

Multi-boundary / multi-partite Entanglement in Chern-Simons Theories

Rob Leigh University of Illinois at Urbana-Champaign

based on arXiv:1611.05460, with **V. Balasubramanian, J. Fliss, O. Parrikar**

Jo'burg Workshop on Black holes and Entanglement

Entanglement Structure

- of basic interest are the patterns of entanglement in any quantum theory, especially quantum field theories
 - in gauge/gravity duality, expected to play a central role in 'bulk emergence'
 - in condensed matter physics, a primary observable especially in topological states of matter
- entanglement inequalities, such as the positivity and monotonicity of relative entropy, play a powerful role, constraining QFTs in interesting ways
 - recent work on establishing ANEC is but one example [1605.08072]
- reducing to the simplest terms, patterns of entanglement are understood generally only for two and three qubit systems
 - studies of multi-partite systems are needed

Bi-partite entanglement

- often in QFT, interested in spatial entanglement
 - standard construction presupposes $\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_{ar{A}}$

- for a state $|\Psi\rangle$ on Σ , trace over degrees of freedom in \overline{A} \longrightarrow reduced density matrix $\hat{\rho}_A$

$$S^{(\alpha)}(A) = rac{1}{1-lpha} \log tr_{\mathcal{H}_A} \hat{
ho}^{lpha}_A$$

Rényi entropies

$$S_{EE}(A) = -tr_{\mathcal{H}_A}\hat{
ho}_A\log\hat{
ho}_A$$

entanglement entropy

Bi-partite entanglement

- works well for some QFTs, such as scalars and spinor fields
- it doesn't work for gauge theories, as the Hilbert space does not factorize

- observables aren't generally local
 - cutting and gluing of regions involves degrees of freedom on cut
- in 3d CS, this is particularly familiar
 - bulk is topological, but WZW on 1+1 edges

3d Chern-Simons

- the non-factorizability of the Hilbert space is strikingly evident here
 - think of C-S theory on 3-mfld (locally) of the form $M_3 \sim \mathbb{R} imes \Sigma$
 - path integral over half-spacetime with (space-like) boundary Σ gives a wave-functional (half-spacetime \sim solid $\Sigma)$
 - thus associate a Hilbert space \mathcal{H}_{Σ} to Σ
 - the various states in \mathcal{H}_{Σ} correspond to non-trivial Wilson loops

e.g.,
$$S^2 = D^2 \cup D^2$$

dim $\mathcal{H}_{S^2} = 1$ but dim $\mathcal{H}_{D^2} > 1$
so
 $\mathcal{H}_{S^2} \subset \mathcal{H}_{D^2} \otimes \mathcal{H}_{D^2}$

3d C-S and Bi-partite entanglement

- nevertheless, bi-partite entanglement is well understood in 3d C-S

non-universal 'area law'

Kitaev & Preskill Levin & Wen S. Dong, E. Fradkin, S. Nowling, RGL [0802.3231]

topological entanglement

- Rényi entropies all equal

[Witten '90s]

- topological entanglement can be computed using 'surgery' methods and the replica trick, allowing for bypassing gauge issues
 - depends on data of dual CFT (modular S-matrix, etc.)
 - depends on choice of state, topological class of entanglement cut

Multi-partite entanglement

- in that context, the spatial Riemann surface was assumed to be connected, and entanglement was associated with cutting that surface
- more generally, we can consider the spatial Riemann surface to be a disjoint union of Riemann surfaces

- gives a multi-partite system, with

$$\mathcal{H} = \otimes_j \mathcal{H}_{\Sigma_j}$$

- recently, such a construction was studied in AdS_3/CFT_2
 - CFT on (S¹)ⁿ; dual to multi-boundary wormholes
 - study entanglement via RT

[Vijay et al '14] [Marolf et al '15]

Multi-partite entanglement

- here, we wish to study this directly in field theory
 - generally very difficult, but expect significant simplification in TQFTs
 - here, we confine attention to 3d C-S theories, with gauge group U(1) or

$$S_{CS}[A] = rac{k}{4\pi} \int_{M_3} Tr\left(A \wedge dA + rac{2}{3}A^3
ight)$$

Multi-partite Entanglement

SU(2)

Multi-boundary states in CS3

- a simple way to generate such manifolds is to start with a closed 3-manifold X (e.g. S³) and an n-component link \mathcal{L}^n in X

$$\mathcal{L}^n = L_1 \cup L_2 \cup \ldots \cup L_n$$

- fatten each component into a tubular neighbourhood, yielding $N(\mathcal{L}^n)$
- the link complement $M_{(n)} = S^3 \setminus N(\mathcal{L}^n)$ is a 3-mfld with n-component boundary
- CS path integral on $M_{(n)}$ gives a state $|\mathcal{L}^n\rangle \in \otimes_j \mathcal{H}(\mathcal{T}^2)_j$

X

Hilbert Spaces for CS

- the basic thing to understand is the Hilbert space on a torus T^2

- choose a basis of cycles m, ℓ
- space-time is solid torus, cycle *m* contractible
- Wilson loops supported on ℓ

- do CS path integral with Wilson loop in rep R_j on $\ell \longrightarrow state |j\rangle$
 - $\langle j |$ associated with R_j^* $\langle j | j' \rangle = \delta_{j,j'}$
- here, R_j refer to the integrable representations, associated with U(1) or SU(2) characters

- in this sense, Hilbert spaces are finite dimensional

Link Complement States

- returning to an n-component link complement, we write

$$|\mathcal{L}^n\rangle = \sum_{j_1,\ldots,j_n} C_{\mathcal{L}^n}(j_1,\ldots,j_n) |j_1\rangle \otimes \ldots \otimes |j_n\rangle$$

$$C_{\mathcal{L}^n}(j_1,\ldots,j_n)=\langle W_{R_{j_1}^*}(L_1)\ldots W_{R_{j_n}^*}(L_n)\rangle_{S^3}$$

- 'wavefunctions' are coloured link invariants
- we will study entanglement measures for simple partitions of the link components

$$\mathcal{L}^{n} = \mathcal{L}^{m}_{A} \cup \mathcal{L}^{n-m}_{\overline{A}} \qquad \qquad \mathcal{L}^{m}_{A} = L_{1} \cup \ldots \cup L_{m}$$
$$\rho_{A} = \frac{1}{\langle \mathcal{L}^{n} | \mathcal{L}^{n} \rangle} \operatorname{Tr}_{\mathcal{L}_{\overline{A}}} | \mathcal{L}^{n} \rangle \langle \mathcal{L}^{n} |$$

Multi-partite Entanglement

 $\mathcal{L}^n = \mathcal{L}^m_A \cup \mathcal{L}^{n-m}_{\bar{A}}$

Why is this Interesting?

- in some sense (that we will explore), quantum entanglement is correlated with topological entanglement
- the first manifestation of this is seen if we take the loops to be unlinked
 - in this case, the coloured link invariant factorizes
 - so the corresponding state is a product state, all entanglement entropies vanish
- we conclude that entanglement should detect topological linking

Why is this Interesting?

- the entanglement entropy (and other similar observables) is a topological invariant
 - in fact, it satisfies an important technical property, that is, it is *framing independent*
 - the coloured link invariants require a choice to be made for the ℓ cycle
 - this corresponds to a *unitary transformation* on states, and so does not affect entanglement observables
- so we will study how quantum entanglement encodes topological entanglement by studying a series of examples

Abelian case

- for the Abelian case, it turns out that all states can be computed in closed form
 - depends only on the Gauss linking number of components

$$|\mathcal{L}^n\rangle = \sum_{q_1,\ldots,q_n} \exp\left(\frac{2\pi i}{k}\sum_{i< j}q_iq_j\ell_{ij}\right)|q_1\rangle\otimes\ldots\otimes|q_n\rangle$$

- here we have used the framing independence to set self-linking $\ell_{jj}
ightarrow 0$

- recall that generally we will consider partitioning

 $\mathcal{L}^{n} = \mathcal{L}^{m}_{A} \cup \mathcal{L}^{n-m}_{\overline{A}} \qquad \qquad \mathcal{L}^{m}_{A} = L_{1} \cup \ldots \cup L_{m}$ $\rho_{A} = \frac{1}{\langle \mathcal{L}^{n} | \mathcal{L}^{n} \rangle} \operatorname{Tr}_{\mathcal{L}_{\overline{A}}} | \mathcal{L}^{n} \rangle \langle \mathcal{L}^{n} |$

U(1)_k: two-component links

- in this case, just one linking number

$$|\mathcal{L}^2
angle = rac{1}{k}\sum_{q_1,q_2=0}^{k-1}exp\Big(rac{2\pi i}{k}q_1q_2\ell_{12}\Big)|q_1
angle\otimes|q_2
angle$$

- tracing over the L₂, we obtain

$$\rho_{1} = Tr_{L_{2}} |\mathcal{L}^{2}\rangle \langle \mathcal{L}^{2}|$$

$$\langle q_{1}|\rho_{1}|q_{1}'\rangle = \frac{1}{k^{2}} \sum_{q_{2}=0}^{k-1} e^{2\pi i (q_{1}-q_{1}')\ell_{12}q_{2}/k} \equiv \frac{1}{k} \eta_{q_{1},q_{1}'}(k,\ell_{12})$$

- this matrix element vanishes unless

$$(q_1 - q_1')\ell_{12} = 0 \pmod{k}$$

$U(I)_k$: two-component links

- to compute entanglement entropy, we can directly compute ρ_1 and determine its spectrum of eigenvalues $\{p_j, j = 1, ..., k\}$

$$S_{EE} = -\sum_{j=1}^{n} p_j \log p_j$$

- the form of ho_1 depends on $g = gcd(k, \ell_{12})$

$$egin{pmatrix} 1 & 1 & ... \ dots & \ddots & dots \ 1 & & 1 \end{pmatrix}_{g imes g} \otimes egin{pmatrix} 1 & 0 & ... \ 0 & 1 & ... \ dots & \ddots & dots \ 0 & ... & 1 \end{pmatrix}_{rac{k}{g} imes rac{k}{g}}$$

$$S_{EE} = \log\left(rac{k}{gcd(k, \ell_{12})}
ight)$$

U(1)_k: two-component links

$$S_{EE} = \log\left(rac{k}{gcd(k, \ell_{12})}
ight)$$

- for example, the unlink gives zero entropy, while the Hopf link gives

$$S_{EE}^{Hopf} = \log k$$

- thus the Hopf link is a maximally entangled state
 - analogous to a Bell pair
- alternative derivation: replica trick compute Rényi entropies

U(I)_k: *n*-component links

- for *n*-component links, we partition (m|n-m)
- find entanglement entropy

$$S_{EE}^{(m|n-m)} = \log \frac{k^m}{|ker G|}$$

- where G is the linking matrix between A and \overline{A}

$$\mathbf{G} = \begin{pmatrix} \ell_{1,m+1} & \ell_{2,m+1} & \cdots & \ell_{m,m+1} \\ \ell_{1,m+2} & \ell_{2,m+2} & \cdots & \ell_{m,m+2} \\ \vdots & \vdots & & \vdots \\ \ell_{1,n} & \ell_{2,n} & \cdots & \ell_{m,n} \end{pmatrix}$$

"Diophantine equations"

- $|ker \ G| = #$ solutions to $G \cdot \vec{x} = 0 \pmod{k}$, $\vec{x} \in \mathbb{Z}_k^m$

U(I)_k: *n*-component links

- in the (I|I) case, $|ker \ G| = gcd(k, \ell_{12})$, but more generally a concrete formula is not available

- but at least we can say:
 - entanglement entropy for (m|n) vanishes iff $G = 0 \pmod{k}$
 - so Abelian quantum entanglement detects Gauss linking between sublinks

Entanglement for $SU(2)_k$ link states

- entanglement link invariants for non-Abelian CS theories probe more precise information about link states
 - unfortunately, there is no known general formula for the state corresponding to a generic link
 - so we are forced to try to draw conclusions from studying example by example
- again, the Hopf link is a maximally entangled state

$$|Hopf
angle = rac{1}{\sqrt{k+1}}\sum_{j_1,j_2}S_{j_1,j_2}|j_1
angle\otimes|j_2
angle$$

- where S is the (unitary) modular S-matrix (implements au
ightarrow -1/ au)

$$S_{j_1,j_2} = \sqrt{\frac{2}{k+2}} \sin\left(\frac{(2j_1+1)(2j_2+1)\pi}{k+2}\right)$$

SU(2)_k: Hopf links

$$|Hopf
angle = rac{1}{\sqrt{k+1}}\sum_{j_1,j_2}S_{j_1,j_2}|j_1
angle\otimes|j_2
angle$$

- tracing over the second loop gives a reduced density matrix

$$\langle j_1 | \hat{
ho}_1 | j_1'
angle = rac{1}{k+1} \sum_{j_1, j_2} S^*_{j_1, j_2} S_{j_1', j_2} = rac{1}{k+1} \delta_{j_1, j_1'}$$

$$\longrightarrow S_{EE}^{Hopf} = \log(k+1)$$

maximally entangled

$SU(2)_k$: Whitehead (5²₁) link

- this is a 2-component link, with Gauss linking number zero

- so, in the Abelian case, we get zero entanglement entropy upon reducing one of the link components
- for SU(2)_k, this can be computed systematically, and the entanglement entropy does not vanish
 - computation simplified by knot theory formula due to K. Habiro
 - $SU(2)_k$ has access to more information about links

SU(2)_k:"Hopf-linked knots"

 entanglement entropy depends on knotting of individual components

- (recall Abelian version was insensitive to details of knot)

SU(2)_k: 3-component links

- 3-chain: reduction on any of the three components gives the same entropy, determined by *quantum dimensions*

$$p_j = rac{d_j^{-2}}{\sum_{j'} d_{j'}^{-2}} \qquad \qquad d_j = rac{S_{0j}}{S_{00}} = [2j+1]$$

- this link state is GHZ-like:
 - trace over any link gives a separable state (unentangled mixed state)

$$|GHZ\rangle = rac{1}{\sqrt{2}} \Big(|000
angle + |111
angle \Big) \hspace{1.5cm} tr_1 |GHZ
angle \langle GHZ| = rac{1}{2} \Big(|00
angle \langle 00| + |11
angle \langle 11| \Big)$$

SU(2)_k: 3-chain

- so entanglement entropy does not distinguish the components of the 3-chain, even though they are clearly inequivalent
- relative entropy for different traces can be employed to study this

$$S(\rho || \sigma) = tr \rho \log \rho - tr \rho \log \sigma$$

- here one finds

$$S(\rho_{L_1} || \rho_{L_2}) = \sum_i p_i \Big(\log p_i - \sum_i |S_{i,j}|^2 \log p_j \Big)$$

- this comes about because, although the diagonal forms of ρ_{L_1} and ρ_{L_2} are the same, they are diagonal in *different bases*
- so generally, relative entropy can be used as a basis independent measure of the distinguishability of components

SU(2)_k: 3-component links

6_3^3 is again GHZ-like

can be distinguished from 3-chain by looking at relative entropies 6³₂ (Borromean rings) have zero Gauss linking, but are W-like

i.e., tracing over any component gives a state that is still entangled

for 3-qubit states, there are two distinct classes of states, GHZ and W, which cannot be transformed into one another by local quantum operations

$$|W
angle = rac{1}{\sqrt{3}} \Big(|001
angle + |010
angle + |100
angle \Big) \qquad tr_1|W
angle \langle W| = rac{1}{3} \Big(|00
angle + (|01
angle + |10
angle))(\langle 01| + \langle 10|)\Big)$$

(still entangled)

Summary

- it is a compelling idea (and not original to us) that quantum entanglement should be related to topological entanglement
 - this is realized directly in 3d CS
- multi-boundary link states in TQFT₃ gives a useful multi-partite system that can be studied using entanglement notions
 - entanglement entropy is a framing-independent link invariant
 - other entanglement measures can be used to study properties of a given state, such as the distinguishability of link components
 - in the case of 3-component links, both GHZ- and W-type are found
- continuing to explore notions of multi-partite entanglement

Summary₂

- perhaps ideas of quantum information theory can be used to useful effect in knot theory
 - and vice versa
 - e.g., there are infinite classes of non-trivial links that are not distinguished by their Jones polynomial
 - perhaps entanglement invariants can be used here
 - there are various conjectures that might be informed by entanglement inequalities

Summary₃

- can this be useful for 3d gravity?
 - would be interesting to extend the analysis to $SL(2, \mathbb{C})$
 - one quickly gets embroiled in problems due to non-compactness
 - nevertheless, one might hope to find a geometric interpretation for multi-boundary entanglement in general
 - in this context, many links are *hyperbolic* they admit a geodesically complete hyperbolic metric on the link complement
 - in this context, there is the volume conjecture, concerning the behaviour of the Jones polynomial at large k [Kashaev '97, Gukov '04]
 - it seems plausible that quantum information theory might lead to insight into such subjects, and that motivated by Bekenstein-Hawking and Ryu-Takayanagi, the entropies might be related to volumes of some minimal surface/horizon

