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Corrections to Black Hole Entropy

• Most precision studies of BHs in string theory focus on BPS
black holes (and their near BPS relatives).

• Conventional wisdom: far from BPS there are large and
complicated corrections.

• This talk: explicitly compute quantum corrections to black hole
entropy far from the BPS limit.

• Generally the corrections are found to be fairly complicated, as
expected.

• But they greatly simplify in some environments.

2



Environmental Dependence
• Black holes are often solutions to many different theories.

• For example, Kerr-Newman black holes are usually considered
solutions to the Einstein-Maxwell theory

L =
1

16πGN

(
R− 1

4
FµνF

µν

)
• A simple variation: augment the theory by adding a field that

appears only quadratically in the action (such as a fermion ψ.)

• The solution is “the same” because it is consistent to assume
that the additional field vanishes ψ = 0.

• Environmental dependence: corrections depend on such
additional fields (for example, these fields run in quantum loops).

• This talk: Kerr-Newman black holes simplify in an
environment withN ≥ 2 supersymmetry .
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This Talk

• Embedding of Kerr-Newman black holes into theories with
N ≥ 2 SUSY.

• Quantum corrections to black hole entropy: explicit computation.

• Discussion: a non-renormalization theorem.

Collaborators: Anthony M. Charles and Daniel R. Mayerson.

Funding: support by the DoE.
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Black Hole Solutions
• Starting point: consider any solution to Einstein-Maxwell

theory

L =
1

16πGN

(
R− 1

4
FµνF

µν

)
• The general asymptotically flat stationary black holes:

Kerr-Newman (quantum numbers: M, J, Q).

• Special cases:

- Schwarzchild: M general but J=Q=0

- Kerr: M and J general but Q=0

- Reissner-Nordström: M and Q general but J=0

- BPS M=Q and J=0

• We want to consider these as solutions toN ≥ 2 SUGRA.
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N=2 SUGRA
• The baseline: N = 2 minimal SUGRA has bosonic part identical

to Einstein-Maxwell theory.

• Any bosonic solution remains a solution after the two gravitini are
added because fermions can be consistently set to zero.

• Coupling to nV vector multiplets is a challenge:

L =
1

2κ2
R− gαβ̄∇µzα∇µz

β̄ +
1

2
Im
[
NIJF

+I
µν F

+µνJ
]

• Comments:

- Complex scalar fields in vector multiplets: zα, α = 1, . . . , nV .

- Vector fields AI
µ include the graviphoton so I = 0, . . . , nV

(one more value).

- Kähler metric gαβ̄ and vector couplingsNIJ depend on scalars
as specified by special geometry.
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Adding Scalars to Kerr-Newman
• Kerr-Newman does not have scalars so to maintain the “same”

solution we take theN = 2 scalars constant .

• An obstacle: generally the vector fields source the scalars so
they cannot be constant.

• Solution: first specify the projective coordinates XI for the scalar,
then specify theN = 2 vectors in terms of the Einstein-Maxwell
vector and the scalars as:

F+I
µν = XIF+

µν .

• Then the sources on the scalars cancel so it is consistent to
have constant scalars.

• Interpretation: a non-BPS version of the BPS attractor
mechanism.
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More General Embedding

• We consider all theories withN ≥ 2 SUSY .

• It is convenient to summarize the matter content in terms of
N = 2 fields: one SUGRA multiplet,N − 2 (massive) gravitini,
nV vector multiplets, nH hyper multiplets.

• This decomposition is useful for both BPS and non-BPS.

• Our embedding takes the geometry unchanged, matter fields
“minimal”, and guarantees that all equations of motion ofN ≥ 2
SUGRA are satisfied.

• We want to compute quantum corrections of the Kerr-Newman
black hole as a solution toN ≥ 2 SUGRA.
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Quantum Corrections: Generalities
• The entropy of a large black hole allows the expansion:

S =
A

4G
+

1

2
D0 logA + . . . .

• Taking all parameters with dimension length large: area
A ∼ (2MG)2 by dimensional analysis up to a function of
dimensionless ratios J/M 2, Q/M that is nontrivial.

• In the same limit, the logarithmic correction is logA ∼ log 2MG
up to the function D0 of dimensionless ratios that is interesting.

• The area A and the coefficient D0 can both be computed from
the low energy theory : only massless fields contribute.

• They each offer an infrared window into the ultraviolet theory .
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Quantum Fluctuations: Strategy
• All contributions from quadratic fluctuations around the classical

geometry take the schematic form

e−W =

∫
Dφ e−φΛφ =

1√
detΛ

.

• The quantum corrections are encoded in the heat kernel

D(s) = Tr e−sΛ =
∑
i

e−sλi .

• The effective action becomes

W = −1

2

∫ ∞
ε2

ds

s
D(s) = −1

2

∫ ∞
ε2

ds

s

∫
dDxK(s) .

• The leading corrections are encoded in the the s-independent
term in D(s) denoted D0, a.k.a. the 2nd Seeley-deWitt
coefficient, a.k.a. the integrated trace anomaly.
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Interactions
• In principle: computations are straightforward applications of

techniques from the 70’s.

• But: our embedding into SUGRA gives nonminimal couplings.

• For example, for fermions inN = 2 hypermultiplets the
background enters through Pauli couplings

Lhyper = −2ζAγ
µDµζ

A − 1

2

(
ζ
A
FµνΓ

µνζBεAB + h.c.
)
.

• Bosons inN = 2 vector multiplets (some effort to show)

Lvector = −gαβ̄
(
∇µz

α∇µz̄β̄ +
1

2
fαµνf

µνβ̄ − 1

2
(F−µνf

αµνz̄β̄ + h.c.)

)
• Such nonminimal couplings force us to compute some new heat

kernels.
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Heat Kernel Technology
• Perturbative expansion of the (equal point) heat kernel density:

K(x, x; s) =

∞∑
n=0

sn−2a2n(x)

• We need a4 (the D0 coefficient is the spacetime integral over a4)

• Schematic for generalized kinetic operator Λ:

Λn
m = −Inm(DµDµ)− (2ωµDµ)nm − P n

m

• General result:

(4π)2a4(x) = Tr

[
1

2
E2 +

1

12
ΩµνΩ

µν +
1

180
(RµνρσR

µνρσ −RµνR
µν)I

]
.

Notation:

E = P−ωµωµ−(Dµωµ) , Dµ = Dµ+ωµ , Ωµν ≡ [Dµ,Dν] .
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Example

• Lagrangian for gravitino in theN = 2 SUGRA multiplet:

Lgravitini = − 1

2κ2
Ψ̄Aµγ

µνρDνΨAρ +
1

4κ2
Ψ̄Aµ

(
F µν + γ5F̃

µν
)
εABΨBν

Note: Pauli coupling involving field strength Fµν.

• Heat kernel coefficient:

(4π)2agravitino
4 (x) = − 1

360
(212RµνρσR

µνρσ − 32RµνR
µν

−360Rµν(F
µρF ν

ρ − F̃ µρF̃ ν
ρ) + 180Rµνρσ(F µνF ρσ − F̃ µνF̃ ρσ)

+45(F µρFνρ − F̃ µρF̃νρ)(FµσF
νσ − F̃µσF̃ νσ)

)
.

• Note: terms of schematic form R2, RF 2, F 4.

Schematically: [D + F,D + F ] ∼ R + F 2.
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Simplifications

• General form of 2nd Seeley-deWitt coefficient:

a4(x) = α1RµνρσR
µνρσ + α2RµνR

µν + α3RµνρσF
µνF ρσ + ...

• After simplifications using Einstein equation, Bianchi identities, ....

a4(x) =
c

16π2
WµνρσW

µνρσ − a

16π2
E4 ,

Euler density

E4 = RµνρσR
µνρσ − 4RµνR

µν + R2 .

• Note: all dependence on field strength is traded for curvature
terms.

• Final results can be expressed in terms of c, a only!
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Duality: Einstein-Maxwell Theory

• Why can all explicit dependence on field strength be eliminated?

• Electromagnetic duality requires that four derivative terms are
duality invariant (even though two derivative terms are not).

• A unique duality invariant tensor: Iµνρσ = F+
µνF

−
ρσ

• All Lorentz invariants (eg IµνρσIµνρσ) can be recast in terms of:

I ρ
(µ ν)ρ = F+ρ

µ F−ρν = Rµν

• Upshot: duality precludes explicit dependence on Fµν so
anomaly coefficients expressible in terms of geometry alone.
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Duality: N = 2 Supergravity

• Duality inN = 2 supergravity: symplectic invariance

• Embedding shows that the Maxwell field F+
µν is duality invariant

F+I
µν = XIF+

µν .

• U(1)R symmetry: F+I
µν neutral, XI charged, so F+

µν is
(negatively) charged .

• Electromagnetic duality symmetry of Einstein-Maxwell
descends from U(1)R symmetry ofN = 2 supergravity .

• Upshot: U(1)R symmetry precludes explicit dependence on Fµν,
anomaly coefficients expressible in terms of geometry alone.
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Integrals
• Form of quantum corrections to the entropy:

δS =
1

2
D0(

Q

M
,
J

M 2
) logAH

• The a-term gives a universal (independent of BH parameters)
contribution to D0 because

χ =
1

32π2

∫
d4x
√
−g E4 = 2 .

• The c-term gives a complicated contribution to D0:∫
d4x
√
−gWµνρσW

µνρσ = 64π2 +
πβQ4

b5r4
H(b2 + r2

H)

[
4b5rH + 2b3r3

H

+ 3(b2 − r2
H)(b2 + r2

H)2 tan−1

(
b

rH

)
+ 3br5

H

]
.

b = J/M , rH = M +
√
M 2 − b2, β = 1/T .
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Results: Logarithmic Corrections

• Contributions from bosons inN ≥ 2 theory:

cboson =
1

60
(137 + 12(N − 2)− 3nV + 2nH)

aboson =
1

90
(106 + 31(N − 2) + nV + nH)

• The bosons in the nH hyper multiplets andN − 2 gravitino
multiplets are minimally coupled so these values for a, c are
standard.

• The bosons in the nV vector multiplets and the supergravity
multiplet couple to the field strength so, after eliminating F 2 in
favor of R, these values of a, c are nonstandard.

• For fermions the situation is reversed.
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Results: Logarithmic Corrections
• Contributions from bosons inN ≥ 2 theory:

cboson =
1

60
(137 + 12(N − 2)− 3nV + 2nH)

aboson =
1

90
(106 + 31(N − 2) + nV + nH)

• Contributions from fermions inN ≥ 2 theory:

cfermion =
1

60
(−137− 12(N − 2) + 3nV − 2nH)

afermion =
1

360
(−589 + 41(N − 2) + 11nV − 19nH)

• The c coefficent vanishes inN ≥ 2 theory!

• A huge simplification: Weyl2 terms are complicated in general
backgrounds.

• It is a surprise: SUSY of the background⇒ AdS2 × S2⇒
Weyl2 = 0⇒ vanishing coefficient of Weyl2 not noticed.
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Summary: Quantum Corrections
• Logarithmic corrections to black hole entropy inN ≥ 2 SUGRA

are determined by the coefficient of the Euler invariant.

• This coefficient is universal: it depends only on the theory (not
on parameters of the black hole)

δS =
1

12
(23− 11(N − 2)− nV + nH) logAH .

• These corrections can be reproduced from microscopic theory in
some BPS cases.

• The IR theory is a window into the UV theory: apparently the
deformation (far!) off extremality is independent of coupling!

• A minor caveat: fermionic zero modes (due to enhanced SUSY)
gives a jump at extremality (in most ensembles).
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Higher Derivative Corrections

• Why is the anomaly coefficient c = 0?

• Background is generally not supersymmetric so fluctuations are
not in supermultiplets.

• Background field formalism realizes symmetry explicitly:
dependence on background fields respectN = 2 supersymmetry.

• Schematic form of effective action

L4 = gW (Weyl2 +SUSY partners)−gE(Euler+SUSY partners)

Coefficients gW , gE are running couplings with β-function
essentially c, a.
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Higher Derivatives and N = 2 SUSY

• Details of the action: off-shell formalism from reduction of
superconformal supersymmetry, a lot of auxiliary fields,......
(details involve hard work).

• SUSY partners to Weyl2 were identified a long time ago.

• Schematic of on-shell structure:

Weyl2 + SUSY partners = E4

Cartoon: there is an elaborate cancellation between gravitational
terms (Weyl2), their matter partners (F 4), and cross-terms (RF 2).
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Higher Derivatives and N = 2 SUSY

• SUSY partners to E4 were identified only in the last few years.

• Schematic of on-shell structure:

E4 + SUSY partners = E4

Cartoon: the matter terms vanish on-shell.

• So: all matter terms can be eliminated in favor of geometry alone.

• And: both four-derivativeN = 2 invariants reduce to the Euler
invariant E4.

• The anomaly c = 0 because W 2 is inconsistent withN = 2
SUSY.
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SUSY Theory and Kerr-Newman

• Another application: string theory corrections can give a Weyl2

term directly in the action.

• Quantum result: the coefficient of this term does not receive
quantum corrections, it is not renormalized inN ≥ 2 SUGRA.

• The full equations of motion are extremely elaborate due to all the
terms required by SUSY but they are satisfied by Kerr-Newman.
(in pureN = 2 SUGRA, no vector multiplets)

• Again: there is an elaborate cancellation between gravitational
terms (Weyl2), their matter partners (F 4), and cross-terms (RF 2).

• The simplifications are for a theory withN = 2 SUSY but
solutions that preserve no SUSY .
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Wald Entropy

• The geometry is the same, but the Wald entropy is changed.

• Corrections to Wald entropy simplify greatly . Schematically:

∂Riem(Weyl2 + SUSY partners) = ∂Riem

(
(Riem2 − 2Ric2 +

1

3
R2) +

1

4
Ric F 2

)
= ∂Riem

(
Riem2 − 4Ric2 + R2

)
= ∂RiemE4

• The correction to the Wald entropy due to higher order derivatives
is a constant, independent of black hole parameters:

∆S = 256πgW

• The value of the constant can be related to microscopic theory for
BPS black holes.
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Summary

• We evaluated corrections to Kerr-Newman black holes motivated
by string theory: quantum corrections and higher derivative
corrections.

• Perspective: N ≥ 2 SUSY of the theory simplifies results
greatly even when BHs preserve no SUSY.

• Quantum corrections: independent of mass (so the same as for
BPS black holes)

• Higher derivative corrections (Weyl2 + SUSY) also independent
of mass (so the same as for BPS black holes)

• Significance: evidence that black hole entropy far from
extremality is accounted for by weakly coupled strings.

26


	Title slide
	Corrections to Black Hole Entropy
	Environmental Dependence
	This Talk
	Black Hole Solutions
	N=2 SUGRA
	Adding Scalars to Kerr-Newman
	More General Embedding
	Quantum Corrections: Generalities
	Quantum Fluctuations: Strategy
	Interactions
	Heat Kernel Technology
	Example
	Simplifications
	Duality: Einstein-Maxwell Theory
	Duality: N=2 Supergravity
	Integrals
	Results: Logarithmic Corrections
	Results: Logarithmic Corrections
	Summary: Quantum Corrections
	Higher Derivative Corrections
	Higher Derivatives and N=2 SUSY 
	Higher Derivatives and N=2 SUSY 
	SUSY Theory and Kerr-Newman
	Wald Entropy
	Summary

