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Entanglement Structure

- of basic interest are the patterns of entanglement in any quantum
theory, especially quantum field theories
* In gauge/gravity duality, expected to play a central role in ‘bulk
emergence’

* In condensed matter physics, a primary observable especially in
topological states of matter

- entanglement inequalities, such as the positivity and monotonicity of
relative entropy, play a powerful role, constraining QFTs in

interesting ways

* recent work on establishing ANEC is but one example  [1605.08072]

- reducing to the simplest terms, patterns of entanglement are
understood generally only for two and three qubit systems

- studies of multi-partite systems are needed



Bi-partite entanglement

- often in QFT, interested in spatial entanglement

- standard construction presupposes H = Ha & H3

Y

- for a state |W) on %, trace over degrees of freedom in A

— reduced density matrix pOa

1 A A
S(Q)(A) — 1— 4 log terAlb\fX SEE(A) = —try ,palog pa

Rényi entropies entanglement entropy



Bi-partite entanglement

- works well for some QFTs, such as scalars and spinor fields

@<

it doesn’t work for gauge theories, as the Hilbert space does not

factorize
/ 2 = o/
>

observables aren’t generally local

* cutting and gluing of regions involves degrees of freedom on cut

in 3d CS§, this is particularly familiar
» bulk is topological, but WZW on |+ edges



3d Chern-Simons

- the non-factorizability of the Hilbert space is strikingly evident here

@<

* think of C-S theory on 3-mfld (locally) of the form M3z ~ R X 2

* path integral over half-spacetime with (space-like) boundary 2 gives a
wave-functional (half-spacetime ~ solid X.)

thus associate a Hilbert space Hy to 2

the various states in 1y correspond to non-trivial Wilson loops

e.g., S? = D? U D?
dim 7‘[52 =1 but dim HDQ > 1]

SO

Hese C Hp2 ® Hpe



3d C-S and Bi-partite entanglement

nevertheless, bi-partite entanglement is well understood in 3d C-S

L Kitaev & Preskill
5 Levin & Wen
AN X— — 7‘ S. Dong, E. Fradkin, S. Nowling, RGL
v 4 [0802.3231]
non-universal ‘area law’ topological entanglement

Renyi entropies all equal
[Witten *90s]

topological entanglement can be computed using ‘surgery’ methods
and the replica trick, allowing for bypassing gauge issues

* depends on data of dual CFT (modular S-matrix, etc.)

- depends on choice of state, topological class of entanglement cut

@<



Multi-partite entanglement

- in that context, the spatial Riemann surface was assumed to be
connected, and entanglement was associated with cutting that surface

- more generally, we can consider the spatial Riemann surface to be a
disjoint union of Riemann surfaces

[ ol o/

- gives a multi-partite system, with
H = ®j7’[zj

- recently, such a construction was studied in AdS3/CFT,

» CFT on (S"" dual to multi-boundary wormholes

[Vijay et al ’14]
- study entanglement via RT [Marolf et al *15]
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Multi-partite entanglement

- here, we wish to study this directly in field theory

@<

- generally very difficult, but expect significant simplification in TQFTs

* here, we confine attention to 3d C-S theories, with gauge group U(1) or

} SU(2)
SCS[A] = —/ Tr (A A dA + %A?’)
A Ms
T2
/
= o S VA= / DAje-SclA
A :A(O)
2

8M3:Z:Z]_UUZ,«,



Multi-boundary states in CS3

- a simple way to generate such manifolds is to start with a closed 3-

manifold X (e.g. S?) and an n-component link L" in X

@j LN=LUlU.. UL, C\\%

- fatten each component into a tubular neighbourhood, yielding N(L")

- the Mn = SP\N(L") is a 3-mfld with n-

component boundary

- CS path integral on M, gives a state | |L") € ®j7-l(T2)j

@<



Hilbert Spaces for CS

- the basic thing to understand is the Hilbert space on a torus T?

» choose a basis of cycles m, ¢

* space-time is solid torus, cycle m contractible

* Wilson loops supported on /£ ’

do CS path integral with Wilson loop inrep R on / — state |)

. <,l| associated with Rjk Q]J’> — 51-’1-,

here, Rj refer to the integrable representations, associated with

U(l) or SU(2) characters

@<

in this sense, Hilbert spaces are finite dimensional
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Link Complement States

- returning to an n-component link complement, we write

L7 =" Cor(ft, o fn)lit) ® oo @ Ljn)

Jiv-iJn O
. . 2 DRL
Cern(Uty - dn) = <WRJ.>;(L1)---WR;;(Ln)>53

- ‘wavefunctions’ are

- we will study entanglement measures for simple partitions of the

@<

link components

ﬁn:LQCUL%_m LY =L1;U..ULp, @
1
PA= T 1rn Trﬁ;|£n><£n| B — UL
(Lr|Ln)
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Why is this Interesting?

in some sense (that we will explore), quantum entanglement is
correlated with topological entanglement

the first manifestation of this is seen if we take the loops to be

unlinked @ Q Q

- In this case, the coloured link invariant factorizes

so the corresponding state is a product state, all entanglement entropies
vanish

we conclude that entanglement should detect topological linking

12



Why is this Interesting!?

- the entanglement entropy (and other similar observables) is a
topological invariant

- In fact, it satisfies an important technical property, that is, it is framing
independent

the coloured link invariants require a choice to be made for the / cycle

this corresponds to a unitary transformation on states, and so does not affect
entanglement observables

- so we will study how quantum entanglement encodes topological
entanglement by studying a series of examples

@<
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Abelian case

- for the Abelian case, it turns out that all states can be computed in

@<

closed form [Witten '88]

» depends only on the Gauss linking number of components
27
L") = Z eXP(T Z qiqjglj) 1g1) ® ... ® |qn)
di,..., dn 1<J

* here we have used the framing independence to set self-linking £;; — 0
recall that generally we will consider partitioning
L= LAuL" LA=LU..ULp,

1
pa =
(Lr]Ln)

Tre |L7)(L"
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U(1)k: two-component links

- in this case, just one linking number

k—1

1 271
‘£2> ~ % Z eXP(TChCszlz)’Cm ® |q2)

q1,92=0

- tracing over the Ly, we obtain

p1 = Try,|L2) (L]

k—1
1 wi(g1—q; 1
(q1lp1lar) = 72 Z e?mila—a)bea/k = ;nql,q{(k,&z)
q2=0

- this matrix element vanishes unless

@<

(g1 — q1)¢1o = 0 (mod k)
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U(1)k: two-component links

- to compute entanglement entropy, we can directly compute p1 and

determine its spectrum of eigenvalues {p;, j =1, ..., k}

K
See = — Y _ pjlog p;

=

- the form of p; depends on g = gcd(k, £12)

@<
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U(1)k: two-component links

See = lo a
EE = 108 ng(k,Elz)

- for example, the unlink gives zero entropy, while the Hopf link gives

Sggpf = log k @

- thus the Hopf link is a state

» analogous to a Bell pair

- alternative derivation: replica trick — compute Reényi entropies

@<
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U(I)k: n-component links

- for n-component links, we partition (m|n-m)

- find entanglement entropy

km
|ker G|

Séz|n_m) = log

- where G is the linking matrix between A and A

(gl,m—i—l g2,m—|—1 e gm,m—i—l\

gl,m—|—2 E2,m—|—2 e gm,m—|—2
G= ) . .

\ gl-,n 62-,n e gn.v,n )

“Diophantine equations”

- |ker G| = # solutions to G - X =0 (mod k), X € Z}

@<
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U(I)k: n-component links

in the (1]1) case, |ker G| = gcd(k, ¢12) , but more generally a
concrete formula is not available

information theory < » knot theory

\/’

number theory

but at least we can say:

» entanglement entropy for (mn) vanishes iff G = 0 (mod k)

- so Abelian quantum entanglement detects Gauss linking between
sublinks
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Entanglement for SU(2)k link states

entanglement link invariants for non-Abelian CS theories probe
more precise information about link states

- unfortunately, there is no known general formula for the state
corresponding to a generic link

- so we are forced to try to draw conclusions from studying example by
example

- again, the Hopf link is a maximally entangled state

1 : :
‘HOpf> — \/m Z SJ'1J2 ‘./1> 2 ‘./2>

J1.J2

- where S is the (unitary) modular S-matrix (implements 7 — —1/7)

@<

2 ((2a+1)2p+1)m
Sivio = PR ( kL2
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SU(2)«: Hopf links

|Hopf) =

1 : :
Vk+1 Z Sji o 1) ® |j2)

J1.J2

- tracing over the second loop gives a reduced density matrix

@<

N . ]- * 1
<./1|:01‘./{> — k——i-]. Zsjlybsffyjz — k + 151'1,]1/

J1.J2

» Sge” = log(k +1)

maximally entangled
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SU(2)i: Whitehead (5%) link

- this is a 2-component link, with Gauss linking number zero

&

so, in the Abelian case, we get zero entanglement entropy upon
reducing one of the link components

- for SU(2)i, this can be computed systematically, and the

@<

entanglement entropy does not vanish
- computation simplified by knot theory formula
due to K. Habiro

» SU(2)k has access to more information about links *
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SU(2)k: “Hopf-linked knots™

- entanglement entropy depends on knotting of individual

components

@D y oop on K.

16 ()/SsP
S 1 () /S P

See1 = — Z p; log p;

J

- (recall Abelian version was insensitive to details of knot)

@<
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SU(2)k: 3-component links

- 3-chain: reduction on any of the three components gives the same

entropy, determined by quantum dimensions

—2
_ 9 %0 _
S

Pj

- this link state is GHZ-like:

@<

- trace over any link gives a separable state (unentangled mixed state)

1 1
|GHZ) = ﬁ(|000> + \111>) tri|GHZ)(GHZ| = 5 <|oo><ooy - \11><11|)
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SU(2)i: 3-chain

- so entanglement entropy does not distinguish the components of

the 3-chain, even though they are clearly inequivalent
relative entropy for different traces can be employed to study this
S(pllo) = trplog p — trplog o

here one finds

S(pwllpLy) Z pi ( log pi — Z 1Si.j]? log pj)

- this comes about because although the dlagonal forms of p;, and py,

are the same, they are diagonal in different bases

- so generally, relative entropy can be used as a basis independent

@<

measure of the distinguishability of components
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SU(2)k: 3-component links

6% is again GHZ-like 63 (Borromean rings) have zero
Gauss linking, but are W-like

l.e., tracing over any component

can be distinguished from 3-chain gives a state that is still entangled

by looking at relative entropies

for 3-qubit states, there are two distinct classes of states, GHZ and W, which
cannot be transformed into one another by local quantum operations
1

W)= 2

<|001> +1010) + \100>> try|W)(W| = %(\oo> + (]01) + [10))((01] + <10|))

(still entangled)

W
%
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Summary

it is a compelling idea (and not original to us) that quantum
entanglement should be related to topological entanglement

» this is realized directly in 3d CS

multi-boundary link states in TQFT3 gives a useful multi-partite
system that can be studied using entanglement notions

- entanglement entropy Is a framing-independent link invariant

- other entanglement measures can be used to study properties of a given
state, such as the distinguishability of link components

* In the case of 3-component links, both GHZ- and W-type are found

continuing to explore notions of multi-partite entanglement
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Summary:;

- perhaps ideas of quantum information theory can be used to useful
effect in knot theory

« and vice versa

- e.g, there are infinite classes of non-trivial links that are not distinguished
by their Jones polynomial

perhaps entanglement invariants can be used here

- there are various conjectures that might be informed by entanglement
inequalities

@<
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Summarys

can this be useful for 3d gravity!?

would be interesting to extend the analysis to SL(2, C)
one quickly gets embroiled in problems due to non-compactness

nevertheless, one might hope to find a geometric interpretation for
multi-boundary entanglement in general

in this context, many links are hyperbolic — they admit a geodesically complete
hyperbolic metric on the link complement

in this context, there is the volume conjecture, concerning the behaviour of the
Jones polynomial at large k [Kashaev *97, Gukov ‘04]

it seems plausible that quantum information theory might lead to insight
Into such subjects, and that motivated by Bekenstein-Hawking and Ryu-
Takayanagi, the entropies might be related to volumes of some minimal
surface/horizon
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