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Motivation -1

Chaos refers to sensitive dependence on initial conditions,
i.e. initially very similar states can evolve to be quite
different.

Chaos in context of thermalization.

In Quantum Information Theory and Black holes this is
also known as scrambling.

Black Holes are fastest scramblers in nature: t∗ ∼ β log S .
Hayden & Preskill ’07, Sekino & Susskind ’08

Largest Lyapunov exponent is bounded by Black hole
result: λL ≤ 2πkB T

~ . Theories where the bound is
saturated should have a gravity dual.Maldacena, Shenker, & Stanford ’15
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Bound on Chaos-1

Diagnostic of Chaos: C (t) = −〈[W (t),V (0)]2〉β ∼ O(1)

In semi classical limit, V = p and W = q(t) :

C (t) = ~2
(
∂q(t)
∂q(0)

)2
∼ ~2e2λLt .

C (t) ∼ O(1) at t∗ ∼ 1
λL

log 1
~

Dissipation time td : 〈V (0)V (t)〉 ∼ e
− t

td .

Typically in thermal systems: td ∼ β
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Bound on Chaos-2

V(0)

V(0)

W(t)

W(t)

F (t) = Tr [yVyW (t)yVyW (t)] where
y4 = 1

Z e
−βH .

Conjecture (t � td , t � t∗):
d
dt (Fd − F (t)) ≤ 2π

β (Fd − F (t))

Chaotic system: (Fd − F (t)) ∼ εeλLt

→ λL ≤ 2π
β

Holographically (2 + 1 dim bulk):

F (t) = f0 − f1
N2 e

2π
β

t
Shenker & Stanford ’13
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Motivation -2

For such chaotic/thermal systems, a small perturbation
can change the pattern of correlation drastically :
Disruption of entanglement/ Butterfly effect.

The diagnostic used in this case is Thermo-Mutual
Information Morrison & Roberts ’12.

It is recently studied in context of AdS/CFT by various
people including Shenker, Stanford, Susskind, Roberts,
Leichenauer, ...

We have extended their work in context of:

Black Dp branes.
Lifshitz Black brane.
Higher Derivative Black brane.
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“AdS/CFT Correspondence” or Holography

QFT
(d + 1) Gravity

((d−1)+1)

r

O
φ

Duality between N = 4 SU(N)
Super-Yang Mills’ theory in (3 + 1)-dim
and type IIB Super-strings in
AdS5 × S5. Maldacena ’97; Gubser, Klebanov, Polyakov

’98 ; Witten ’98

Simplifies in the limit of large ’t Hooft
coupling (λ = g2

YMN � 1) and large
N � 1 to a duality between classical
type IIB super-gravity and full quantum
Super-Yang Mills’ theory at leading
order in λ and N.

Presently refers to more general class
of dualities.
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Entanglement Entropy

B

A

Σ

t=const.

Consider an entangling surface Σ which
divides the space in to two separate
sub-systems.

Integrate out the the degrees of
freedom living “outside” (region B).

The reduced system is now described
by a density matrix ρA.

“Entanglement entropy” or von
Neuman entropy:
SEE = −Tr (ρA log ρA).
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Holographic Entanglement Entropy

B Σ

γA

Bulk

r

t=const.
A

SEE = min
∂γA=Σ

(
Area(γA)

4GN

)
Ryu &

Takayanagi ’06

Generalized to time dependent
situations (Covariant
prescription): min→
extremum.Hubeny, Rangamani, & Takayanagi ’07

In presence of dilaton: Area →
Area in Einstein frame Ryu &

Takayanagi ’06, Klebanov et al.. ’07.

For higher derivative gravity:
Area →

∫
γA

f [RγA
] de Boer et al.. ’11,

Hung et al.. ’11, Dong ’13, Camps ’13
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A

SEE = min
∂γA=Σ

(
Area(γA)

4GN

)
Ryu &

Takayanagi ’06

Generalized to time dependent
situations (Covariant
prescription): min→
extremum.Hubeny, Rangamani, & Takayanagi ’07

In presence of dilaton: Area →
Area in Einstein frame Ryu &

Takayanagi ’06, Klebanov et al.. ’07.

For higher derivative gravity:
Area →

∫
γA

f [RγA
] de Boer et al.. ’11,

Hung et al.. ’11, Dong ’13, Camps ’13
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Mutual Information

I (A;B) = S(A) + S(B)− S(A ∪ B)

Finite quantity, UV divergence in EE cancels.

Strong sub-additivity: I (A;B) ≥ 0

Measures total classical and quantum correlation between
two regions.

I (A;B) ≥ 1
2

(
〈OAOB〉−〈OA〉〈OB〉
||OA||||OB ||

)2
Wolf et al.. ’08i.e.

I (A;B) = 0 =⇒ 〈OAOB〉 = 〈OA〉〈OB〉
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Holographic Mutual Information

A B

γA γB

γA∪B

min(Area(γA∪B)) = Area(γA∪B)

if Area(γA∪B) < Area(γA) + Area(γB)

= Area(γA) + Area(γB) otherwise

For later case,

I (A;B) = S(A) + S(B)− S(A ∪ B) = 0
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Black Holes and Finite Temperature QFT

QFT at Temperature T ≡ Black Holes with Hawking
temperature T .

Black Hole metric:

ds2 = −f (r)dt2 +
dr2

f (r)
+ dΣ2

⊥

f (rH) = 0 ; T =
1

β
=
|f ′(rH)|

4π

For asymptotically AdS black holes: f (r)→ r2

L2 as r →∞
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Black Holes: Kruskal-Szekeres Coordinates

Define Kruskal-Szekeres Coordinates (u, v):

uv = −e4πTr∗(r), u/v = e−4πTt

ds2 = − 4f (r)

16π2T 2
e−4πTr∗(r)dudv + dΣ2

⊥

dr∗ = dr
f (r) .

We can further re-define coordinates (“Penrose Diagram“)
region by: U = tan−1(u), V = tan−1(v).

AdS black holes: AdS boundary at uv = −1 and
Singularity at uv = 1.
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Eternal AdS Black Holes

u
v

t
t

tt = const.

r = const.

Kruskal-Szekeres Diagram

I

III

II

IV

R
L

Penrose Diagram

Nilanjan Sircar Chaos in General Holographic Space-times



Chaos in
General

Holographic
Space-times

Nilanjan
Sircar

Motivation &
Introduction

Chaos,
Butterfly-
effect &
Holography

Chaos in
various
systems

Summary &
Future
Directions

Thermo Field Double (TFD)

Consider two QFTs with isomorphic Hilbert Spaces HL

and HR . Thermofield double is an particular entangled
state in HL ⊗HR :

|TFD〉 =
1√
Z (β)

∑
n

e−
β
2

En |n〉L|n〉R

Z (β) =
∑

n e
−βEn

ρL = TrR |TFD〉 〈TFD| = 1
Z(β)

∑
n e
−βEn |n〉L 〈n|L

← Thermal Density Matrix
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TFD ≡ Maximally extended Black Holes

I

III

II

IV

QFTL QFTR

TFD is dual to the maximal
extension of the eternal black
hole. The pair of QFTs living on
the two boundaries correspond to
the two QFTs in the definition of
TFD. Israel ’76, Maldacena ’01

Entanglement between the two
QFTs is given by the thermal
entropy of the black hole.
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Black Hole and (Thermo-) Mutual Information

X

A
B

X

A
B

Consider the mutual information for strips of size L:

IAB = SA + SB − SA∪B

For BTZ Black Hole (2 + 1-dimension) :

IAB = max(
LAdS

GN
log sinh(πLT ), 0)

Shenker & Stanford ’13
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Black Hole and (Thermo-) Mutual Information:
Plot

IAB

L T
LcT

There exists a critical strip size L = Lc beyond which the
Mutual Information is non zero.
Shenker & Stanford ’13, Leichenauer ’14, Sonnenschein-NS-Tangarife ’16
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Perturbing TFD: Shock Wave geometry

δM

tW

M + δM

M

α

Consider the Kruskal coordinates (ũ, ṽ), (u, v) to the left and
right of the perturbation respectively. In the limit of small
perturbation δM

M � 1 and large tw � 1: ṽ = v + α, ũ = u
with,

α =
c2

c1

δMβ

SBH
e−

2π
β

(r∗(∞)−tw )

Using Bekenstein-Hawking Formula and First Law of
Thermodynamics. Shenker & Stanford ’13
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Heuristic Calculation of Scrambling time

α

tW should correspond to scrambling time t∗ when the effect of
the perturbation is order one.

α ∼ 1

which gives for perturbation δM ∼ T ,

t∗ =
β

2π
log SBH +

β

2π
log

(
c1

c2
er∗(∞)

)
SBH ∼ N2 � 1.Shenker & Stanford ’13
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Diagnostics for Chaos -I

We are interested in looking for signature of disruption of
entanglement/ correlation due to a small perturbation.

So in the Shockwave geometry corresponding to a small
perturbation of the Thermofield double we can calculate
two sided mutual information (thermo-mutual information
(TMI)).

As seen before the TMI is non zero only for beyond some
critical strip size L > Lc .

Now with L > Lc we can calculate the TMI in the
Shockwave geometry.
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(TMI)).
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Diagnostics for Chaos-II

X

A
B

X

A
B

In this geometry TMI is function of
IAB(L, α(tW )) = SA(L) + SB(L)− SA∪B(L, α(tw )).

We define scrambling time (t∗) as when
IAB(L, α(tW = t∗)) = 0 for a given L > Lc .

t∗ = β
2π log SBH +O(N0), same conclusion as α ∼ 1

analysis.
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t∗ = β
2π log SBH +O(N0), same conclusion as α ∼ 1
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We define scrambling time (t∗) as when
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Diagnostics for Chaos-Plot

IAB

α(tW )
α(t∗)

General behavior of TMI in Shockwave geometries except for
some parameter region of higher derivative gravity.
Shenker & Stanford ’13, Leichenauer ’14, Sonnenschein-NS-Tangarife ’16
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Analytic Results in BTZ black hole

In 2 + 1-dimensional BTZ black hole calculation can be
performed analytically. Shenker & Stanford ’13

For L > Lc : I (A,B) = LAdS
GN

(
log sinh πL

β − log
(
1 + α

2

))
α = E β

2SBH
e2π tw/β

For high temperature, LT � 1: t∗ = L
2 + β

2π log 2SBH
βE .
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F (t) in BTZ Black Hole

In geodesic approximation Cornalba et al ’06, Shenker & Stanford ’13,

F (t) ∼
(

1

1 + α
2

)2ml

where α = E β
2SBH

e2π tw/β.
F (t) is initially order 1 but starts decaying exponentialy at time
t ∼ t∗.
Note in BTZ case, the calculation of F (t) and Mutual
Information are essentially same and given by geodesics.
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Black Dp Branes

Black Dp Branes correspond to p + 1-dimensional Super
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p 6= 3 corresponds to non-conformal field theories. The
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7−p where, g2
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l
2(p−3)
s
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Black Dp Branes contd.

So we need to put an UV-cutoff Λ and the validity at the
other end can be achieved by choosing a appropriate
temperature.

Temperature and Entropy is given as,

sBH = c(p)(g2
YMN)

p−3
5−p N2T

9−p
5−p

Holography is not well defined for p ≥ 5.
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Black Dp Branes: Results

t∗ = r∗(Λ) + β
2π

(
log sBH (β, p, λ,N) + log c1

c2
(p) + logα∗( L

β , p)
)

r∗(Λ) =
2`

n(p − 5)

(
Λ

`

) n
2 (p−5)

, p 6= 5

= ` log

(
Λ

rh

)
, p = 5

n = 8
8+(7−p)(3−p)

> 0
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Lifshitz Black Branes

We are here interested in non-relativistic scale invariant
theories with:

t → λz t ; x → λt for z 6= 1.

The holographic dual to such field theories at finite
temperature is generically called Lifshitz Black Holes.Kachru,

Liu, & Mulligan ’08

sBH = 1

4G
(4)
N

(
2π`

z

) 2
z T

2
z .

General lore is that the Ryu-Takayanagi principle is not
modified for this case.
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Lifshitz Black Branes: Results

t∗ = β
2π log sBH − `2

z2Λ
+ β

2π log( 1
2e
−ψ( z

2
)−γ) + β

2π logα∗(LT
1
z )
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Higher derivative Black Branes

We consider AdS black-brane solutions in case of Einstein
gravity corrected with higher curvature terms.

It corresponds to finite T Conformal Theories with central
charges a 6= c .

Most general higher curvature gravity theory with second
order equation of motion is known as Lovelock theory.

We will consider 4 + 1-dimensional Lovelock theory, which
corresponds to just addition of Gauss-Bonnet term along
with usual Einstein-Hilbert term in the action.

Higher curvature corrections in bulk ⇐⇒ λ′tHooft

corrections in dual field theory.
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Gauss Bonnet Action

Sgrav =
1

16πGN

∫
d5x
√−g

(
R +

12

L2
+
λGBL

2

2
X4

)
X4 = RµνρσR

µνρσ − 4RµνR
µν + R2

The entropy density of Gauss-Bonnet black brane:Cai ’02

sBH =
L3

4GN
s(λGB )T 3

The value of λGB is bounded by causality constraints:Brigante et al.

’08, Buchel et al. ’09

−7/36 ≤ λGB ≤ 9/100

It is recently pointed out that Gauss-Bonnet as an exact
theory violates causality for any λGB .Camanho et al. ’14
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Holographic Entanglement Entropy in Higher
Derivative theories

SEE =
1

4GN

∫
γ

d3σ
√
γ̃
(
1 + λGBL

2Rγ
)

+ λGBL
2 1

2GN

∫
∂γ

d2σ
√
hK

de Boer et al. ’11, Hung et al. ’11
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Higher derivative Black Branes: Results

λ= 0.0

λ=-0.1

L /β = 0.8

Jump during 

thermalization

Jump at the end  

of thermalization

0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

14

α

I(
A
,B
)

For positive λGB the result is qualitatively similar to λGB = 0
case.

t∗ =
β

2π
log sBH +

β

2π

(π
2
− 4λGB

)
Similar jumps was noticed in time evolution of Entanglement
entropy with higher derivative correction Caceres et. al. ’15.
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Summary

We discussed the concept of Chaos/ Scrambling/
Butterfly Effect in context of Holography.

We have shown that the dual thermal field theory
scrambles information at time scales given by β

2π log SBH

for various geometries.

We have used vanishing of thermo-Mutual Information as
a signature for scrambling.

The results are qualitatively similar in conformal (a = c),
non-conformal and non-relativistic cases.

For conformal theories with (a 6= c), dual to Gauss-Bonnet
Black hole the behavior can be very different depending on
sign of coupling.
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Future directions-1

Thermo-Mutual Information, used as a probe for
scrambling involves regions in two different copies of the
field theory. It would be useful to express this as a probe
in a single field theory.

Exponential fall of out of time 4 point correlation
function is also used as a probe of Scrambling. Connection
to Chaos is more transparent in this definition, also
definition of Lyapunov exponent is natural. In case of BTZ
black hole, the two definitions can be shown to be
equivalent, at least for some heavy operators. Precise
connection in general is missing.
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Future directions-2

Whether the higher derivative correction beyond GB term
can smooth out the jumps? If not, significance of such
jumps?

Extension to non-commutative theories, General Higher
Derivative gravity confining theories... Reynolds et al 1604.04099, Huang

et al 1609.08841, Alishahiha et al 1610.02890
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Future directions-2

Whether the higher derivative correction beyond GB term
can smooth out the jumps? If not, significance of such
jumps?

Extension to non-commutative theories, General Higher
Derivative gravity confining theories... Reynolds et al 1604.04099, Huang

et al 1609.08841, Alishahiha et al 1610.02890
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Thank You
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