Multi-boundary / multi-partite Entanglement in Chern-Simons Theories

Rob Leigh
University of Illinois at Urbana-Champaign

based on arXiv:|6||.05460,
with V. Balasubramanian, J. Fliss, O. Parrikar

$\mathbb{1}_{\text {I L L I N O I }}$

Jo'burg Workshop on Black holes and Entanglement

Entanglement Structure

- of basic interest are the patterns of entanglement in any quantum theory, especially quantum field theories
- in gauge/gravity duality, expected to play a central role in 'bulk emergence'
- in condensed matter physics, a primary observable especially in topological states of matter
- entanglement inequalities, such as the positivity and monotonicity of relative entropy, play a powerful role, constraining QFTs in interesting ways
- recent work on establishing ANEC is but one example [1605.08072]
- reducing to the simplest terms, patterns of entanglement are understood generally only for two and three qubit systems
- studies of multi-partite systems are needed

Bi-partite entanglement

- often in QFT, interested in spatial entanglement
- standard construction presupposes $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{\bar{A}}$

- for a state $|\Psi\rangle$ on Σ, trace over degrees of freedom in \bar{A}
\longrightarrow reduced density matrix $\hat{\rho}_{A}$

$$
S^{(\alpha)}(A)=\frac{1}{1-\alpha} \log \operatorname{tr}_{\mathcal{H}_{A}} \hat{\rho}_{A}^{\alpha}
$$

Rényi entropies

$$
S_{E E}(A)=-\operatorname{tr}_{\mathcal{H}_{A}} \hat{\rho}_{A} \log \hat{\rho}_{A}
$$

entanglement entropy

Bi-partite entanglement

- works well for some QFTs, such as scalars and spinor fields
- it doesn't work for gauge theories, as the Hilbert space does not factorize

- observables aren't generally local
- cutting and gluing of regions involves degrees of freedom on cut
- in 3d CS, this is particularly familiar
- bulk is topological, but WZW on I+I edges

3d Chern-Simons

- the non-factorizability of the Hilbert space is strikingly evident here
- think of C-S theory on 3-mfld (locally) of the form $M_{3} \sim \mathbb{R} \times \Sigma$
- path integral over half-spacetime with (space-like) boundary Σ gives a wave-functional (half-spacetime \sim solid Σ)
- thus associate a Hilbert space \mathcal{H}_{Σ} to Σ
- the various states in $\mathcal{H}_{\Sigma \text { correspond to non-trivial Wilson loops }}$

$$
\begin{gathered}
\text { e.g., } \quad S^{2}=D^{2} \cup D^{2} \\
\operatorname{dim} \mathcal{H}_{S^{2}}=1 \quad \text { but } \quad \operatorname{dim} \mathcal{H}_{D^{2}}>1 \\
\text { so } \\
\mathcal{H}_{S^{2}} \subset \mathcal{H}_{D^{2}} \otimes \mathcal{H}_{D^{2}}
\end{gathered}
$$

3d C-S and Bi-partite entanglement

- nevertheless, bi-partite entanglement is well understood in 3d C-S

- Rényi entropies all equal
- topological entanglement can be computed using 'surgery' methods and the replica trick, allowing for bypassing gauge issues
- depends on data of dual CFT (modular S-matrix, etc.)
- depends on choice of state, topological class of entanglement cut

Multi-partite entanglement

- in that context, the spatial Riemann surface was assumed to be connected, and entanglement was associated with cutting that surface
- more generally, we can consider the spatial Riemann surface to be a disjoint union of Riemann surfaces

- gives a multi-partite system, with

$$
\mathcal{H}=\otimes_{j} \mathcal{H}_{\Sigma_{j}}
$$

- recently, such a construction was studied in $A d S_{3} / C F T_{2}$
- CFT on (S') ${ }^{\text {n }}$; dual to multi-boundary wormholes
- study entanglement via RT

Multi-partite entanglement

- here, we wish to study this directly in field theory
- generally very difficult, but expect significant simplification in TQFTs
- here, we confine attention to 3 d C-S theories, with gauge group $U(1)$ or

$$
S_{C S}[A]=\frac{k}{4 \pi} \int_{M_{3}} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A^{3}\right)
$$

$$
\begin{aligned}
\Psi\left[A_{(0)}\right] & =\left.\int_{A}\right|_{\Sigma}=A_{(0)}[D A] e^{-S_{C S}[A]} \\
\partial M_{3} & =\Sigma=\Sigma_{1} \cup \ldots \cup \Sigma_{n}
\end{aligned}
$$

Multi-boundary states in CS_{3}

- a simple way to generate such manifolds is to start with a closed 3manifold X (e.g. S^{3}) and an n-component link \mathcal{L}^{n} in X

$$
\mathcal{L}^{n}=L_{1} \cup L_{2} \cup \ldots \cup L_{n}
$$

- fatten each component into a tubular neighbourhood, yielding $N\left(\mathcal{L}^{n}\right)$
- the link complement $M_{(n)}=S^{3} \backslash N\left(\mathcal{L}^{n}\right)$ is a 3-mfld with ncomponent boundary
- CS path integral on $M_{(n)}$ gives a state $\left|\mathcal{L}^{n}\right\rangle \in \otimes_{j} \mathcal{H}\left(T^{2}\right)_{j}$

Hilbert Spaces for CS

- the basic thing to understand is the Hilbert space on a torus T^{2}
- choose a basis of cycles m, ℓ
- space-time is solid torus, cycle m contractible
- Wilson loops supported on ℓ

- do CS path integral with Wilson loop in rep R_{j} on $\ell \longrightarrow$ state $|j\rangle$
- $\langle j|$ associated with R_{j}^{*}

$$
\left\langle j \mid j^{\prime}\right\rangle=\delta_{j, j^{\prime}}
$$

- here, R_{j} refer to the integrable representations, associated with $\mathrm{U}(1)$ or $\mathrm{SU}(2)$ characters

$$
\begin{array}{cc}
S U(2)_{k}: & j=0, \frac{1}{2}, 1, \ldots, \frac{k}{2} \\
U(1)_{k}: & q=0,1, \ldots, k-1
\end{array}
$$

- in this sense, Hilbert spaces are finite dimensional

Link Complement States

- returning to an n-component link complement, we write

$$
\begin{aligned}
& \left|\mathcal{L}^{n}\right\rangle=\sum_{j_{1}, \ldots, j_{n}} C_{\mathcal{L}^{n}}\left(j_{1}, \ldots, j_{n}\right)\left|j_{1}\right\rangle \otimes \ldots \otimes\left|j_{n}\right\rangle \\
& C_{\mathcal{L}^{n}}\left(j_{1}, \ldots, j_{n}\right)=\left\langle W_{R_{j_{1}}^{*}}\left(L_{1}\right) \ldots W_{R_{j_{n}}^{*}}\left(L_{n}\right)\right\rangle_{S^{3}}
\end{aligned}
$$

- 'wavefunctions' are coloured link invariants
- we will study entanglement measures for simple partitions of the link components

$$
\begin{gathered}
\mathcal{L}^{n}=\mathcal{L}_{A}^{m} \cup \mathcal{L}_{\bar{A}}^{n-m} \quad \mathcal{L}_{A}^{m}=L_{1} \cup \ldots \cup L_{m} \\
\rho_{A}=\frac{1}{\left\langle\mathcal{L}^{n} \mid \mathcal{L}^{n}\right\rangle} \operatorname{Tr}_{\mathcal{L}_{\bar{A}}}\left|\mathcal{L}^{n}\right\rangle\left\langle\mathcal{L}^{n}\right|
\end{gathered}
$$

Why is this Interesting?

- in some sense (that we will explore), quantum entanglement is correlated with topological entanglement
- the first manifestation of this is seen if we take the loops to be unlinked

- in this case, the coloured link invariant factorizes
- so the corresponding state is a product state, all entanglement entropies vanish
- we conclude that entanglement should detect topological linking

Why is this Interesting?

- the entanglement entropy (and other similar observables) is a topological invariant
- in fact, it satisfies an important technical property, that is, it is framing independent
- the coloured link invariants require a choice to be made for the ℓ cycle
- this corresponds to a unitary transformation on states, and so does not affect entanglement observables
- so we will study how quantum entanglement encodes topological entanglement by studying a series of examples

Abelian case

- for the Abelian case, it turns out that all states can be computed in closed form
- depends only on the Gauss linking number of components

$$
\left|\mathcal{L}^{n}\right\rangle=\sum_{q_{1}, \ldots, q_{n}} \exp \left(\frac{2 \pi i}{k} \sum_{i<j} q_{i} q_{j} \ell_{i j}\right)\left|q_{1}\right\rangle \otimes \ldots \otimes\left|q_{n}\right\rangle
$$

- here we have used the framing independence to set self-linking $\ell_{j j} \rightarrow 0$
- recall that generally we will consider partitioning

$$
\begin{gathered}
\mathcal{L}^{n}=\mathcal{L}_{A}^{m} \cup \mathcal{L}_{\bar{A}}^{n-m} \quad \mathcal{L}_{A}^{m}=L_{1} \cup \ldots \cup L_{m} \\
\rho_{A}=\frac{1}{\left\langle\mathcal{L}^{n} \mid \mathcal{L}^{n}\right\rangle} \operatorname{Tr}_{\mathcal{C}_{\bar{A}}}\left|\mathcal{L}^{n}\right\rangle\left\langle\mathcal{L}^{n}\right|
\end{gathered}
$$

$\mathrm{U}(\mathrm{I})_{k}$: two-component links

- in this case, just one linking number

$$
\left|\mathcal{L}^{2}\right\rangle=\frac{1}{k} \sum_{q_{1}, q_{2}=0}^{k-1} \exp \left(\frac{2 \pi i}{k} q_{1} q_{2} \ell_{12}\right)\left|q_{1}\right\rangle \otimes\left|q_{2}\right\rangle
$$

- tracing over the L_{2}, we obtain

$$
\begin{gathered}
\rho_{1}=\operatorname{Tr}_{L_{2}}\left|\mathcal{L}^{2}\right\rangle\left\langle\mathcal{L}^{2}\right| \\
\left\langle q_{1}\right| \rho_{1}\left|q_{1}^{\prime}\right\rangle=\frac{1}{k^{2}} \sum_{q_{2}=0}^{k-1} e^{2 \pi i\left(q_{1}-q_{1}^{\prime}\right) \ell_{12} q_{2} / k} \equiv \frac{1}{k} \eta_{q_{1}, q_{1}^{\prime}}\left(k, \ell_{12}\right)
\end{gathered}
$$

- this matrix element vanishes unless

$$
\left(q_{1}-q_{1}^{\prime}\right) \ell_{12}=0(\bmod k)
$$

$\mathrm{U}(\mathrm{I})_{k}$: two-component links

- to compute entanglement entropy, we can directly compute ρ_{1} and determine its spectrum of eigenvalues $\left\{p_{j}, j=1, \ldots, k\right\}$

$$
S_{E E}=-\sum_{j=1}^{k} p_{j} \log p_{j}
$$

- the form of ρ_{1} depends on $g=\operatorname{gcd}\left(k, \ell_{12}\right)$

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 1 & \cdots \\
\vdots & \ddots & \\
1 & & 1
\end{array}\right)_{g \times g} \otimes\left(\begin{array}{ccc}
1 & 0 & \cdots \\
0 & 1 & \cdots \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right)_{\substack{\frac{k}{g} \times \frac{k}{g}}} \\
S_{E E}=\log \left(\frac{k}{\operatorname{gcd}\left(k, \ell_{12}\right)}\right)
\end{gathered}
$$

$\mathrm{U}(\mathrm{I})_{k}$: two-component links

$$
S_{E E}=\log \left(\frac{k}{\operatorname{gcd}\left(k, \ell_{12}\right)}\right)
$$

- for example, the unlink gives zero entropy, while the Hopf link gives

$$
S_{E E}^{\text {Hopf }}=\log k
$$

- thus the Hopf link is a maximally entangled state
- analogous to a Bell pair
- alternative derivation: replica trick - compute Rényi entropies

$\mathrm{U}(\mathrm{I})_{\mathrm{k}}$: n-component links

- for n-component links, we partition (m|n-m)
- find entanglement entropy

$$
S_{E E}^{(m \mid n-m)}=\log \frac{k^{m}}{|\operatorname{ker} G|}
$$

- where G is the linking matrix between A and \bar{A}

$$
\mathbf{G}=\left(\begin{array}{cccc}
\ell_{1, m+1} & \ell_{2, m+1} & \cdots & \ell_{m, m+1} \\
\ell_{1, m+2} & \ell_{2, m+2} & \cdots & \ell_{m, m+2} \\
\vdots & \vdots & & \vdots \\
\ell_{1, n} & \ell_{2, n} & \cdots & \ell_{m, n}
\end{array}\right)
$$

"Diophantine equations"

- $|\operatorname{ker} G|=\#$ solutions to $G \cdot \vec{x}=0(\bmod k), \quad \vec{x} \in \mathbb{Z}_{k}^{m}$

$\mathrm{U}(\mathrm{I})_{\mathrm{k}}$: -component links

- in the (I|I) case, \mid ker $G \mid=\operatorname{gcd}\left(k, \ell_{12}\right)$, but more generally a concrete formula is not available

- but at least we can say:
- entanglement entropy for $(\mathrm{m} \mid \mathrm{n})$ vanishes iff $G=0(\bmod k)$
- so Abelian quantum entanglement detects Gauss linking between sublinks

Entanglement for $\mathrm{SU}(2)_{\mathrm{k}}$ link states

- entanglement link invariants for non-Abelian CS theories probe more precise information about link states
- unfortunately, there is no known general formula for the state corresponding to a generic link
- so we are forced to try to draw conclusions from studying example by example
- again, the Hopf link is a maximally entangled state

$$
|H o p f\rangle=\frac{1}{\sqrt{k+1}} \sum_{j_{1}, j_{2}} S_{j_{1}, j_{2}}\left|j_{1}\right\rangle \otimes\left|j_{2}\right\rangle
$$

- where S is the (unitary) modular S -matrix (implements $\tau \rightarrow-1 / \tau$)

$$
S_{j_{1}, j_{2}}=\sqrt{\frac{2}{k+2}} \sin \left(\frac{\left(2 j_{1}+1\right)\left(2 j_{2}+1\right) \pi}{k+2}\right)
$$

SU(2) ${ }_{k}$: Hopf links

$$
|H o p f\rangle=\frac{1}{\sqrt{k+1}} \sum_{j_{1}, j_{2}} S_{j_{1}, j_{2}}\left|j_{1}\right\rangle \otimes\left|j_{2}\right\rangle
$$

- tracing over the second loop gives a reduced density matrix

$$
\begin{array}{r}
\left\langle j_{1}\right| \hat{\rho}_{1}\left|j_{1}^{\prime}\right\rangle=\frac{1}{k+1} \sum_{j_{1}, j_{2}} S_{j_{1}, j_{2}}^{*} S_{j_{1}^{\prime}, j_{2}}=\frac{1}{k+1} \delta_{j_{1}, j_{1}^{\prime}} \\
\quad S_{E E}^{H o p f}= \\
\log (k+1) \\
\quad \text { maximally entangled }
\end{array}
$$

$\mathrm{SU}(2)_{\mathrm{k}}$:Whitehead (5_{1}^{2}) link

- this is a 2-component link, with Gauss linking number zero

- so, in the Abelian case, we get zero entanglement entropy upon reducing one of the link components
- for $\operatorname{SU}(2)_{k}$, this can be computed systematically, and the entanglement entropy does not vanish
- computation simplified by knot theory formula due to K. Habiro
- $S U(2)_{k}$ has access to more information about links

SU(2)k:"Hopf-linked knots"

- entanglement entropy depends on knotting of individual components

Wilson loop on $\mathrm{K}_{\text {I }}$

$$
S_{E E ; 1}=-\sum_{j} p_{j} \log p_{j} \quad p_{j}=\frac{\left|C_{K_{1}}(j) / S_{o j}\right|^{2}}{\sum_{j^{\prime}}\left|C_{K_{1}}\left(j^{\prime}\right) / S_{o j^{\prime}}\right|^{2}}
$$

- (recall Abelian version was insensitive to details of knot)

SU(2)k: 3-component links

- 3-chain: reduction on any of the three components gives the same entropy, determined by quantum dimensions

- this link state is GHZ-like:
- trace over any link gives a separable state (unentangled mixed state)

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) \quad \operatorname{tr}_{1}|G H Z\rangle\langle G H Z|=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 11|)
$$

SU(2)k: 3-chain

- so entanglement entropy does not distinguish the components of the 3-chain, even though they are clearly inequivalent
- relative entropy for different traces can be employed to study this

$$
S(\rho \| \sigma)=\operatorname{tr} \rho \log \rho-\operatorname{tr} \rho \log \sigma
$$

- here one finds

$$
S\left(\rho_{L_{1}}| | \rho_{L_{2}}\right)=\sum_{i} p_{i}\left(\log p_{i}-\sum_{j}\left|S_{i, j}\right|^{2} \log p_{j}\right)
$$

- this comes about because, although the diagonal forms of $\rho_{L_{1}}$ and $\rho_{L_{2}}$ are the same, they are diagonal in different bases
- so generally, relative entropy can be used as a basis independent measure of the distinguishability of components

SU(2)k: 3-component links

6_{3}^{3} is again GHZ-like

can be distinguished from 3-chain by looking at relative entropies
6_{2}^{3} (Borromean rings) have zero Gauss linking, but are W-like

i.e., tracing over any component gives a state that is still entangled
for 3 -qubit states, there are two distinct classes of states, GHZ and W , which cannot be transformed into one another by local quantum operations

$$
|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle) \quad \operatorname{tr}_{1}|W\rangle\langle W|=\frac{1}{3}(|00\rangle+(|01\rangle+|10\rangle)(\langle 01|+\langle 10|))
$$

(still entangled)

Summary

- it is a compelling idea (and not original to us) that quantum entanglement should be related to topological entanglement
- this is realized directly in 3d CS
- multi-boundary link states in TQFT_{3} gives a useful multi-partite system that can be studied using entanglement notions
- entanglement entropy is a framing-independent link invariant
- other entanglement measures can be used to study properties of a given state, such as the distinguishability of link components
- in the case of 3-component links, both GHZ- and W-type are found
- continuing to explore notions of multi-partite entanglement

Summary ${ }_{2}$

- perhaps ideas of quantum information theory can be used to useful effect in knot theory
- and vice versa
- e.g., there are infinite classes of non-trivial links that are not distinguished by their Jones polynomial
- perhaps entanglement invariants can be used here
- there are various conjectures that might be informed by entanglement inequalities

Summary $_{3}$

- can this be useful for 3d gravity?
- would be interesting to extend the analysis to $\operatorname{SL}(2, \mathbb{C})$
- one quickly gets embroiled in problems due to non-compactness
- nevertheless, one might hope to find a geometric interpretation for multi-boundary entanglement in general
- in this context, many links are hyperbolic - they admit a geodesically complete hyperbolic metric on the link complement
- in this context, there is the volume conjecture, concerning the behaviour of the Jones polynomial at large k
[Kashaev '97, Gukov '04]
- it seems plausible that quantum information theory might lead to insight into such subjects, and that motivated by Bekenstein-Hawking and RyuTakayanagi, the entropies might be related to volumes of some minimal surface/horizon

