayerson.
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Black Hole Solutions

e Starting point: consider any solution to Einstein-Maxwell
theory
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e The general asymptotically flat stationary black holes:
Kerr-Newman (quantum numbers: M, J, Q).

e Special cases:
- Schwarzchild: M general but J=Q=0

- Kerr: M and J general but Q=0
- Reissner-Nordstrom: M and Q general but J=0

- BPS M=Q and J=0

e We want to consider these as solutions to N’ > 2 SUGRA.



N=2 SUGRA

e The baseline: N' = 2 minimal SUGRA has bosonic part identical
to Einstein-Maxwell theory.

e Any bosonic solution remains a solution after the two gravitini are
added because fermions can be consistently set to zero.

e Coupling to nv vector multiplets is a challenge:

L= 2—/<;2R ggﬁvuz&vuz + ;Im [J\/}JF;VIFJ”“‘”J]
e Comments:
- Complex scalar fields in vector multiplets: 2%, a = 1,...,ny.
- Vector fields A, include the graviphotonso I =0, ..., ny

(one more value).

- Kahler metric g,,3 and vector couplings 7 ; depend on scalars
as specified by special geometry.



Adding Scalars to Kerr-Newman

e Kerr-Newman does not have scalars so to maintain the “same”
solution we take the N = 2 scalars constant.

e An obstacle: generally the vector fields source the scalars so
they cannot be constant.

e Solution: first specify the projective coordinates X ! for the scalar,
then specify the A/ = 2 vectors in terms of the Einstein-Maxwell
vector and the scalars as:

+I I+
b, =XF,.

e Then the sources on the scalars cancel so it is consistent to
have constant scalars.

e Interpretation: a non-BPS version of the BPS attractor
mechanism.



More General Embedding

e We consider all theories with N' > 2 SUSY.

e It is convenient to summarize the matter content in terms of
N = 2 fields: one SUGRA multiplet, N/ — 2 (massive) gravitini,
ny vector multiplets, ny hyper multiplets.

e This decomposition is useful for both BPS and non-BPS.
e Our embedding takes the geometry unchanged, matter fields
“minimal”, and guarantees that all equations of motion of ' > 2

SUGRA are satisfied.

e We want to compute quantum corrections of the Kerr-Newman
black hole as a solution to N’ > 2 SUGRA.



Quantum Corrections: Generalities

e The entropy of a large black hole allows the expansion:

A 1
S=—+-DylogA+....
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e Taking all parameters with dimension length large: area
A ~ (2M@G)? by dimensional analysis up to a function of

dimensionless ratios .J/M?. () /)M that is nontrivial.

e In the same limit, the logarithmic correction is log A ~ log2M G
up to the function D, of dimensionless ratios that is interesting.

e The area A and the coefficient D, can both be computed from
the low energy theory: only massless fields contribute.

e They each offer an infrared window into the ultraviolet theory.



Quantum Fluctuations: Strategy

e All contributions from quadratic fluctuations around the classical
geometry take the schematic form
1
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e The quantum corrections are encoded in the heat kernel

D(s)=Tre " = Z e 5N

e The effective action becomes
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e The leading corrections are encoded in the the s-independent
term in D(s) denoted D, a.k.a. the 2nd Seeley-deWitt
coefficient, a.k.a. the integrated trace anomaly.
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Interactions

e [In principle: computations are straightforward applications of
techniques from the 70’s.

e But: our embedding into SUGRA gives nonminimal couplings.

e For example, for fermions in A = 2 hypermultiplets the
background enters through Pauli couplings

— L /=4
Ehyper — _2<A/YLLD/LCA o 5 (C F/WFMVCBGAB + hC) .

e Bosons in N = 2 vector multiplets (some effort to show)

o _B 1 o v 1 — rauv =
Evector — _gocB (V,MZ v#zﬂ + §f,u1/f'u 7 §<F,u1/f : 2/6 + hC))

e Such nonminimal couplings force us to compute some new heat
kernels.
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Heat Kernel Technology

e Perturbative expansion of the (equal point) heat kernel density:

©. @)

K(x,x;s) = Z §" 2ag,(z)

n=0

e We need a4 (the D coefficient is the spacetime integral over a,)

e Schematic for generalized kinetic operator A:
A = —1,(D"Dy) — (2w'Dy)y, — Py

e General result:

1 1 1
(47)%ay(x) = Tr |=E% + —Q,, Q"

2 5 S o (R B — Ry W)

Notation:
E=P-vw'w,—(D'w,), D,=D,+w,, ., =D,D,.
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Example

e Lagrangian for gravitino in the A/ = 2 SUGRA multiplet:

I - I - ~
£gravitini - _Q—MQJAMVMVPDV\IJAp + @\DAM (F/W + ’YE)FMV) €ABV By

Note: Pauli coupling involving field strength £,,,.

e Heat kernel coefficient:

" 1
(47)2ad®"™(2) = ~360 (212R,po R™P7 — 32R,,, R"
—360R,, (F'F", — FMF") + 180R, 0 (F" F*" — I F*7)

HAS(FIE,, — FPF,,) (Fy P = FjeF"))

e Note: terms of schematic form R?, RF?, F'*.
Schematically: [D + F, D + F] ~ R+ F™.
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Simplifications

e General form of 2nd Seeley-deWitt coefficient:

ay(r) = 1Ry pe R 4+ Ry R + a3 Ry po F1Y FP7 +

e After simplifications using Einstein equation, Bianchi identities, ....

Voo
—— W e WH?

ay(x) =

16772 1672

Euler density

Ey= R, R"" — AR, R" + R* .

e Note: all dependence on field strength is traded for curvature
terms.

e Final results can be expressed in terms of ¢, a only!
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Duality: Einstein-Maxwell Theory

e Why can all explicit dependence on field strength be eliminated?

e Electromagnetic duality requires that four derivative terms are
duality invariant (even though two derivative terms are not).

e A unique duality invariant tensor: Z,,,,,, = F,} F,,

e All Lorentz invariants (eg Z,,,,,-L"""?) can be recast in terms of:
P o —
I(w)p_Fu FPV_RW

e Upshot: duality precludes explicit dependence on F),, so
anomaly coefficients expressible in terms of geometry alone.
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Duality: ~ =2 Supergravity
e Duality in N = 2 supergravity: symplectic invariance
e Embedding shows that the Maxwell field FM*V is duality invariant
Fil =X'F.

o U(1)r symmetry: F\! neutral, X' charged, so [, is
(negatively) charged.

e Electromagnetic duality symmetry of Einstein-Maxwell
descends from U (1), symmetry of N = 2 supergravity.

e Upshot: U(1)r symmetry precludes explicit dependence on F),,,
anomaly coefficients expressible in terms of geometry alone.
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Integrals

e Form of quantum corrections to the entropy:

Q J
05 = 2DO(M NV

e The a-term gives a universal (independent of BH parameters)
contribution to Dy because

X_— d*r/—gE,=2.
3272

—)log Ay

e The c-term gives a complicated contribution to Dy:

4 uvpo 2 5@4
d*r /=g Wupe W = 647° +

4b° 2b%r%,
1)57“H(b2 + TH) rH T+

b
+3(0* — r)(b* +r5) tan ! (r_) + Bbr%] :
H

b=J/M,rp=M+ VM — B2, 3=1/T.
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Results: Logarithmic Corrections

e Contributions from bosons in A/ > 2 theory:
1
cPosn — i (137 4+ 12(N — 2) — 3ny + 2np)

1
aoon = o0 (106 4 31(N — 2) 4+ ny + ny)

e The bosons in the ny hyper multiplets and N/ — 2 gravitino
multiplets are minimally coupled so these values for a, c are
standard.

e The bosons in the ny vector multiplets and the supergravity
multiplet couple to the field strength so, after eliminating F2 in

favor of R, these values of a, ¢ are nonstandard.

e For fermions the situation is reversed.
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Results: Logarithmic Corrections

e Contributions from bosons in A > 2 theory:

1
PO — i (137 4+ 12(N — 2) — 3ny + 2np)

1
aoon = 0 (106 4 31(N — 2) 4+ ny +ny)
e Contributions from fermions in N/ > 2 theory:

. 1
clermion o (-187 - 12(N —2) + 3ny — 2ng)

. 1
glermion — 0 (=589 + 41(N — 2) + 11ny — 19ny)

e The c coefficent vanishes in N’ > 2 theory!

e A huge simplification: Weyl2 terms are complicated in general
backgrounds.

e ltis a surprise: SUSY of the background = AdS, x S? =
Weyl* = 0 = vanishing coefficient of Weyl* not noticed.
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Summary: Quantum Corrections

e Logarithmic corrections to black hole entropy in A/ > 2 SUGRA
are determined by the coefficient of the Euler invariant.

e This coefficient is universal: it depends only on the theory (not
on parameters of the black hole)

|
6S = 5(23— 1N —2) —ny +ng)log Ay .

e These corrections can be reproduced from microscopic theory in
some BPS cases.

e The IR theory is a window into the UV theory: apparently the
deformation (far!) off extremality is independent of coupling!

e A minor caveat: fermionic zero modes (due to enhanced SUSY)
gives a jump at extremality (in most ensembles).
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Higher Derivative Corrections

e Why is the anomaly coefficient ¢ = 07

e Background is generally not supersymmetric so fluctuations are
not in supermultiplets.

e Background field formalism realizes symmetry explicitly:
dependence on background fields respect N/ = 2 supersymmetry.

e Schematic form of effective action
L4 = gy (Weyl* +SUSY partners) — gz (Euler +SUSY partners)

Coefficients gy, g are running couplings with 5-function
essentially ¢, a.
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Higher Derivatives and v =2 SUSY

e Details of the action: off-shell formalism from reduction of
superconformal supersymmetry, a lot of auxiliary fields,......
(details involve hard work).

e SUSY partners to Weyl* were identified a long time ago.

e Schematic of on-shell structure:
Weyl? + SUSY partners = E

Cartoon: there is an elaborate cancellation between gravitational
terms (Wele), their matter partners (£'*), and cross-terms (RF?).
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Higher Derivatives and v =2 SUSY

e SUSY partners to I/, were identified only in the last few years.

e Schematic of on-shell structure:
E, + SUSY partners = F,

Cartoon: the matter terms vanish on-shell.
e So: all matter terms can be eliminated in favor of geometry alone.

e And: both four-derivative N’ = 2 invariants reduce to the Euler
invariant F,.

e The anomaly c = () because W? is inconsistent with N = 2
SUSY.
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SUSY Theory and Kerr-Newman

e Another application: string theory corrections can give a Wey12
term directly in the action.

e Quantum result: the coefficient of this term does not receive
quantum corrections, it is not renormalized in N > 2 SUGRA.

e The full equations of motion are extremely elaborate due to all the
terms required by SUSY but they are satisfied by Kerr-Newman.
(in pure N/ = 2 SUGRA, no vector multiplets)

e Again: there is an elaborate cancellation between gravitational
terms (Weyl?), their matter partners (%), and cross-terms (RF?).

e The simplifications are for a theory with N' = 2 SUSY but
solutions that preserve no SUSY .
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Wald Entropy

e The geometry is the same, but the Wald entropy is changed.

e Corrections to Wald entropy simplify greatly. Schematically:

1 1
Oriem(Weyl? + SUSY partners) = Oriem ((Riem2 — 2Ric* + §R2) + ZRic F 2)

= Opiem (Riem” — 4Ric* + R®) = Oniem B

e The correction to the Wald entropy due to higher order derivatives
is a constant, independent of black hole parameters:

AS = 2567 gy

e The value of the constant can be related to microscopic theory for
BPS black holes.
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Summary

e We evaluated corrections to Kerr-Newman black holes motivated
by string theory: quantum corrections and higher derivative
corrections.

e Perspective: N' > 2 SUSY of the theory simplifies results
greatly even when BHs preserve no SUSY.

e Quantum corrections: independent of mass (so the same as for
BPS black holes)

e Higher derivative corrections (Weyl® + SUSY) also independent
of mass (so the same as for BPS black holes)

e Significance: evidence that black hole entropy far from
extremality is accounted for by weakly coupled strings.
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