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• In General Relativity any observer is associated with a coordinate

system, the way we parameterize spacetime.

• Equivalence Principle is the pillar of GR and states that physics

should be independent of the observer.

• Equivalence principle in the formulation of GR is made manifest in

General Covariance:

– Dynamical equations should be covariant under general coordi-

nate transformations,

– all physical observables should be of the form of local diffeo-

morphism invariant quantities.
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• GR solutions may in general have causally disconnected regions

separated by a horizon.

• Horizons divide the spacetime into two regions, in and out (or may

be back and forth).

• Horizons are not necessarily an essential property of spacetime,

they depend both on spacetime and the observer.

• The simplest and most important case of observer dependent hori-

zon is Rindler horizon, associated with a uniformly accelerated ob-

server moving in flat Minkowski spacetime.
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• There are cases where horizon is an essential property of spacetime,
visible to a large class of observers, especially all of those sitting
at infinity, or any observer who is sitting outside the horizon.

• Such horizons are called event horizon.

• To us, black holes are spacetimes with event horizon.

• Equivalence principle implies that there are infalling observers who
pass the event horizon without even noting it.

• These observers at the horizon are locally Rindler observers, for
whom spacetime is locally flat.

• Acceleration of these observers is called surface gravity.
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• Black holes as solutions of GR can dynamically form from usual

matter fields within GR dynamics through gravitational collapse.

• Black holes are usually unique solutions to GR equations if we

impose some mild symmetries like stationarity and/or axisymmetry

and specify asymptotic behavior.

• All details of the information of the matter disappears due to the

collapse; gravitational collapse behaves like an information eraser.
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Black holes and thermodynamics

• Since early 1970’s and works of J. Bekenstein & Bardeen-Carter-

Hawking, it is established that black holes have an entropy and

they obey laws of black hole thermodynamics.

• The Bekenstein-Hawking entropy is proportional to horizon area

and the temperature to surface gravity.

• Considering quantum field theory on a classical black hole back-

ground leads to radiation [Hawking (1975)].
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• Emerging picture:

– Semiclassical black holes behave like a usual-standard thermo-
dynamical system.

– Black hole formation is a thermalization process.

– It generates an entropy which is proportional to the horizon area,
unlike usual thermodynamic systems.

– Within classical GR, black holes can form and evaporate.

• Hawking radiation generically lasts until black hole (completely)
evaporates.

• Process of formation and evaporation of black hole is not described
by a unitary S-matrix.
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• Noting that

– Decoupling of scales seems to be a cornerstone of all physical

formluations, and

– energy scale in which quantum gravity effects become important

seems to be Planckian,

• quantum gravity seems to be irrelevant to the Hawking process and

to the information paradox.

• The resolution is then to view black hole as thermodynamic limit

of an underlying microscopic system with unitary dynamics.
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Black Hole Microstates

• Classical Einstein GR cannot accommodate black hole microstates

(recall uniqueness theorems).

• One needs to go beyond classical GR......

• But this is generically against the lores mentioned above.

• Black hole problem may be viewed as a window to quantum gravity.

• E.g., in string theory, AdS/CFT or loop quantum gravity this has

been used as a crucial check.
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• It is apparent that strict classical GR does not bear a solution to

identification of black hole microstates.

• It is more desirable to find a semiclassical resolution, rather than a

full quantum one, something like “Bohr atom.”

• If possible we may also get a better handle on the quantum gravity.

• The idea we try to realize here is

black hole microstates can be identified within semiclassical GR,

with relaxing a bit, the strict statement of general covariance.
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Einstein Equivalence Principle needs a refinement

• There are various arguments and analyses indicating that the strict
statement of the general covariance should be relaxed and revised.

• Certain geometries which are diffeomorphic to each other are phys-
ically distinct.

• These geometries are labelled by conserved charges associated with
the very particular subset of residual diffeomorphisms.

• These charges are given by surface integrals and are in general
non-local physical observables.

• Therefore, these are not in violation of equivalence principle, which
is meant for local physical quantities.
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Einstein Equivalence Principle needs a refinement

• That is, there are (infinitely many) distinct geometries associated
with a black hole solution with a given mass, angular momentum
and electric charge.

• Not all such geometries may be called black hole microstates: if a
distant observer can see and distinguish them they may not qualify
as microstates of the same black hole.

• However, there are conserved surface charges associated with the
horizon, defined only in the near horizon region.

• The idea may then be refined, considering the near horizon vs
elsewhere (roughly asymptotic) charges.
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Horizon Fluff, Sketch of the proposal

Black hole microstates are labelled by the set of charges defined only

on the horizon which are not distinguishable by generic observers

outside the horizon.

• We need to identify the near horizon (NH) and black hole asymp-

totic (Asymp.) charges and their algebra.

• Construct all states charged under these algebras.

• Check which of them qualify as microstate defined above.

We explicitly carry this out in a simple toy model of 3d black holes.
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Horizon Fluff at work: Example of 3d black holes

• To explicitly show how this idea works we focus on the simplified

example of AdS3 black holes.

• AdS3 gravity:

S =
1

16πG

∫
d3x
√
−g(R−

2

`2
), Rµν = −

2

`2
gµν,

is the right place to ask these questions. While it does not have

propagating gravitons, it has non-trivial black hole solutions.

• It has two parameters of dimension length: G, `.
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Horizon Fluffs at work: Introduction to BTZ black holes

• Metric in BTZ coordinates

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dφ−

r+r−
`r2

dt)2

f(r) =
(r2 − r2

−)(r2 − r2
+)

`2r2

• BTZ black holes are described by two parameters r± or mass M

and angular momentum J:

∆± =
1

2
(`M ± J) =

1

16G`
(r+ ± r−)2

• BTZ black holes are locally AdS3.

16



• Their (bifurcation surface of) horizon is a circle of radius r±, and

SBekenstein-Hawking =
2πr+

4G

• Their (horizon) temperature and angular velocity are

T =
r2

+ − r
2
−

2π`2r+
, Ω =

r−
`r+

; β± =
r+ ± r−

2`
=

1

π`T
(1∓ `Ω)

• They satisfy the first law and Smarr relation

TdS = dM −ΩdJ, TS = 2(M −ΩJ)
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Phase Space of AdS3 black holes

• Metric for the most general locally BTZ geometry is

ds2 =
`2dw2

w2
−
(
wA+ −

`2A−
w

)(
wA− −

`2A+

w

)
.

• One-forms A± are defined as

A± = ζ±dt± J±dϕ , ζ± = ζ±(t, ϕ), J± = J±(t, ϕ)

• The two arbitrary functions ζ±, J± are subject to Einstein field

equations

dA± = 0.

The most general solution is hence specified by two functions.
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Phase Space of AdS3 black holes, Canonical descritpion

• Solutions with

ζ± = const., J± = J±(ϕ)

define canonical phase space of black holes.

• These are black holes with

T± = ζ±

• Smoothness (absence of conical deficit outside the horizon):

`ζ± = J±0 ≡
1

2π

∫ 2π

0
dϕ J±(ϕ) .
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• These are family of black holes all with a given temperature

M =
1

4G

(
J+2

0 + J−2
0

)
J =

`

4G

(
J+2

0 − J−2
0

)
and

∆± =
`

4G
(J±0 )2, S =

π`

G
(J+

0 + J−0 )

• If J±0 are imaginary valued J0 = iν/2, these solutions correspond to

– conic deficits if ν ∈ (0,1)

– global AdS3 if ν = 1

• For both real or imaginary J±0 , we have a family of solutions, each
of specified by two functions J±0 (ϕ). While all locally AdS3, they
are distinct due to existence of conserve charges.
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AdS3 black holes, Microcanonical descritpion

• Solutions with

ζ± = J±, J± = J±(t/`± ϕ)

or

A± = J±0 dh±(x±) with h±(x±+ 2π) = h±(x±) + 2π .

define microcanonical phase space of black holes.

• These are black holes with given mass and angular momentum:

∆± =
`

4G
(J±0 )2, S =

π`

G
(J+

0 + J−0 )
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• Conserved charge of this family are

L±(x±) = J±0
2
h′±

2 −
1

2

h′′′±
h′±
−

3

2

(
h′′±
h′±

)2
 .

• These are obtained from solutions A± = J±0 dx± upon a coordinate

transformation

x± → h±(x±), h′ > 0

• One can show that the canonical family of black holes are mapped

to the Fefferman-Graham asymptotic form with

L± = J ′±+ J2
±.
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Canonical to Microcanonical map

• Canonical and microcanonical energy-momentum tensors are

LCan(φ) = J ′(φ) + J2(φ)

LmCan(φ) = J2
0h
′(φ)2 −

h′′′

2h′
+

3h′′2

4h′2
.

yielding

J(φ) = ±J0h
′(φ)−

1

2

h′′

h′

• It will become clear that, it is convenient to define a new field Φ:

Φ ≡
∫ φ

J = ±J0h−
1

2
lnh′.

• Since h′ > 0, log-term is always real-valued and well-defined and

Φ(φ+ 2π) = Φ(φ)± 2πJ0.
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Symplectic Symmetries of canonical phase space

� Asymptotic algebra for BTZ black holes

• J(Φ) functions constitute conserved charges associated with the
geometries, with commutation relation [Afshar et al, March 2016]

{J(ϕ1), J(ϕ2)} =
c

12
· 2π∂ϕδ(ϕ1 − ϕ2)

• Upon quantization, the Fourier modes

J(ϕ) =
∑
n∈Z

Jne
inϕ

satisfy creation-annihilation algebras

[J+
m,J

−
m] = 0, [J±m,J

±
n ] =

c

12
nδm,−n, c =

3`

2G
.

where c is the Brown-Henneaux central charge.
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• Canonical energy momentum tensor for the chiral 2d CFT at

Brown-Henneaux central charge with field Φ and its conjugate mo-

mentum J is

Ln = inJn +
6

c

∑
p∈Z

JpJn−p

• One may then verify that

[Ln,Lm] = (n−m)Lm+n +
c

12
n3δm,−n,

[Ln,Jm] = −mJm+n + i
c

12
m2δm,−n

• There are two chiral copies of these algebras.
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The BTZ Hilbert space HBTZ

States labelled by the asymptotic algebra are constructed as follows:

• Vacuum States

J±n |J±0 〉 = 0 (n > 0), J±0 |J
±
0 〉 = J±0 .

• All the other states are then a linear combination of

|{n±i }; J
±
0 〉 =

( ∏
{n±i }

J+

−n+
i

· J−
−n−i

)
|J±0 〉, n

±
i > 0, ∀|{n±i }; J

±
0 〉 ∈ HBTZ

• BTZ black hole state |BTZ〉 ∈ HBTZ, is defined as:

〈BTZ|J±n |BTZ〉 = J±0 δn,0, ∆± =
c

6
(J±0 )2,

from which we learn |BTZ〉 = |J±0 〉.
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• J0 can take imaginary values too. But the corresponding geome-
tries are not black holes.

• For J0 = ±iν/2 with ν ∈ (0,1),

– we have conic spaces (particles on AdS3) and,

– for ν = 1 we have global AdS3.

– states in the family of conic or global AdS3:

|{n±i }; ν
±〉 =

( ∏
{n±i }

J+

−n+
i

· J−
−n−i

)
|ν±〉, n±i > 0,

constitute HConic,HgAdS.

• We define

HCG = HConic ∪HgAdS
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More on Conic+golbal AdS3 states, Near Horizon algebra

• Desirable to understand better imaginary J0 (anti-hermitian J0).

• Also, J(φ) is not a primary field (w.r.t. L(φ)).

• The W(φ) field

W(φ) ≡ P

(
e
∫ φ J(φ)

)
is a priamry field of weight one.

• Twisted boundary condition:

W±(φ+ 2π) = e±2iνW±(φ), (W±)† = W∓
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• The most natural theory is then to view W± as conjugate momenta
to a canonical field for a chiral 2d CFT:

{W±ν(φ),W∓ν(φ′)} =
6π

c
∂φδ(φ− φ),

with Fourier modes

W±ν(φ) =
∑
n

W±νn ei(n±ν)φ.

• Quantized W fields:

[W±νn ,W±ν
′

m ] = 0, [W±νn ,W∓ν
′

m ] =
c

12
(n± ν) δ(ν − ν′)δn+m,0.

• ν is a real number in (0,1]. We assume quantization of ν in units
of 1/c, like a Bohr-atom type quantization.

ν =
r

c
, r = 1,2, · · · , c.

we expect this quantization to come out in a full quantum gravity
theory (e.g. in the example of D1D5 CFT).
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• One may then define

Jc(n±ν) ≡
√

6W±νn , ν =
1

c
,
2

c
, · · · ,1.

• One readily sees that

[Jm, Jm] = 0, [Jm, Jn] =
n

2
δm,−n,

Note that we have two copies, left and right modes, of J-algebra.

• One may then construct

Ln =
∑
p∈Z

:JpJn−p:

and verify that

[Ln,Lm] = (n−m)Lm+n +
1

12
(n3 − n)δm,−n,

[Ln, Jm] = −mJm+n
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Black holes as solitonic condenstates

• Jn algebra is exactly the same as Jn algebra, up to some normal-
ization. Both describe a free field representation of a chiral 2d
CFT.

• Nonetheless, Jn have been constructed from W’s which are non-
perturbative, non-local fields in terms of J ’s:

– W fields and hence the Jn are “good” for imaginary J0, the
conic+global AdS3 cases,

– while Jn are “good” for real J0 cases, the black holes.

• Jn algebra does not have any trace of the AdS3 background and
may also be found in the Rindler wedge [Afshar et al, Nov. 2016].
We will hence call it the NH algebra.
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Hilbert space of NH Algebra, NH soft hairs HCG

NH soft hair states are constructed as follows:

• Vacuum State

Jn|0〉 = 0 (n ≥ 0),

• One may check that L0|0〉 = 0.

• All the other states are then a linear combination of

|Ψ〉 =
( ∏
{n±i }

J+

−n+
i

· J−
−n−i

)
|0〉, n±i > 0, ∀|Ψ〉 ∈ HCG

• One can show that NH soft hair states in HCG are denoting the
states associated with Conical defect or Global AdS3 and their
Virasoro descendants.

32



The Horizon Fluff proposal

Main idea:

The BTZ black hole microstates are the set of all states in HCG

which have the same ∆±

Main input/remaining part:

Specify how Jn operators defined on HBTZ, are acting/defined on HCG

For the above we need a black hole NH/asymptotic duality

This is in the same spirit as Sine-Gordon–Thirring duality.
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Black hole NH/asymptotic duality

• Any Virasoro algebra at central charge c,

[Ln,Lm] = (n−m)Ln+m +
c

12
n3δn+m,

has a subalgebra at central charge cN , for any integer N :

L̃n ≡
1

N
LNn

then one may readily show

[L̃n, L̃m] = (n−m)L̃n+m +
cN

12
n3δn+m,

• The NH and BH Virasoro algebras respectively with c = 1 and
c = 3`/(2G) are also related by a similar relation, if c is an integer:

Ln =
1

c
Lnc n 6= 0, L0 =

1

c
(L0 − 1/24)
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• The above implies

1

c

∑
p∈Z

Jnc−pJp = iJn +
∑
p∈Z

Jn−pJp,

and relates/maps HBTZ onto HCG.

• The “asymptotic vacuum state” |J±0 〉 (which is nothing but a BTZ

state |BTZ〉) is a highly excited state in the NH Hilbert space HCG.

• One may exploite this to identify BTZ black hole microstates.
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BTZ black hole microstates

• We define BTZ black hole microstates |B〉 as states in HCG solving

〈B′|J±n |B〉 = J±0 δn,0 δB′,B, ∆± =
c

6
(J±0 )2.

• Recalling the Asympto. to NH embedding map, we get:

|B〉 =
(∏

J+

−n+
i

· J−
−n−i

)
|0〉,

∑
i n
±
i = c∆±

The black hole is a condensate of the NH fluffs.

For the case of BTZ black hole the horizon fluff are nothing but conic

spaces (particles on AdS3) or their Virasoro descendants.
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BTZ black hole microstate counting

• Having identified all of microstates of a BTZ black hole of given
mass and angular momentum, ∆±, we can count the number of
linearly independent microstates.

• This problem is the Ramanujan-Hardey problem: Number of par-
tition of a given integer N into non-negative integers. For N � 1,
this is p(N):

p(N) '
4

N
√

3
e

2π
√
N
6

• Therefore, the microcanonic entropy is ln p(N), N = c∆:

SBTZ = 2π

√c∆+

6
+

√
c∆−

6

− ln(c∆+)− ln(c∆−) + · · ·

where · · · stands for 1/N corrections.
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Horizon Fluff and the Log-corrections

• An important and non-trivial check for our proposal is that it give
the correct logarithmic correction to the BH entropy.

• The correct log-corrections for BTZ black hole is

S(E) = S0(E)−
3

2
ln(S0(E)), S0(E) = 2π

√
cE

where S0(E) is the Cardy part of the entropy.

• The above correction, the factor of 3/2, comes from modular in-
variance of the presumed dual 2d CFT.

• Modular invariance is crucial property of a 2d CFT dual to AdS3
QGr; it is a part of diff. invariance of the gravity theory.
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• The Hardy-Ramanujan (HR) counting gives -2 instead of -3/2:

S(E) = S0(E)− 2 ln(S0(E)),

• The discrepancy comes from the fact that HR counting is done in

canonical description while the -3/2 is obtained in microcanonical

description.

• The missing factor of -1/2 can be understood recalling the canon-

ical to microcanonical map

J(φ) = ±J0h
′(φ)−

1

2

h′′

h′
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• HR counting:

Scan. = S0(Ecan.)− 2 lnS0(Ecan.)

S0(Ecan.) =
1

2π
〈
∫ 2π

0
dφ J(φ)〉BTZ

• Modular invariance:

Smc. = S0(Emc.)−
3

2
lnS0(Emc.)

• The canonical to microcanonical map implies

〈
∫ 2π

0
dφJ(φ)〉BTZ = J0〈h(φ)

∣∣∣2π
0
〉BTZ −

1

2
〈ln(h′(φ)

∣∣∣2π
0
〉BTZ.
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• To compute the log-term, we can safely work in the “large-J0”
limit, where h(φ) provides a convenient free-field representation
with the Lagrangian L(φ) ' J2

0h
′(φ)2.

• Using the fact that

〈ln(h′(φ))
∣∣∣2π
0
〉BTZ =

d

dn
〈(h′(φ)n)

∣∣∣2π
0
〉BTZ

∣∣∣∣∣
n=0

.

we get

〈ln(h′(φ))
∣∣∣2π
0
〉BTZ =

d

dn

[( ∫
Dh h′nei

∫
J2

0h
′2
)∣∣∣∣∣

2π

0

]
|n=0

which is a straightforward free field theory computation of an n-
point function in the “pinching” limit.

• Regularizing with standard point-splitting method, yields

〈ln(h′(φ))
∣∣∣2π
0
〉BTZ = − ln J0 + J0 independent terms.

and hence the desired result. Q.E.D. �
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Summary and Outlook

• Horizon fluff are subset of states/configurations labeled by the near
horizon residual symmetries which cannot be distinguished by their
residual symmetry charges associated with diffeomorphisms away
from horizon of the black hole.

• Horizon Fluff Proposal states that

Horizon fluff are microstates of a black hole specified by its
asymptotic residual symmetry algebra charges.

Black hole microstates are a subset of the near horizon residual
diffeomorphisms which may not be extended to beyond horizon.

• Our intuition is that a black hole is a condensate of the NH fluffs.
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The six steps to the horizon fluff

1. Identify the asymptotic symmetry algebra.

2. Identify the near hrozion symmetry algebra.

3. Construct the asymptotic black hole Hilbert space HBH.

4. Construct the near horizon Hilbert space HNH.

5. Find the map embedding the asymptotic algebra into the NH one.

6. Finally, solve the equation defining the black hole on the HNH to
get the microstates.
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Summary and Outlook

• We explicitly showed how this proposal works for the case of AdS3
BTZ black holes.

• It has been shown how this proposal works for more general family
of AdS3 black holes [M.M. Sh-J & H. Yavartanoo].

• For the case of BTZ black hole the horizon fluff are nothing but
conic spaces (particles on AdS3) or their Virasoro descendants.

• For this example the step 5 was introduced through a duality.

• One can argue for this duality more for the case of AdS3.

• It is desirable to understand and establish it better.
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Horizon Fluff and the Log-corrections

• As an important and non-trivial check for our proposal we showed

that it produces the exact and correct logarithmic-correction to

the BTZ BH entropy, if we note the canonical vs. microcanonical

descriptions.

• Horizon Fluff for other black holes?!

– It works for the 4d Extremal Kerr black hole,

– We have proposals for generic 4d Kerr black hole
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You are warmly invited to search for

Horizon Fluff

for generic black holes.

Thank You
For Your Attention
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Supplementary Material
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Causal diagram of BTZ black hole.
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