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Multi-partite Entanglement

Entanglement Structure

- of basic interest are the patterns of entanglement in any quantum 
theory, especially quantum field theories

• in gauge/gravity duality, expected to play a central role in ‘bulk 
emergence’

• in condensed matter physics, a primary observable especially in 
topological states of matter

- entanglement inequalities, such as the positivity and monotonicity of 
relative entropy, play a powerful role, constraining QFTs in 
interesting ways
• recent work on establishing ANEC is but one example

- reducing to the simplest terms, patterns of entanglement are 
understood generally only for two and three qubit systems
• studies of multi-partite systems are needed
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Multi-partite Entanglement

Bi-partite entanglement

- often in QFT, interested in spatial entanglement
• standard construction presupposes 

- for a state       on    , trace over degrees of freedom in 
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Multi-partite Entanglement

Bi-partite entanglement

- works well for some QFTs, such as scalars and spinor fields

- it doesn’t work for gauge theories, as the Hilbert space does not 
factorize

- observables aren’t generally local
• cutting and gluing of regions involves degrees of freedom on cut

- in 3d CS, this is particularly familiar

• bulk is topological, but WZW on 1+1 edges
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Multi-partite Entanglement

3d Chern-Simons

- the non-factorizability of the Hilbert space is strikingly evident here
• think of C-S theory on 3-mfld (locally) of the form
• path integral over half-spacetime with (space-like) boundary     gives a 

wave-functional (half-spacetime ~ solid    )
• thus associate a Hilbert space        to 

• the various states in        correspond to non-trivial Wilson loops 
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Multi-partite Entanglement

3d C-S and Bi-partite entanglement

- nevertheless, bi-partite entanglement is well understood in 3d C-S

- Rényi entropies all equal

- topological entanglement can be computed using ‘surgery’ methods 
and the replica trick, allowing for bypassing gauge issues
• depends on data of dual CFT (modular S-matrix, etc.)
• depends on choice of state, topological class of entanglement cut
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Multi-partite Entanglement

Multi-partite entanglement

- in that context, the spatial Riemann surface was assumed to be 
connected, and entanglement was associated with cutting that surface

- more generally, we can consider the spatial Riemann surface to be a 
disjoint union of Riemann surfaces

- gives a multi-partite system, with 

- recently, such a construction was studied in 
• CFT on (S1)n; dual to multi-boundary wormholes
• study entanglement via RT
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Multi-partite Entanglement

Multi-partite entanglement

- here, we wish to study this directly in field theory
• generally very difficult, but expect significant simplification in TQFTs
• here, we confine attention to 3d C-S theories, with gauge group         or
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Multi-partite Entanglement

Multi-boundary states in CS3

- a simple way to generate such manifolds is to start with a closed 3-
manifold X (e.g. S3) and an n-component link      in X

- fatten each component into a tubular neighbourhood, yielding 

- the link complement                              is a 3-mfld with n-
component boundary

- CS path integral on         gives a state 
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Multi-partite Entanglement

Hilbert Spaces for CS

- the basic thing to understand is the Hilbert space on a torus T2 
• choose a basis of cycles 
• space-time is solid torus, cycle    contractible
• Wilson loops supported on 

- do CS path integral with Wilson loop in rep     on 
•     associated with 

- here,      refer to the integrable representations, associated with 
U(1) or SU(2) characters 

- in this sense, Hilbert spaces are finite dimensional
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Multi-partite Entanglement

Link Complement States

- returning to an n-component link complement, we write

- ‘wavefunctions’ are coloured link invariants

- we will study entanglement measures for simple partitions of the 
link components
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Multi-partite Entanglement

Why is this Interesting?

- in some sense (that we will explore), quantum entanglement is 
correlated with topological entanglement

- the first manifestation of this is seen if we take the loops to be 
unlinked

• in this case, the coloured link invariant factorizes
• so the corresponding state is a product state, all entanglement entropies 

vanish

- we conclude that entanglement should detect topological linking
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Multi-partite Entanglement

Why is this Interesting?

- the entanglement entropy (and other similar observables) is a 
topological invariant

• in fact, it satisfies an important technical property, that is, it is framing 
independent

• the coloured link invariants require a choice to be made for the     cycle

• this corresponds to a unitary transformation on states, and so does not affect 
entanglement observables

- so we will study how quantum entanglement encodes topological 
entanglement by studying a series of examples
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Multi-partite Entanglement

Abelian case 

- for the Abelian case, it turns out that all states can be computed in 
closed form

• depends only on the Gauss linking number of components

• here we have used the framing independence to set self-linking

- recall that generally we will consider partitioning
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Multi-partite Entanglement

U(1)k: two-component links

- in this case, just one linking number

- tracing over the L2, we obtain

- this matrix element vanishes unless
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Multi-partite Entanglement

U(1)k: two-component links

- to compute entanglement entropy, we can directly compute      and 
determine its spectrum of eigenvalues 

- the form of     depends on 
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Multi-partite Entanglement

U(1)k: two-component links

- for example, the unlink gives zero entropy, while the Hopf link gives

- thus the Hopf link is a maximally entangled state

• analogous to a Bell pair

- alternative derivation: replica trick — compute Rényi entropies
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Multi-partite Entanglement

U(1)k: n-component links

- for n-component links, we partition (m|n-m)

- find entanglement entropy

- where G is the linking matrix between     and 

-            = # solutions to
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Multi-partite Entanglement

U(1)k: n-component links

- in the (1|1) case,                                   , but more generally a 
concrete formula is not available

- but at least we can say: 
• entanglement entropy for (m|n) vanishes iff 

• so Abelian quantum entanglement detects Gauss linking between 
sublinks
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Multi-partite Entanglement

Entanglement for SU(2)k link states

- entanglement link invariants for non-Abelian CS theories probe 
more precise information about link states

• unfortunately, there is no known general formula for the state 
corresponding to a generic link

• so we are forced to try to draw conclusions from studying example by 
example

- again, the Hopf link is a maximally entangled state

- where S is the (unitary) modular S-matrix (implements                 ) 
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Multi-partite Entanglement

SU(2)k: Hopf links

- tracing over the second loop gives a reduced density matrix
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Multi-partite Entanglement

SU(2)k: Whitehead (   ) link

- this is a 2-component link, with Gauss linking number zero

- so, in the Abelian case, we get zero entanglement entropy upon 
reducing one of the link components

- for SU(2)k, this can be computed systematically, and the 
entanglement entropy does not vanish
• computation simplified by knot theory formula 

      due to K. Habiro
• SU(2)k has access to more information about links
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Multi-partite Entanglement

SU(2)k: “Hopf-linked knots”

- entanglement entropy depends on knotting of individual 
components

- (recall Abelian version was insensitive to details of knot)
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Multi-partite Entanglement

SU(2)k:  3-component links

- 3-chain: reduction on any of the three components gives the same 
entropy, determined by quantum dimensions

- this link state is GHZ-like:
• trace over any link gives a separable state (unentangled mixed state)
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Multi-partite Entanglement

SU(2)k:  3-chain

- so entanglement entropy does not distinguish the components of 
the 3-chain, even though they are clearly inequivalent

- relative entropy for different traces can be employed to study this

- here one finds

- this comes about because, although the diagonal forms of       and  
are the same, they are diagonal in different bases

- so generally, relative entropy can be used as a basis independent 
measure of the distinguishability of components
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SU(2)k:  3-component links

      is again GHZ-like

can be distinguished from 3-chain 
by looking at relative entropies

Multi-partite Entanglement 26

633      (Borromean rings) have zero 
Gauss linking, but are W-like

i.e., tracing over any component 
gives a state that is still entangled

for 3-qubit states, there are two distinct classes of states, GHZ and W, which 
cannot be transformed into one another by local quantum operations
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Multi-partite Entanglement

Summary

- it is a compelling idea (and not original to us) that quantum 
entanglement should be related to topological entanglement

• this is realized directly in 3d CS 

- multi-boundary link states in TQFT3 gives a useful multi-partite 
system that can be studied using entanglement notions
• entanglement entropy is a framing-independent link invariant
• other entanglement measures can be used to study properties of a given 

state, such as the distinguishability of link components
• in the case of 3-component links, both GHZ- and W-type are found

- continuing to explore notions of multi-partite entanglement
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Multi-partite Entanglement

Summary2

- perhaps ideas of quantum information theory can be used to useful 
effect in knot theory

• and vice versa
• e.g., there are infinite classes of non-trivial links that are not distinguished 

by their Jones polynomial
• perhaps entanglement invariants can be used here

• there are various conjectures that might be informed by entanglement 
inequalities
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Multi-partite Entanglement

Summary3

- can this be useful for 3d gravity?
• would be interesting to extend the analysis to             
• one quickly gets embroiled in problems due to non-compactness
• nevertheless, one might hope to find a geometric interpretation for 

multi-boundary entanglement in general
• in this context, many links are hyperbolic — they admit a geodesically complete 

hyperbolic metric on the link complement

• in this context, there is the volume conjecture, concerning the behaviour of the 
Jones polynomial at large k

• it seems plausible that quantum information theory might lead to insight 
into such subjects, and that motivated by Bekenstein-Hawking and Ryu-
Takayanagi, the entropies might be related to volumes of some minimal 
surface/horizon
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