Construction of the Emergent Yang-Mills Theory

Shaun de Carvalho

University of the Witwatersrand

Supervisor: Prof. R. de Mello Koch

MITP: 20 January 2018
Main aim: to construct the **emergent Yang-Mills theory** that is dual to the *low energy description* of **open string excitations** and **giant graviton branes**.

- We make use of the **spin chain description** of the CFT operators.
- Why? It is a very effective approach to the **planar limit** of the SYM theory.
- This description maps:
 1. Each CFT operator \rightarrow state of a spin chain, and
 2. Dilatation operator \rightarrow Hamiltonian of the spin chain.
- The *dynamics* of the spin chain are naturally described in terms of excitations known as **magnons**.
Main aim: to construct the emergent Yang-Mills theory that is dual to the low energy description of open string excitations and giant graviton branes.

We make use of the spin chain description of the CFT operators.

Why? It is a very effective approach to the planar limit of the SYM theory.

This description maps:

1. Each CFT operator \rightarrow state of a spin chain, and
2. Dilatation operator \rightarrow Hamiltonian of the spin chain.

The dynamics of the spin chain are naturally described in terms of excitations known as magnons.
Main aim: to construct the emergent Yang-Mills theory that is dual to the low energy description of open string excitations and giant graviton branes.

We make use of the spin chain description of the CFT operators.

Why? It is a very effective approach to the planar limit of the SYM theory.

This description maps:

1. Each CFT operator \rightarrow state of a spin chain, and
2. Dilatation operator \rightarrow Hamiltonian of the spin chain.

The dynamics of the spin chain are naturally described in terms of excitations known as magnons.
Aim

- **Main aim**: to construct the **emergent Yang-Mills theory** that is dual to the **low energy description of open string excitations** and **giant graviton branes**.
- We make use of the **spin chain description** of the CFT operators.
- Why? It is a very effective approach to the **planar limit** of the SYM theory.
- This description maps:
 1. Each CFT operator \rightarrow state of a spin chain, and
 2. Dilatation operator \rightarrow Hamiltonian of the spin chain.
- The **dynamics** of the spin chain are naturally described in terms of excitations known as **magnons**.
Aim

- **Main aim**: to construct the emergent Yang-Mills theory that is dual to the low energy description of open string excitations and giant graviton branes.
- We make use of the spin chain description of the CFT operators.
- Why? It is a very effective approach to the planar limit of the SYM theory.
- This description maps:
 1. Each CFT operator \rightarrow state of a spin chain, and
 2. Dilatation operator \rightarrow Hamiltonian of the spin chain.
- The *dynamics* of the spin chain are naturally described in terms of excitations known as magnons.
We have evaluated the action of the one loop dilatation operator D_2 in the $SU(3)$ sector:

$$D_2 = -g_{YM}^2 \text{Tr} \left([Y, Z] \left[\frac{d}{dY}, \frac{d}{dZ} \right] + [X, Z] \left[\frac{d}{dX}, \frac{d}{dZ} \right] + [Y, X] \left[\frac{d}{dY}, \frac{d}{dX} \right] \right)$$

1. Initially in the restricted Schur polynomial basis

$$\chi_{R,(r,s,t)\bar{\mu}\bar{\nu}} = \frac{1}{n!m!p!} \sum_{\sigma \in S_{n+m+p}} \text{Tr}_{(r,s,t)\bar{\mu}\bar{\nu}} \left(\Gamma^R(\sigma) \right) X_{i\sigma(1)}^{i_1} \cdots X_{i\sigma(p)}^{i_p} \times$$

$$\times Y_{i\sigma(p+1)}^{i_{p+1}} \cdots Y_{i\sigma(p+m)}^{i_{p+m}} Z_{i\sigma(p+m+1)}^{i_{p+m+1}} \cdots Z_{i\sigma(p+m+n)}^{i_{p+m+n}}$$

2. Improved the result \rightarrow Gauss graph basis (result is diagonalised over some irreducible representation labels).

$$O_{R,r}(\sigma) = N \chi_{R,(r,s,t)\bar{\mu}\bar{\nu}}, \quad \sigma \in H\backslash S_m/H.$$
Completed work

- We have evaluated the action of the one loop dilatation operator D_2 in the $SU(3)$ sector:

$$D_2 = -g_{YM}^2 \text{Tr} \left([Y, Z] \left[\frac{d}{dY}, \frac{d}{dZ} \right] + [X, Z] \left[\frac{d}{dX}, \frac{d}{dZ} \right] + [Y, X] \left[\frac{d}{dY}, \frac{d}{dX} \right] \right)$$

1. Initially in the **restricted Schur polynomial** basis

$$\chi_{R, (r,s,t)\bar{\mu}\bar{\nu}} = \frac{1}{n!m!p!} \sum_{\sigma \in S_{n+m+p}} \text{Tr}_{(r,s,t)\bar{\mu}\bar{\nu}} \left(\Gamma_R^R(\sigma) \right) X^{i_1}_{i_{\sigma(1)}} \cdots X^{i_p}_{i_{\sigma(p)}} \times$$

$$\times Y^{i_{p+1}}_{i_{\sigma(p+1)}} \cdots Y^{i_{p+m}}_{i_{\sigma(p+m)}} Z^{i_{p+m+1}}_{i_{\sigma(p+m+1)}} \cdots Z^{i_{p+m+n}}_{i_{\sigma(p+m+n)}}$$

2. Improved the result \rightarrow **Gauss graph** basis (result is diagonalised over some irreducible representation labels).

$$O_{R,r}(\sigma) = \mathcal{N} \chi_{R, (r,s,t)\bar{\mu}\bar{\nu}}, \quad \sigma \in H\backslash S_m/H.$$
Completed work

- We have evaluated the action of the one loop dilatation operator D_2 in the $SU(3)$ sector:

$$D_2 = -g^2_{YM} \text{Tr} \left([Y, Z] \left[\frac{d}{dY}, \frac{d}{dZ} \right] + [X, Z] \left[\frac{d}{dX}, \frac{d}{dZ} \right] + [Y, X] \left[\frac{d}{dY}, \frac{d}{dX} \right] \right)$$

1. Initially in the **restricted Schur polynomial** basis

$$\chi_{R,(r,s,t)\bar{\mu}\bar{\nu}} = \frac{1}{n!m!p!} \sum_{\sigma \in S_{n+m+p}} \text{Tr}_{(r,s,t)\bar{\mu}\bar{\nu}} \left(\Gamma^R(\sigma) \right) X_{\sigma(1)}^{i_1} \cdots X_{\sigma(p)}^{i_p} \times$$

$$\times Y_{\sigma(p+1)}^{i_{p+1}} \cdots Y_{\sigma(p+m)}^{i_{p+m}} Z_{\sigma(p+m+1)}^{i_{p+m+1}} \cdots Z_{\sigma(p+m+n)}^{i_{p+m+n}}$$

2. Improved the result → **Gauss graph** basis (result is diagonalised over some irreducible representation labels).

$$O_{R,r}(\sigma) = N \chi_{R,(r,s,t)\bar{\mu}\bar{\nu}}, \quad \sigma \in H \backslash S_m / H.$$
A number of things to note:

- We mainly focused on the subleading piece, i.e. the mixing of the X and Y fields - small deformations of $\frac{1}{2}$-BPS operators; cannot be ignored.
- Many concepts of Group theory and Representation theory were used.
- Once we had a general result, we then considered the large N limit.
- Computations in the Gauss graph basis are made more precise with the help of Gauss graphs.

- Quick, step-by-step review.
- Show novel work. Careful cases considered.
- Diagonalizing result \rightarrow system of bosons hopping on a lattice.
Completed work

A number of things to note:

- We mainly focused on the subleading piece, i.e. the mixing of the X and Y fields - small deformations of $\frac{1}{2}$-BPS operators; cannot be ignored.

- Many concepts of **Group theory** and **Representation theory** were used.

- Once we had a *general* result, we then considered the *large* N limit.

- Computations in the Gauss graph basis are made more precise with the help of **Gauss graphs**.

 - Quick, step-by-step review.
 - Show novel work. Careful cases considered.
 - Diagonalizing result \rightarrow system of bosons hopping on a lattice.
Completed work

A number of things to note:

- We mainly focused on the subleading piece, i.e. the mixing of the X and Y fields - small deformations of $\frac{1}{2}$-BPS operators; cannot be ignored.

- Many concepts of **Group theory** and **Representation theory** were used.

- Once we had a *general* result, we then considered the **large N limit**.

- Computations in the Gauss graph basis are made more precise with the help of **Gauss graphs**.

 - Quick, step-by-step review.
 - Show novel work. Careful cases considered.
 - Diagonalizing result → system of bosons hopping on a lattice.
Completed work

A number of things to note:

- We mainly focused on the subleading piece, i.e. the mixing of the X and Y fields - small deformations of $\frac{1}{2}$-BPS operators; cannot be ignored.

- Many concepts of Group theory and Representation theory were used.

- Once we had a general result, we then considered the large N limit.

- Computations in the Gauss graph basis are made more precise with the help of Gauss graphs.

- Quick, step-by-step review.
- Show novel work. Careful cases considered.
- Diagonalizing result \rightarrow system of bosons hopping on a lattice.
Completed work

A number of things to note:

- We mainly focused on the subleading piece, i.e. the mixing of the X and Y fields - small deformations of $\frac{1}{2}$-BPS operators; cannot be ignored.

- Many concepts of Group theory and Representation theory were used.

- Once we had a general result, we then considered the large N limit.

- Computations in the Gauss graph basis are made more precise with the help of Gauss graphs.

- Quick, step-by-step review.

- Show novel work. Careful cases considered.

- Diagonalizing result → system of bosons hopping on a lattice.
Completed work

A number of things to note:

- We mainly focused on the subleading piece, i.e. the mixing of the X and Y fields - small deformations of $\frac{1}{2}$-BPS operators; cannot be ignored.

- Many concepts of Group theory and Representation theory were used.

- Once we had a general result, we then considered the large N limit.

- Computations in the Gauss graph basis are made more precise with the help of Gauss graphs.

- Quick, step-by-step review.

- Show novel work. Careful cases considered.

- Diagonalizing result → system of bosons hopping on a lattice.
Future work

- We intend to study the $SU(2|2)$ group, its algebra and its connection to magnons.
- Why? To gain some insight to the low level description of the super Yang-Mills theory.
- This group involves fermions which we did not consider previously.
- Study supergroups and superalgebra to determine the **anomalous dimension of the $SU(2|2)$ group** and the **magnon scattering matrix** S_{12}.
- Later on, we also want to look at the gravity theory - consider the $9 + 1$ dimensional metric and action. Why?
 - Helps build an understanding of the open strings attached to the S^3 worldvolume, and
 - it helps us think about what **magnon bound states** we are studying.
Future work

- We intend to study the $SU(2|2)$ group, its algebra and its connection to magnons.
- Why? To gain some insight to the low level description of the super Yang-Mills theory.
- This group involves fermions which we did not consider previously.
- Study supergroups and superalgebra to determine the anomalous dimension of the $SU(2|2)$ group and the magnon scattering matrix S_{12}.
- Later on, we also want to look at the gravity theory - consider the $9 + 1$ dimensional metric and action. Why?
 - Helps build an understanding of the open strings attached to the S^3 worldvolume, and
 - it helps us think about what magnon bound states we are studying.
Future work

• We intend to study the $SU(2|2)$ group, its algebra and its connection to magnons.

• Why? To gain some insight to the low level description of the super Yang-Mills theory.

• This group involves fermions which we did not consider previously.

• Study supergroups and superalgebra to determine the anomalous dimension of the $SU(2|2)$ group and the magnon scattering matrix S_{12}.

• Later on, we also want to look at the gravity theory - consider the $9 + 1$ dimensional metric and action. Why?
 - Helps build an understanding of the open strings attached to the S^3 worldvolume, and
 - it helps us think about what magnon bound states we are studying.
Future work

- We intend to study the $SU(2|2)$ group, its algebra and its connection to magnons.
- Why? To gain some insight to the low level description of the super Yang-Mills theory.
- This group involves fermions which we did not consider previously.
- Study supergroups and superalgebra to determine the **anomalous dimension of the $SU(2|2)$ group** and the **magnon scattering matrix** S_{12}.
- Later on, we also want to look at the gravity theory - consider the $9 + 1$ dimensional metric and action. Why?
 - Helps build an understanding of the open strings attached to the S^3 worldvolume, and
 - it helps us think about what magnon bound states we are studying.
Future work

- We intend to study the $SU(2|2)$ group, its algebra and its connection to magnons.
- Why? To gain some insight to the low level description of the super Yang-Mills theory.
- This group involves fermions which we did not consider previously.
- Study supergroups and superalgebra to determine the anomalous dimension of the $SU(2|2)$ group and the magnon scattering matrix S_{12}.
- Later on, we also want to look at the gravity theory - consider the $9 + 1$ dimensional metric and action. Why?
 - Helps build an understanding of the open strings attached to the S^3 worldvolume, and
 - it helps us think about what magnon bound states we are studying.
Future work

• We intend to study the $SU(2|2)$ group, its algebra and its connection to magnons.
• Why? To gain some insight to the low level description of the super Yang-Mills theory.
• This group involves fermions which we did not consider previously.
• Study supergroups and superalgebra to determine the anomalous dimension of the $SU(2|2)$ group and the magnon scattering matrix S_{12}.
• Later on, we also want to look at the gravity theory - consider the $9 + 1$ dimensional metric and action. Why?
 - Helps build an understanding of the open strings attached to the S^3 worldvolume, and
 - it helps us think about what magnon bound states we are studying.
Thank you for your time, attention and for the opportunity.